## Supplemental Materials: Windows of opportunity for Ebola virus infection treatment and vaccination

Van Kinh Nguyen<sup>1,2</sup> and Esteban A. Hernandez-Vargas<sup>1,2,\*</sup>

<sup>1</sup>Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438, Frankfurt am Main, Germany <sup>2</sup>Systems Medicine of Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany \*vargas@fias.uni-frankfurt.de

## ABSTRACT

In this paper, we employed experimental data of EBOV-infected nonhuman primates (NHPs) to construct a mathematical framework for determining windows of opportunity for treatment and vaccination.

| Figure     | Eqs.  | Initial condition                  | Estimated                 | Fixed                                                                        | Note            | #   |
|------------|-------|------------------------------------|---------------------------|------------------------------------------------------------------------------|-----------------|-----|
| 2A         | 1     | $5 \times 10^7$ , see <sup>1</sup> | $\delta_{Ag}, \beta_{Ag}$ |                                                                              |                 | (a) |
|            | 2     | 0                                  | $	au_{Ag}$                |                                                                              |                 | (b) |
|            | 3     | 0                                  | $r_{Ab}, \beta_{Ab}$      | $\delta_{Ab}$ , see <sup>2</sup>                                             |                 | (c) |
| 2B         | 4     | $10^{0.15}$ , see <sup>3</sup>     | $r_V, K_V$                |                                                                              |                 | (d) |
|            | 5     | $10^{0.15}$                        | $r_V, K_V, I_n$           |                                                                              |                 | (e) |
| 3A-C       | 1,2,3 | as in (a)-(c)                      | r <sub>Ab</sub>           | $\delta_{Ab},  \delta_{Ag},  \beta_{Ag},  \beta_{Ab},  \tau_{Ag}$ to (a)-(c) |                 | (f) |
| 3D-Е       | 6     | as in (e)                          | $K_{Ab}$                  | $r_V, K_V, I_n$ to (e)                                                       |                 | (g) |
| 4          | 6     | $10^{0.15}$                        | None                      | $Ab^*$                                                                       |                 | (h) |
| 5:mAbs     | 7     | $10^{0.15}$                        | $K_M$                     | $r_V, K_V, I_n$                                                              |                 | (i) |
|            | 8     | 0                                  | $\lambda_M$               |                                                                              |                 | (j) |
| 5:mAbs+IgG | 9     | 10 <sup>0.15</sup>                 | None                      | $r_V, K_V, I_n$ to (e), $Ab^*, K_M$ to<br>(i), $\lambda_M$ to (j)            |                 | (k) |
| 6          | 9     | 10 <sup>0.15</sup>                 | None                      | $r_V, K_V, I_n$ to (e), $Ab^*, K_M$ to<br>(i), $\delta_M$ to (j)             |                 | (1) |
| 7          | 6     | Varied                             | None                      | $Ab^*$ to (c)                                                                | Varied $K_{Ab}$ | (m) |
| S1         | 6     | $10^{0.15}$                        | None                      | $Ab^*$ to (c)                                                                | Varied $K_{Ab}$ | (n) |
| S2         | 7,8,9 | as in (i)-(k)                      | -                         | -                                                                            | -               | (0) |

Table S1. Details of the model fitting process and the corresponding results.

\*outputs from the model equations (a)-(c) and the assumption as in Fig. S1

**Table S2.** Parameter estimates of the model Eqs. (3) to (5) fitted to three subjects vaccinated three days prior EBOV challenge.  $\delta_{Ab}$  is fixed from literature at 0.0248<sup>2</sup>. The parameters  $\delta_{Ag}$ ,  $\beta_{Ag}$ , and  $\beta_{Ab}$  were fixed from the estimates from the general IgG profile of all subjects (Fig. 2A). Consequently, the parameter  $r_{Ab}$  was refitted to allow subject-specific responses.

|                    | $\delta_{Ag}$ | $\beta_{Ag}$ | $\beta_{Ab}$ | $	au_{Ag}$ | r <sub>Ab</sub> |
|--------------------|---------------|--------------|--------------|------------|-----------------|
| All data (Fig. 2A) | 1.1187        | 0.0000       | 0.0263       | 3.1574     | 0.0815          |
| M31                | _             | -            | -            | _          | 0.2195          |
| M32                | -             | -            | -            | _          | 0.0163          |
| M33                | -             | -            | -            | -          | 0.1547          |

**Table S3. Fitting the mAbs treatment effect model**.  $K_{m_1}$  estimates assumed mAbs half-life  $(\lambda_M)$  is 28 days;  $K_{m_2}$  estimates assumed mAbs half-life  $(\lambda_M)$  is half an hour.

| Subject | $r_V$  | $K_V$    | In      | $K_{m_1}$ | $K_{m_2}$ |
|---------|--------|----------|---------|-----------|-----------|
| A1      | 5.4107 | 72880400 | 15.0494 | 0.9560    | 1.1646    |
| A2      | _      | _        | -       | 1.8551    | 2.2533    |
| A4      | -      | _        | -       | 1.2655    | 1.5402    |
| A5      | -      | _        | -       | 1.1291    | 1.3752    |
| A6      | -      | _        | -       | 1.2253    | 1.4872    |
| B1      | _      | _        | -       | 1.8551    | 2.2533    |
| B2      | _      | _        | -       | 0.9853    | 1.2003    |
| B4      | _      | _        | -       | 0.9850    | 1.2       |
| B5      | _      | _        | -       | 1.0049    | 1.2242    |
| B6      | -      | -        | _       | 1.0049    | 1.2242    |



**Figure S1. Simulations of the IgG dynamic in different vaccination time and the effect of infection in boosting the IgG dynamics**. Minus sign indicates vaccination time (in days) before the day of infection (day zero). A: Plotting simulated IgG dynamics against experimental data<sup>1</sup>. B Plotting simulated EBOV-specific IgG.



**Figure S2. Simulation the general IgG response profile versus viral dynamics**. Assuming a normal viral replication rate and an average IgG response profile. The model of viral dynamic including the effect of IgG were simulated to generate the corresponding viral load dynamics.



**Figure S3. Fitting the mAbs treatment effect model**. *mAbs:* fitted model with only mAbs effect during the first nine dpi, dashed line shows the extrapolated viral load kinetics from this model; *mAbs-IgG:* adding the general IgG profile with the working threshold  $K_{Ab} = 10^{4.5}$ . The assumed mAbs half-life is half an hour.

## References

- Marzi, A. *et al.* VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain. *Sci.* 349, 739–742 (2015). DOI 10.1126/science.aab3920.
- 2. Abbas, A. K., Lichtman, A. H. H. & Pillai, S. Cellular and Molecular Immunology (Elsevier Health Sciences, 2011).
- Chan, K. H. *et al.* Analytical Sensitivity of Seven Point-of-Care Influenza Virus Detection Tests and Two Molecular Tests for Detection of Avian Origin H7N9 and Swine Origin H3N2 Variant Influenza A Viruses. *J. Clin. Microbiol.* 51, 3160–3161 (2013). DOI 10.1128/JCM.01222-13.