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Irreducibility of a universal Prym-Brill-Noether locus

Andrei Bud

Abstract

For genus g =
r(r+1)

2
+1, we prove that via the forgetful map, the universal Prym-Brill-Noether locus

V
r

g has a unique irreducible component dominating the moduli space Rg of Prym curves.

1 Introduction

The moduli space Rg of Prym curves was brought to the attention of algebraic geometers by Mumford in his
influential paper [Mum74], as a way of understanding principally polarized Abelian varieties. For an element

[C, η] of Rg we let π : C̃ → C be the associated double cover and let Nmπ : Pic
2g−2(C̃) → Pic2g−2(C) be the

norm map of this morphism of curves. In this situation, the preimage of ωC consists of two disjoint varieties

P+ =
{
L ∈ Pic2g−2(C̃) | Nm(L) = ωC and h0(C̃, L) ≡ 0 (mod 2)

}

and
P− =

{
L ∈ Pic2g−2(C̃) | Nm(L) = ωC and h0(C̃, L) ≡ 1 (mod 2)

}
.

isomorphic to the Prym variety in Pic0(C̃).

Following this development, Welters emphasized in [Wel85] that Prym-Brill-Noether theory can be em-
ployed in order to understand the geometry of subvarieties of Prym varieties. More precisely, he considered
the loci

V r(C, η) :=
{
L ∈ Pic2g−2(C̃) | Nm(L) ∼= ωC , h0(C̃, L) ≥ r + 1, and h0(C̃, L) ≡ r + 1 (mod 2)

}

in order to study the singularities of the theta divisor of the associated Prym variety. The relation between
Prym-Brill-Noether theory and the study of singularities of theta divisors piqued the interest of other math-

ematicians. The two papers [Wel85] and [Ber87] showed that when g ≥ r(r+1)
2 + 1, the locus V r(C, η) is

non-empty of dimension at least g− 1− r(r+1)
2 . In addition, for a generic [C, η] ∈ Rg, the locus V r(C, η) has

exactly this dimension when g ≥ r(r+1)
2 + 1 and is empty when g <

r(r+1)
2 + 1, see [Sch17]. Subsequently

in [DCP95], De Concini and Pragacz viewed V r(C, η) as a Lagrangian degeneracy locus (cf. [Mum71]) and

computed the class of V r(C, η) in the Prym variety when it has the expected dimension g − 1− r(r+1)
2 .

In recent years, two new perspectives for the study of Prym-Brill-Noether theory emerged. On one hand,
it has been studied from the point of view of tropical geometry, see [CLRW20] and [LU21], thus providing
another proof for the dimension estimate of V r(C, η) for a generic [C, η] and, on the other hand, from the
perspective of moduli theory, with a view to understanding the birational geometry of Rg for small values

of g. It is natural to ask when g ≥ r(r+1)
2 + 1 whether the universal Prym-Brill-Noether locus

Vr
g := {[C, η, L] | [C, η] ∈ Rg and L ∈ V r(C, η)}

has a unique irreducible component dominating the moduli space Rg. This is true for g >
r(r+1)

2 +1 because
the fibre above a general [C, η] ∈ Rg is irreducible, see [Deb00, Exemples 6.2]. However, as pointed out in

[JP21], this was not known for g = r(r+1)
2 +1. The present paper aims at showing that when g = r(r+1)

2 +1,
the moduli space Vr

g has a unique irreducible component dominating Rg. In the interest of proving this

result, we will consider the compactification Rg of the moduli space of Prym curves Rg, see [BCF04] and
[FL10]. Ultimately, we degenerate to the boundary locus of Rg and employ the theory of limit linear series,
adapted to our situation.
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2 Prym linear series

Our goal in this section is to provide a suitable definition of Prym linear series and then use it to prove
our main result. We will start by recalling some definitions regarding limit linear series, while referring the
reader to [EH86] for a throughout study.

First, recall that a grd on a smooth curve Y is defined to be a pair (V, L) of a degree d line bundle L

together with an (r + 1)-dimensional vector subspace V ⊆ H0(Y, L). This definition extends naturally to
curves of compact type.

Let Y be a genus g curve of compact type. A crude limit grd consists of a grd (Vi, Li) for every irreducible
component Yi of Y , further satisfying the following property:

• Let q be a node of Y connecting two irreducible components Yj and Yk and let 0 ≤ a0 < · · · < ar ≤ d

and 0 ≤ b0 < · · · < br ≤ d the vanishing orders at q of the sections in Vj and Vk respectively. Then for any
0 ≤ i ≤ r we have

ai + br−i ≥ d.

If for any node q all the inequalities are in fact equalities, the limit linear system is called refined.

Lastly, we define the Brill-Noether number associated to a smooth pointed curve and a grd on it. Let
(Y, p1, . . . , pn) be a smooth genus g curve together with n points on it, and l = (V, L) be a grd on Y . Let
0 ≤ ai0 < · · · < air ≤ d the vanishing orders at pi of the sections in V . The Brill-Noether number of the grd
with respect to the points pi is defined as

ρ(l, p1, . . . , pn) := g − (r + 1)(g − d+ r) −

n∑

i=1

r∑

j=0

aij + n ·
r(r + 1)

2
.

Having these definitions, we are ready to particularize to our situation.

Let [C, η] ∈ Rg be a generic Prym curve. Then, we know from [Wel85, Lemma 3.2] that a generic element

L ∈ V r(C, η) satisfies h0(C̃, L) = r + 1. Moreover, when g = r(r+1)
2 + 1 we know from [Sch17, Theorem 1.1]

that all L ∈ V r(C, η) satisfy h0(C̃, L) = r + 1. In particular, the line bundle L can be viewed as a gr2g−2 on

the curve C̃. Furthermore, up to restricting to an open subset, we can view all irreducible components of
Vr
g dominating Rg as contained in the moduli space Gr

2g−2(Rg) parametrizing limit gr2g−2 over double covers

[π : C̃ → C] where C̃ is of compact type. We ask what points can appear in the compactification of Vr
g inside

this space.

Let [π : C̃ → C] ∈ Rg such that C is of compact type and admits a unique irreducible component X

satisfying ηX ≇ OX . For this component X , we denote by pX1 , . . . , pXsX its nodes and by gX1 , . . . , gXsX the
genera of the connected components of C \X glued to X at these points. For an irreducible component Y of
C, different from X , we denote by qY the node glueing Y to the connected component of C \ Y containing
X , and by pY1 , . . . , p

Y
sY

the other nodes of Y . We denote by gY0 , gY1 , . . . , gYsY the genera of the connected
components of C \ Y glued to Y at these points.

Using the above notations, we can define the concept of a Prym limit gr2g−2:

Definition 2.1. A Prym limit gr2g−2, denoted L, is a crude limit gr2g−2 on C̃ satisfying the following two
conditions:

1. For the unique component X̃ of C̃ above X , the X̃-aspect L
X̃

of L satisfies

Nmπ
|X̃
L
X̃

∼= ωX(

s∑

i=1

2gXi pXi ).
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2. For a component Y of C different from X , we denote by Y1 and Y2 the two irreducible components of
C̃ above it. We identify these two components with Y via the map π. With this identification the Y1

and Y2 aspects of L satisfy:

LY1 ⊗ LY2
∼= ωY ((2g − 2 + 2gY0 )qY +

s∑

i=1

gYi pYi ).

Because the points in the boundary need to respect the norm condition, we immediately obtain that:

Lemma 2.2. Let [π : C̃ → C] ∈ Rg with C̃ of compact type and let V
r

g the closure of Vr
g inside Gr

2g−2(Rg).

Then the fibre of the map V
r

g → Rg over the point [π : C̃ → C] is contained in the locus of Prym limit gr2g−2

on [π : C̃ → C].

We are now ready to use a degeneration argument in order to prove our main result.

Theorem 2.3. When g = r(r+1)
2 + 1, the space Vr

g has a unique irreducible component dominating Rg.

Proof. We consider the boundary divisor ∆1 ⊆ Rg whose generic point is of the form [Y ∪xE,OY , ηE 6= OE ],

where Y and E are components of genus g − 1 and 1 respectively. Let [Y1 ∪x1 Ẽ ∪x2 Y2 → Y ∪x E] be the
double cover associated to a generic element of ∆1. We want to describe the locus of Prym limit gr2g−2’s on
such a double cover.

Let L be a Prym limit gr2g−2 on [Y1 ∪x1 Ẽ ∪x2 Y2 → Y ∪xE]. The additivity of the Brill-Noether numbers
implies:

ρ(2g − 1, r, 2g − 2) = −r ≥ ρ(LY1 , x1) + ρ(L
Ẽ
, x1, x2) + ρ(LY2 , x2).

But we know from [EH87, Theorem 1.1] and [Far00, Proposition 1.4.1] that ρ(LY1 , x1) ≥ 0, ρ(LY2 , x2) ≥ 0
and ρ(L

Ẽ
, x1, x2) ≥ −r. It is clear that these are in fact equalities and L is a refined limit gr2g−2.

We denote by 0 ≤ a0 < a1 < · · · < ar ≤ 2g − 2 and 0 ≤ b0 < b1 < · · · < br ≤ 2g − 2 the vanishing orders
for the Y1 and Y2 aspects respectively. The equality ρ(L

Ẽ
, x1, x2) = −r implies that ai + br−i = 2g − 2 for

all 0 ≤ i ≤ r.

The genericity of [Y2, x2] ∈ Mg−1,1 together with ρ(LY2 , x2) = 0 imply that h0(Y2, LY2(−bix2)) = r+1−i

for all 0 ≤ i ≤ r. Using that LY1 ⊗ LY2
∼= ωY (2g · x) and the Riemann-Roch theorem we obtain

h0(Y1, LY1(−(2 + ar−i)q)) = g + r − 1− ar−i − i.

Choosing i = 0 we get ar = g + r − 1. Inverting the roles of the ai’s and bi’s we obtain that a0 = g − r − 1.
Because we have the divisorial equivalences

aix1 + br−ix2 ≡ ajx1 + br−jx2

on the elliptic curve E for every 0 ≤ i, j ≤ r, we obtain that ai − ai−1 ≥ 2 for every 1 ≤ i ≤ r. This implies
that ai = g − r + 2i− 1 for every 0 ≤ i ≤ r.

We now view the moduli space Mg−1,1 as embedded in Rg via the map π : Mg−1,1 → Rg sending a
pointed curve [Y, x] ∈ Mg−1,1 to [Y ∪xE,OY , ηE ] where [E, x] is a generic elliptic curve and ηE is a 2-torsion
line bundle on E. For the ramification sequence α = (g− r− 1, . . . , g− 1) associated to the vanishing orders
a = (a0, . . . , ar) = (g − r − 1, . . . , g + r − 1), we consider the locus Gr

2g−2(α) parametrizing pairs [C, p, L]
where [C, p] ∈ Mg−1,1 and L is a gr2g−2 having vanishing orders greater or equal to a at the point p. Then
the locus of Prym limit gr2g−2 over Im(π) is birationally isomorphic to Gr

2g−2(α).

We know from [EH89, Lemma 3.6] that Gr
2g−2(α) has a unique irreducible component dominating Mg−1,1.

Moreover

deg(Gr
2g−2(α) → Mg−1,1) = 2

r(r−1)
2 · (g − 1)! ·

r∏

i=1

(i− 1)!

(2i− 1)!

as stated on the second page of [FT16]. On the other hand we have from [DCP95, Theorem 9] that

deg(Vr
g → Rg) = 2

r(r−1)
2 · (g − 1)! ·

r∏

i=1

(i− 1)!

(2i− 1)!
.
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.

We conclude that all dominant irreducible components of Vr
g contain Gr

2g−2(α) in their closure. From this

we get that each such component map to Rg with degree at least 2
r(r−1)

2 · (g − 1)! ·
∏r

i=1
(i−1)!
(2i−1)! , implying

unicity.
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