
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 95, 081106(R) (2017)

Formation of Hubbard-like bands as a fingerprint of strong electron-electron interactions in FeSe
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We use angle-resolved photoemission spectroscopy (ARPES) to explore the electronic structure of single
crystals of FeSe over a wide range of binding energies and study the effects of strong electron-electron correlations.
We provide evidence for the existence of “Hubbard-like bands” at high binding energies consisting of incoherent
many-body excitations originating from Fe 3d states in addition to the renormalized quasiparticle bands near the
Fermi level. Many high-energy features of the observed ARPES data can be accounted for when incorporating
the effects of strong local Coulomb interactions in calculations of the spectral function via dynamical mean-field
theory, including the formation of a Hubbard-like band. This shows that over the energy scale of several eV,
local correlations arising from the on-site Coulomb repulsion and Hund’s coupling are essential for a proper
understanding of the electronic structure of FeSe and other related iron-based superconductors.
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Introduction. Understanding the role of electron-electron
correlations in materials exhibiting high-Tc unconventional su-
perconductivity is one of the central problems within the field
of strongly correlated electron systems. Unlike the cuprates,
the parent compounds of the Fe-based superconductors (e.g.,
LaFeAsO) are not Mott insulators but antiferromagnetic metals
at low temperatures, away from half filling. Nevertheless,
local electron-electron interactions on the Fe site do play an
important role, although in this case it has been shown that it
is the Hund’s coupling JH rather than the Coulomb repulsion
U which is most important both for the magnetic ordering [1]
and for the degree of band renormalization [2–11]. From an
experimental point of view, clear manifestations of the effect of
strong correlations in Fe-based superconductors are found in
enhancements of quasiparticle effective masses deduced from
specific heat [12] and quantum oscillation measurements [13],
and from band renormalizations observed in angle-resolved
photoemission spectroscopy (ARPES) [14–16]. These mea-
surements indicate that the low-energy electronic structure
broadly resembles that predicted by density functional the-
ory (DFT) calculations, at least at temperatures above any
magnetic or orbital orderings, but with the experimental
band dispersions being renormalized by a factor typically
of ∼3 [14,15], although this varies substantially between
systems, and is orbital dependent [5]. However, while general
considerations of many-body theory would suggest that this
band renormalization must be accompanied by the transfer of
spectral weight into incoherent excitations at higher binding
energies [17], the high-energy spectral weight has only rarely
been experimentally investigated in Fe-based superconductors
[15,18,19].
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FeSe provides an ideal case to study the effect of strong
correlations in Fe-based superconductors. The recent availabil-
ity of high-quality single crystals [20,21] and thin films [22]
of FeSe has led to a surge of experimental work, including
recent ARPES studies with a focus on the origin of the
nematic phase [21,23–26]. ARPES [16,21], quantum oscil-
lations [21,27,28], and specific heat measurements of FeSe
[20] have previously reported significant orbital-dependent
effective mass renormalizations. Theoretically, a significant
effect of correlations in FeSe has been found in combined
density functional theory with dynamical mean-field theory
(DFT+DMFT) calculations, where mass enhancement factors
of ∼2.3 have been reported when accounting for a local
static Coulomb density-density interaction on the Fe site [29],
or even higher values of 3–5 when including spin-flip and
pair-hopping terms [5,30].

In this Rapid Communication, we present systematic
ARPES studies of the spectral function of FeSe to high binding
energies. In addition to the renormalized quasiparticle bands
near the Fermi level, we find much broader features lying in
a range of 1–2.5 eV binding energy, well separated from the
quasiparticle structure and the Se 4p bands at ∼3–6 eV. A
“peak-dip-hump” structure on such an energy scale is usually
a trademark of strong electron-electron interactions, which
reduce the spectral weight of the quasiparticle peak and give
rise to Hubbard bands at higher and lower binding energies
[31]. Our DFT+DMFT calculations are able to reproduce
many of the qualitative features of the experimental electronic
structure at high binding energies, including the formation
of Hubbard-like bands of incoherent spectral weight. While
accounting for local electron-electron interactions within
DFT+DMFT alone is not sufficient for a perfect description
of the experimental Fermi surface, we show that the strong
interactions are responsible for the overall form of the spectral
function of FeSe over an energy scale of several eV.

Methods. Single crystals of FeSe were grown by the
vapor-transport method [21]. ARPES measurements were
performed at the I05 beamline at Diamond Light Source at
temperatures below 10 K. ARPES measurements are a probe

2469-9950/2017/95(8)/081106(7) 081106-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevB.95.081106
https://creativecommons.org/licenses/by/4.0/


RAPID COMMUNICATIONS

MATTHEW D. WATSON et al. PHYSICAL REVIEW B 95, 081106(R) (2017)

of the one-particle spectral function A(ω,k) [17], multiplied
by the Fermi occupation function and the matrix elements for
photoemission [17], with some additional background. This
spectral function is commonly expressed as

A(ω,k) = − 1

π

�′′(ω,k)
[
ω + μ− εb

k − �′(ω,k)
]2 + [�′′(ω,k)]2

, (1)

where εb
k is the bare noninteracting dispersion, μ the chemical

potential, and �′ and �′′ are the real and imaginary parts of
the self-energy, which in general is orbital, frequency, and
momentum dependent. In many materials where electronic
correlations are weak and do not play a significant role, �

is small and sharp dispersions can be observed in ARPES
measurements to binding energies of several eV, usually in
good agreement with the DFT dispersions. On the other hand,
in FeSe, electron-electron interactions on the Fe 3d site do give
a significant contribution to the self-energy [29,30], while the
system remains metallic. Therefore, the observed dispersions
close to the Fermi level at low temperatures can be interpreted
as coherent quasiparticles with renormalized dispersions ε

q

k =
εb

k + �′, and a scattering rate �′′ that introduces a finite
lifetime for quasiparticle excitations. Depending on the form of
�(ω,k) there may be apparent “kinks” or “waterfalls” [32] in
the spectral function where the observed states transform from
the renormalized quasiparticle peak close to the Fermi level
into incoherent excitations at higher or lower binding energies.
Generally speaking, at higher binding energy, features can
become very broad and incoherent when �′′ becomes large,
and in particular the formation of Hubbard-like bands is
possible [33,34]. While experimental evidence of Hubbard
bands has been largely reported for effective one-band systems
[17,35], results for multiorbital systems are scarce, with only
a few well-studied exceptions such as transition metal oxides
[36–39].

The DFT+DMFT calculations were performed full charge
self-consistently within the local density approximation in
DFT and using the full-potential linear augmented plane-
wave (FLAPW) basis (without spin-orbit coupling) within
the WIEN2K [40] package. Calculations were done for the
orthorhombic crystal structure [41], and differences in the
calculation to the tetragonal crystal structures were small [see
the Supplemental Material (SM) [42]. We used the projection
method onto a local basis as described in Refs. [3,43], with
a window encompassing both the iron 3d and selenium 4p

states. The impurity problem for the Fe 3d orbitals was
solved with the strong-coupling continuous-time quantum
Monte Carlo method [44] using the ALPS package [45]. As
interaction parameters we use the established values of U =
4 eV, JH = 0.8 eV [30,46]. We employed the fully localized
limit [47,48] for the double counting term, and the stochastic
analytic continuation method for obtaining real-frequency
data [49]. Calculations were performed at a temperature of
β = 100 eV−1, corresponding to T = 116 K.

Results. In Fig. 1 we present high-symmetry ARPES
measurements for FeSe in the M-�-M direction, using
linear vertical (LV) polarization. In this geometry, strong
matrix element effects dictate that the spectral weight arises
overwhelmingly from a single holelike band with dyz character
[21], which simplifies the observation. Figure 1(a) focuses
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FIG. 1. (a)–(d) ARPES data in the M-�-M direction at 37 eV
in linear vertical (LV) polarization at 10 K. In this geometry a
holelike quasiparticle band with dyz orbital character dominates the
photoemission spectrum. (b)–(d) Measurements in the same geometry
at different incident photon energies. The data extend to high binding
energies, where much broader features are found. (e) Schematic
of the high-energy spectrum. (f) Integrated spectral weight from
(d), showing features associated with the quasiparticle (QP), lower
Hubbard-band (LHB) intensities, as well as a contribution from the
Se 4p bands.

on the dispersion of this dyz hole band close to EF . The
quasiparticle band dispersions undergo ∼20 meV band shifts
in the nematic phase [26], but these are very small perturbations
on the energy scales of a few eV as considered in this Rapid
Communication. Due to spin-orbit coupling there is a small
mixing of spectral weight onto the outer (dxz) hole band
near the Fermi level [21]. In Figs. 1(b)–1(d) we present
measurements extending to binding energies of 7 eV at a
selection of incident photon energies. Varying the photon
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FIG. 2. (a), (b), (d), (e) Comparison of ARPES spectra with DFT+DMFT calculations. The DFT+DMFT simulations are obtained by
applying simple selection rules to the orbitally resolved spectral weight, to account for the experimental matrix element effects. Dashed lines
are guides to the eye showing the location of experimental incoherent Fe 3d spectral weight. (c), (f) Schematic measurement geometries of the
cuts shown in (a) and (b) (and also Fig. 1) and (d) and (e), respectively.

energy has multiple effects. First, the kz of the slice of the
Brillouin zone probed varies (e.g., 37 and 56 eV are near
the � and Z points, respectively [21]) which can affect
the position and orbital character of bands. Second, ARPES
matrix elements themselves have a complex photon-energy
dependence. Finally, if the photon energy passes through an
Fe or Se resonance, this may affect the relative intensity of
Fe or Se contributions to the photoemission [this gives an
enhancement of the Se bands in the 56 eV spectra in Fig. 1(c)].
We do not attempt to disentangle all these effects which lead to
the differences between spectra presented in Figs. 1(b)–1(d),
but rather point out five common features which are observed
at all photon energies, as we have represented schemati-
cally in Figs. 1(e) and 1(f): (i) Near the Fermi level the
observed band is both shifted and renormalized with respect
to DFT calculations, as has been widely reported in Fe-based
superconductors [50,51], although the much smaller than
expected Fermi surfaces in FeSe are a unique feature. (ii)
The quasiparticle band dispersions become much sharper
towards the Fermi level. (iii) There is generally a dip in
intensity in the range ∼0.5–1 eV in experiments, where neither
quasiparticles nor incoherent excitations are found. (iv) Traces
of the Se 4p bands are detected in the range 3–6 eV binding
energy, as predicted by DFT. Therefore, the Se 4p bands
do not experience any significant renormalization. Finally,
(v) in the range of ∼1–2.5 eV we observe an anomalous
broadband of intensity which cannot be attributed to either
a Fe 3d quasiparticle band or a Se 4p band. The width of
this spectral feature is of the order of ∼1 eV, which indicates

that these excitations are very short lived. We interpret this
as a “Hubbard-like band,” consisting of incoherent spectral
weight that is a precursor of the localized electron-removal
states, the lower Hubbard band, in Mott-Hubbard-insulating
systems. No significant temperature dependence was found in
the high-energy features up to 150 K (SM).

In Fig. 2 we present a selection of ARPES spectra obtained
in different measurement conditions, which indicate that this
incoherent spectral weight in the region around ∼1–2.5 eV is
a general feature of FeSe, and not specific to a particular band
or geometry. Next to each experimental measurement, we also
show how the high-energy features of FeSe seen by ARPES
can be qualitatively reproduced by calculations of the spectral
function in DFT+DMFT. In order to perform a comparison to
ARPES data, simple selection rules are employed to simulate
the photoemission matrix elements in that geometry. They
are based on both symmetry considerations and the identified
orbital character of the primary quasiparticle bands in the cut
[26,52]. As presented in Fig. 2(a), DFT+DMFT reproduces
the observed renormalized quasiparticle dyz band and some
additional high-energy spectral weight around 1–2.5 eV.
However, the agreement is not perfect, and the renormalization
of the effective masses in DFT+DMFT (e.g., m∗/mLDA =
2.09 for dxz/yz, see the SM) is less than the experiments
(∼2–4 for dxz/yz bands [21]), which is to be expected due
to the neglect of spin-flip and pair-hopping terms [30] and
dynamical screening effects [53,54]. Still, we expect that any
Hubbard-band-like features are not qualitatively affected by
these approximations, since their binding energy is governed
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FIG. 3. (a) Integrated spectral weights as calculated from DFT
and DFT+DMFT. (b) Total intensity obtained by summation over the
different cuts in Figs. 2(a), 2(c), and 2(d). (c) Orbital-resolved spectral
weight. (d) Comparison of Fermi surfaces determined experimentally
at 100 K in the tetragonal phase and (e) as calculated by DFT+DMFT
projected in the kz = π plane.

by the low-energy static values of the interaction, which are
accounted for in the calculation. In Fig. 2(b), the DFT+DMFT
calculation shows a broadband of incoherent dz2 spectral
weight in good correspondence with the anomalous weight
found in ARPES around 1.5–2.5 eV. In Fig. 2(d), DFT+DMFT
finds some incoherent spectral weight in the dxy orbital around
the M point, similar to the ARPES data. Finally, in Fig. 2(e),
the dz2 weight through the M point is reproduced very well,
showing a clear formation of a Hubbard-like band. Overall,
there is a qualitative good agreement between calculations and
experiment, as the DFT+DMFT technique correctly captures
both the renormalized quasiparticle bands which sharpen
approaching the Fermi level, along with the incoherent spectral
weight around 1–2.5 eV.

In Fig. 3(a), we compare the integrated spectral weight
from our DFT+DMFT calculation with the result from DFT.
Notably, the Fe 3d bandwidth develops a peak-dip-hump
structure which is not present in the DFT; this arises from the
separation of the quasiparticle bands and the Hubbard satellite
peak around 2 eV. As expected, the DMFT treatment does
not strongly affect the Se 4p bands. In Fig. 3(c), we show
the different orbital contributions to the total spectral weight.

The Hubbard-band feature appears most clearly in the dz2 and
dxz/yz orbitals but can be identified in all, similar to Ref. [30]. In
Fig. 3(b), we compare the total calculated spectral weight with
a summation of the experimental data from Figs. 2(a), 2(c),
and 2(d). Similar qualitative features are found, with good
agreement on the position of the Hubbard-like peak, which
supports the chosen values of the interaction parameters U,JH ,
which are also close to values recently determined from first-
principles calculations [55]. We checked that in DFT+DMFT
the Hubbard-like peak indeed behaves as a Hubbard band
in the sense that its spectral weight shifts to higher binding
energies with increasing U,JH (SM). Especially, we find that
the Hund’s coupling JH has a stronger effect on the energy of
the Hubbard band than U (SM).

Finally, in Figs. 3(d) and 3(e), we compare the experimental
Fermi surfaces of FeSe at 100 K with the calculated ones. The
measured Fermi surfaces are significantly shrunk compared
to the prediction of DFT+DMFT. In order to match the
experimental dispersions, the real parts of the self-energies
would need to be significantly momentum dependent in order
to introduce a downward shift for hole bands at the Gamma
point and an upward shift for the electron bands at the M point
[21,51]. In DMFT, the considered interactions (U,JH ) are
purely local and the self-energies �(ω) are independent of k,
albeit orbital dependent, so that momentum-dependent shifts
of the DFT band structure can only result from the momentum-
dependent orbital characters of the bands. The limitations
of DFT+DMFT at the Fermi level indicate that effects
not included in the calculations such as nonlocal intersite
interactions [56], coupling to bosonic modes [57]. or frustrated
magnetism [58] are likely to be relevant to the low-energy
physics. However, for the wide energy scales considered here,
our DFT+DMFT calculation is able to satisfactorily capture
many of the high-energy features of our ARPES spectra,
including the presence of incoherent spectral weight in the
form of Hubbard-like bands at high binding energies, with
specific orbital-dependent agreements. Our experiments and
calculations place bulk FeSe as a significantly correlated
metal, with coherent quasiparticles at the Fermi level, but also
exhibiting incoherent spectral weight at high binding energies,
consistent with earlier photoemission studies [59].

Conclusion. To summarize, we have provided systematic
experimental evidence, backed up by theoretical DFT+DMFT
calculations, for the emergence of a Fe 3d Hubbard-like
band in the spectral function of FeSe, distinct from the
quasiparticle states near the Fermi level. This high-energy
feature is interpreted as a fingerprint of the effect of strong
electron-electron correlations. Despite the strong renormal-
ization and shift of spectral weight into the Hubbard-like
features, a well-defined quasiparticle peak at the Fermi level
is retained. Therefore, FeSe provides a rare opportunity to
study Hubbard-band physics in a significantly correlated,
metallic, multiorbital system. The unique properties of FeSe
continue to provide theoretical challenges, but we have
demonstrated that the DFT+DMFT technique captures the
essential features of the high-energy spectral function well,
highlighting the importance of local Coulomb interactions and
Hund’s coupling for both low- and high-energy features in
Fe-based superconductors.

081106-4



RAPID COMMUNICATIONS

FORMATION OF HUBBARD-LIKE BANDS AS A . . . PHYSICAL REVIEW B 95, 081106(R) (2017)

Acknowledgmens. We thank S. Biermann, B. Büchner,
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[39] S. Backes, T. C. Rödel, F. Fortuna, E. Frantzeskakis, P. Le
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