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High-rate Global Navigation Satellite System (HR-GNSS) data can be highly useful for earthquake analysis as it
provides continuous high-frequency measurements of ground motion. This data can be used to analyze diverse
parameters related to the seismic source and to assess the potential of an earthquake to prompt strong motions at
certain distances and even generate tsunamis. In this work, we present the first results of a deep learning model
based on a convolutional neural network for earthquake magnitude estimation, using HR-GNSS displacement
time series. The influence of different dataset configurations, such as station numbers, epicentral distances, signal
duration, and earthquake size, were analyzed to figure out how the model can be adapted to various scenarios.
We explored the potential of the model for global application and compared its performance using both synthetic
and real data from different seismogenic regions. The performance of our model at this stage was satisfactory in
estimating earthquake magnitude from synthetic data with 0.07 < RMS < 0.11. Comparable results were
observed in tests using synthetic data from a different region than the training data, with RMS < 0.15.
Furthermore, the model was tested using real data from different regions and magnitudes, resulting in the best
cases with 0.09 < RMS < 0.33, provided that the data from a particular group of stations had similar epicentral
distance constraints to those used during the model training. The robustness of the DL model can be improved to
work independently from the window size of the time series and the number of stations, enabling faster esti-
mation by the model using only near-field data. Overall, this study provides insights for the development of
future DL approaches for earthquake magnitude estimation with HR-GNSS data, emphasizing the importance of
proper handling and careful data selection for further model improvements.

1. Introduction 2013; Melgar et al., 2015; Goldberg et al., 2021). In the last decades,

researchers have explored incorporating GNSS data to improve the ac-

The Global Navigation Satellite System (HR-GNSS) can provide high-
frequency and high-precision position measurements that facilitate the
detection of ground displacements caused by earthquakes. Unlike iner-
tial sensors, HR-GNSS instruments can record the signal of large earth-
quakes near the source without saturation, providing valuable
information on both dynamic (far-field) and static (near-field) dis-
placements (Bock et al., 2000; Ge et al., 2000; Kouba, 2003; Larson,
2009).

Furthermore, earthquake magnitude estimation from GNSS wave-
forms has been made possible through empirical relationships between
the peak ground displacement and the seismic moment (Crowell et al.,
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curacy of earthquake magnitude estimation compared to using seismic
data alone from seismometers and accelerometers (Bock et al., 2011;
Wang et al., 2013). As a result, HR-GNSS networks for earthquake
monitoring and the continuous recording of data for near-real-time
analysis have increased.

The 2004 Sumatra-Adaman earthquake with a magnitude of Mw 9.1
was a significant event that motivated the implementation and
improvement of early warning systems in potential seismogenic regions
using HR-GNSS sensors (Blewitt et al., 2006; Satake, 2014). Subsequent
great earthquakes such as the Mw 8.8 Maule (2010), Mw 9.0 Tohoku
(2011), and Mw 8.4 Illapel (2015), among others, have demonstrated
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3 Channels (U, N, E)

Ne Earthquakes
N: Time steps [sec]

Ns Stations

Fig. 1. The input data for the HR-GNSS displacement time series is stored in a tensor whose shape depends on the number of earthquakes (Ng), station numbers (Nj),
time steps in the time series (Np), and 3 channels (U: up, N: north, and E: east directions). The amplitudes in the time series represent displacements in meters, and the

sampling rate is 1 Hz, with every time step representing 1 s in time.
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Fig. 2. Sequential Convolutional Neural Network architecture proposed in this work for earthquake magnitude estimation using displacement time series in three
components (3 channels) from a specific number of HR-GNSS stations, N;, and the number of time steps, N;, in the time domain.

the importance of the fast and reliable assessment of seismic sources,
leading to the development of diverse algorithms for HR-GNSS data
analysis that enable proper early warning of earthquakes and tsunamis
(e.g., Crowell et al., 2009, 2016, 2018; Allen and Ziv, 2011; Fang et al.,
2014; Grapenthin et al., 2014; Minson et al., 2014; Kawamoto et al.,
2016; Ruhl et al., 2017, 2019; Psimoulis et al., 2018).

Moreover, seismologists aim to develop complementary tools to
outperform traditional analysis methods through deep learning (DL)
approaches, which have proven to have great capacity in big data pro-
cessing and feature extraction for fast and robust results. DL methods
have been widely introduced to deal with various seismological tasks,
such as earthquake detection, phase picking, seismic source assessment,
and denoising of seismic signals (e.g., Ochoa et al., 2018; Chakraborty

et al., 2022a, 2022b; Jiao and Alavi, 2020; Kuang et al., 2021; Li et al.,
2022a; Li et al., 2022b; Mousavi and Beroza, 2022; Perol et al., 2018).
However, training DL algorithms with HR-GNSS data for seismic anal-
ysis is one of the most recent challenges still in development. For
instance, Lin et al. (2021) worked on seismic source patterns analysis
and magnitude estimation through a DL algorithm and HR-GNSS data,
focusing on the seismic activity in the Chile subduction zone by using
peak ground displacement time series. Also, Dittmann et al. (2022)
introduced a DL algorithm for earthquake detection through velocity
time series obtained from HR-GNSS by the time-differenced carrier
phase. And recently, Costantino et al. (2023) presented a
spatio-temporal analysis through deep learning algorithms for seismic
source characterization using images from static deformation GNSS data
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Fig. 3. Chile Subduction Zone. The synthetic data represent the displacements
hypothetically recorded by the Chilean GNSS Network shown as black triangles
on the map (Baez et al., 2018), corresponding to the earthquakes whose hy-
pocenters are shown as dots in color scale by depth.

of Japan.

In this work, we present a preliminary DL model based on a con-
volutional neural network for the magnitude estimation from HR-GNSS
dynamic data. Unlike previous algorithms, our model is trained merely
on displacement time series. We tested the performance of our model
using both synthetic and real data from different seismogenic regions,
and thus evaluated the possibility of extending its application on a
global scale. We also analyzed the influence of different dataset con-
figurations, such as epicentral distances, signal duration, and earth-
quake size, to determine how the model can be adapted to different
scenarios.

2. Architecture

We propose a deep learning model using a sequential Convolutional
Neural Network (CNN) for a regression problem (Le Cun, 1989;
Schmidhuber, 2015; Géron, 2019; Goodfellow et al., 2016). The CNN
architecture consists of six 2D-convolutional layers, three max-pooling
layers (Scherer et al., 2010; Zhou and Chellappa, 1988), and three
fully-connected or dense layers (Le Cun et al., 1998).

Journal of South American Earth Sciences 136 (2024) 104815

The input layer for the DL model is comprised of displacement time
series for each earthquake with a 1 Hz sampling rate. These time series
are stored in a tensor with dimensions N; x N; x 3, where N; represents
the number of stations, N; represents the number of time steps in the
time series, and three channels correspond to the U, N, and E compo-
nents referring to the up, north, and east directions of the sensor in each
GNSS station (as shown in Fig. 1).

The architecture of our model is summarized in Fig. 2. For each
convolutional layer, we used different numbers of filters with kernel size
(1, 3) and stride (1, 1). No padding (“valid™) was only used in the first
and the last convolutional layer, while in the intermediate layers
padding was “same”. A pool size of (1, 2) was used in each max-pooling
layer. Thus, we are down-sampling the data, while keeping the extrac-
tion of features in the time series separated by stations up to the dense
layers.

We chose a rectified linear unit activation function (ReLU) as the
transfer function to activate the output in every convolutional and dense
layer (Nair and Hinton, 2010). The last tensor that results from the
convolutional layers is transformed through a flattening layer to a
one-dimensional vector (Krizhevsky et al., 2017) to be the input for the
dense layers.

Then, the three dense layers consist of 128, 32, and 1 neuron,
respectively. The weights of the kernels for the two first dense layers are
initialized using a normal distribution and constrained by max-norm
regularization with a maximum norm value of 3 (Géron, 2019).

Since we do not adopt any normalization for the values of the labels
in the training (magnitudes), we obtain a target variable in the output
layer whose value is equivalent to the earthquake moment magnitude
Mw (Hanks and Kanamori, 1979).

3. Data

In general, the displacement signals of Mw < 5 earthquakes recorded
by HR-GNSS stations are masked by noise. Small earthquakes tend to
generate lower amplitude ground motions, and thus, when a shallow
earthquake of around Mw 5 occurs, only the nearest GNSS stations
located within approximately 5 km, under favorable or non-noisy site
conditions, are able to well-record the ground displacement data (e.g.,
Mendoza et al., 2012). Also, deep earthquakes might undergo greater
attenuation, resulting in weaker signals received by the GNSS stations
compared to the shallower ones of the same magnitude.

For this reason, we have focused our analysis on large earthquakes,
which are those better recorded by HR-GNSS stations, in most of the
cases.

However, the real HR-GNSS data from large earthquakes (Mw > 7)
available in existing datasets may not be enough to constitute a repre-
sentative dataset for training a deep learning (DL) model.

Therefore, we utilized synthetic HR-GNSS signals from a previously
generated database by Lin et al., 2020, which represent 36,800 rupture
scenarios specifically modeled for the Chile subduction zone (Fig. 3),
hypothetically recorded by the Chilean GNSS Network (Bdez et al.,
2018). The distribution of epicenters spans a long area of approximately
600,000 km?, corresponding to earthquakes with Mw magnitude from
6.6 to 9.6, and focal depth up to 55 km.

In this initial experiment, we have used noiseless synthetic signals,
since our intention is to assess the results of a simplistic model serving as
the baseline for subsequent, more complex, and realistic experiments
that will address this disparity by examining the impact of noise in the
data.

We utilized the synthetic HR-GNSS data from the Chile region for
training, validation, and testing of our DL model. Furthermore, we
evaluated the performance of our model by testing it with synthetic
signals of a Mw 8.7 Cascadia earthquake (Melgar et al., 2016) and real
data (Melgar and Ruhl, 2018) from six large earthquakes from diverse
regions (Fig. 4).
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Fig. 4. Earthquakes used for testing the model. Red stars represent the epicenter of the earthquakes used with real HR-GNSS signals, and the green star is the

epicenter of the Cascadia earthquake used with synthetic signals.

Table 1

Setting of the input data for the three cases. Each case corresponds to one
training instance of the same architecture for the DL models, but the input data
have shapes that differ between the cases.

Cases Number of Stations per Time series window Input Data
earthquake (A: epicentral size (seconds) Shape
distance)

Case I 3 stations, A < 3° 181 (3 x 181 x

39
Case 7 stations, A < 3° 181 (7 x 181 x
11 37
Case 7 stations: from 3 to 5 stations A 501 (7 x 501 x
111 < 3° and the rest A > 3° 3%

@ 3 Channels: components in U, E, and N directions.

4. Training
4.1. Data preparation

Since we explore the influence of using data from different numbers
of stations, epicentral distances, and time series lengths on the model
performance, we prepared data sets to correspond to three cases: Case I,
Case II, and Case III, which involved the training of three models with
the same architecture, but using different shapes for the input data
(Table 1). The initial time in the time series, t = 0, was referenced to the
earthquake origin time. The amplitude displacements have physical
units in meters, and the sampling is in the time domain, in seconds.

For Case I and Case II, we used data from three and seven stations,
respectively, located within a 3° radius from the epicenter (A < 3°;
Fig. 5a), and time series that contain 180 s after the earthquake origin
time. Then, for Case III, we sought to incorporate a greater range of
maximum displacements observed in the time series, particularly those
in the near and mid-field (Blewitt et al., 2006). To achieve this, we
utilized data from seven different stations (Fig. 5b), ensuring a balanced
representation by selecting at least three and up to five stations within a
radius of 3° from the epicenter. For the remaining stations farther than
3° away, we included those with epicentral distances that did not cause
amplitude displacements too small to detect in the time series. The
maximum distance depends on the earthquake magnitude and on how

the generation of the synthetic dataset was previously constrained (Lin
et al., 2020, 2021). In this last case, Case III, every time series contains
the first 500 s after the origin time of the earthquakes.

The stations were selected randomly for each case, with the caveat
that we avoided having data from several stations too close to each other
for a particular earthquake. We included only those cases in which at
least three stations had azimuths that differed by 40° from each other.
Thus, we aimed to have time series with features as different as possible,
such as amplitude values, time wave arrivals, duration of the earthquake
signal, and so on. Lastly, we selected a total of 34,567 earthquakes and
split them into different sets: 90% for the learning process (training and
validation) and 10% for testing.

4.2. Learning process

We split the synthetic dataset into a training set and a validation set,
taking 90% of the earthquakes for the learning process (Fig. 6). The
training set was further split into an 80/20 ratio, with 80% used for
training (72% of the total earthquakes in the database) and 20% for fine-
tuning hyperparameters that control the learning through the validation
process (18% of the total earthquakes in the database).

The non-uniform distribution of magnitudes in the synthetic data-
base reflects the inherent distribution found in the original dataset.
Despite the imbalance in the data distribution, an aspect of the experi-
ment is to evaluate the extent to which the model’s performance might
be affected by this limitation in the dataset.

Each earthquake in the training set was labeled with a target variable
that corresponds to its magnitude value rounded to one decimal. The
mean squared error function (MSE) was used to evaluate the losses
during the training process. We optimized the model using the Adaptive
Moment (ADAM) estimation method to reduce the losses (Géron, 2019;
Kingma and Ba, 2015). To prevent update steps from exceeding the
initial learning rate, we used a learning rate schedule with a standard
decay function (decay rate = learning rate/epochs). This helped to in-
crease the performance of the training. We set the initial learning rate to
0.01, the decay to 0.1/maximum number of epochs (see Appendix A),
the maximum number of epochs to 200, and the batch size to 128. We
used early stopping to reduce the possibility of overfitting, stopping the
training process when the minimum validation loss was reached, with
patience of 20 epochs.
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Fig. 5. Example of station distributions for the selection of data. The earthquake epicenter is in the center of the circle and the stations that were randomly chosen
are shown as green triangles. In (a), three stations with epicentral distances A < 3° are shown as an example of station distributions for Case I. For Case II, we could
use the same example as Case I, but choose seven stations instead. In (b), a particular example of seven stations for Case III: three stations A < 3°, and four stations A

> 3°
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Fig. 6. Histograms of earthquake distribution in the database are shown, separated by magnitude (left) and depth (right). The dataset was split into three sets: 72%
for training, 18% for validation during training, and 10% for testing. The number of earthquakes is displayed on a logarithmic scale to better visualize the smaller

data groups.

5. Testing
5.1. Chile synthetic data

We evaluated the performance of the three models using 10% of the
earthquakes in the database that were not used for training or validation
(Fig. 6). The selection criteria for the testing set were the same as those
for the training set in each case.

As shown in Fig. 7, the magnitude estimations resulted in low errors
in all three cases. The lowest root mean squared error (RMS) of 0.06 was
achieved in Case III, where most of the estimated magnitudes were ac-
curate. The error distributions by magnitude are also presented in

Fig. 7d, e, and f.

In particular, for Case I and Case II, the majority of the estimated
magnitudes in the range of 7.0 < Mw < 8.3 were accurate. For Case III,
the best fit was observed for almost all magnitudes, ranging from Mw 7.0
to 9.6. In all three cases, the errors increased with increasing magnitude.
This trend was more noticeable in Case I and Case II, where the RMS
values increased from Mw 7.9. In contrast, the RMS values slightly
increased from Mw 9.2 in Case III.

For lower magnitudes (Mw < 6.9), the estimations were mostly
overestimated in all three cases. For higher magnitudes (Mw > 9.5), the
estimations were underestimated in Case I and Case II. However, due to
the non-uniform distribution of earthquakes by magnitude in the testing
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represents the percentage of tests done for each real magnitude. Plots (a), (b), and (c) are the fits of the magnitude estimations, where the RMSs are shown by the
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RMS values by each magnitude are shown as green diamond symbols. The testing data distribution by magnitudes is represented through histograms in the

background of the plots.

set, we had very few earthquakes with Mw < 6.9 and Mw > 9.5,
resulting in a higher error for those magnitudes and an RMS value that
may not be as representative as those of other magnitudes.

In the case of the highest magnitudes, the estimations may be
affected by the windowing of the time series. For the largest earth-
quakes, 181 s in the recordings from stations nearly 3° away from the
epicenter may not be long enough to contain the complete earthquake
signal, resulting in an increased error in Case I and Case II. Fig. 8 shows a
comparison of waveforms from earthquakes with different magnitudes
and epicentral distances, in displacement time series of 181 and 501 s.
For example, the synthetic waveforms of a Mw 6.7 earthquake with
epicentral distances A < 3° are complete before 150 s, whereas the
waveforms of a Mw 8.1 earthquake, from stations A < 3°, just barely fit
within a time window of 181 s. Furthermore, the waveforms of a Mw 9.0
earthquake require more than 181 s to fit the complete signal for
epicentral distances larger than 1.5°.

On the other hand, the error distributions suggest that there are no
features in the time series related to the earthquake depth that could
have an evident influence on the estimation (Fig. 9). Nevertheless, while
the error distributions did not reveal influences of depth-related features
on the results, this observation does not necessarily imply the absence of
such influences altogether. The analysis might have limitations in
capturing depth-related features or interactions due to the specific
dataset characteristics or model complexities.

5.2. Comparison using Chile and Cascadia synthetic data

To evaluate the performance of the models using synthetic data from
regions with different tectonic regimes, we tested the models with two
Mw 8.7 earthquakes: one from Chile (Lin et al., 2020) and the other from
Cascadia (Melgar et al., 2016). We randomly selected a Mw 8.7 earth-
quake from the testing dataset of Chile. The data corresponded to
displacement time series from 63 HR-GNSS stations for the Chile
earthquake and 62 HR-GNSS stations for the Cascadia earthquake. For
each earthquake, we randomly make 500 distinct combinations to group
three and seven stations, depending on the case. Thus, for each case, we
have an input shape (number of samples, number of stations, time steps,
number of components): (500,3,181,3), (500,3,181,3), and (500,7,501,
3), respectively.

In Fig. 10, the results of the models in the three cases are quite similar
for both earthquakes. Although the results of the model in Case III are
again the best in most estimations, with the least scattered errors and an
RMS of 0.07 for Chile and 0.11 for Cascadia, in general, all three cases
show a suitable performance of the model with a relatively low RMS.

There is no discernible pattern indicating whether those groups of
stations farther away from the epicenter tend to have a higher error than
the group with the closest stations to the epicenter. However, as we
outlined in the first testing (Section 5.1), for large magnitudes, the
performance of the model is better when using time series with long
window sizes. Hence, we assume that the use of time series long enough
in Case III could contribute to obtaining better results than in the other
two cases.
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5.3. Real earthquakes

The noise in real GNSS signals is a significant factor that could affect
the accuracy of magnitude estimations, especially if the DL model used
was trained with synthetic data that lacks noise. Therefore, we tested the
models when faced with real HR-GNSS data from six earthquakes with
different magnitudes and from different tectonic regions (Fig. 4): Maule,
Iquique, and Illapel earthquakes, from Chile, and the others from

Tehuantepec (Mexico), Nicoya (Costa Rica), and Mentawai (Indonesia).

The waveforms of these earthquakes are from the database provided
by Melgar and Ruhl (2018) and consist of displacement waveforms with
a signal-to-noise ratio greater than 3 dB and a minimum peak amplitude
of 0.04 m (Ruhl et al., 2019).

Because the number of stations in the database differs for each
earthquake, we tested with different numbers of station groups for each
one. We had some cases with only one group tested (Nicoya,
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Fig. 12. Examples of HR-GNSS real data used for the model testing: Tehuantepec (Mexico), Nicoya (Costa Rica), and Mentawai (Indonesia) earthquakes. The time
series are in three components (U: up, N: north, and E: east directions). The initial time is referenced to the origin time of the earthquake. The color scale is related to

the epicentral distance. The dashed lines refer to a window size of 181 s.

Tehuantepec, and Mentawai), whereas for the Illapel, Maule, and Iqui-
que earthquakes, it is possible to get thousands of possible combinations
that result from hundreds of stations. Therefore, same as Section 5.2, we
have limited these tests to 500 groups of stations, which is a sufficiently
representative number for testing.

In Fig. 11, we show the results for every case and earthquake. The
largest earthquakes: Iquique, Tehuantepec, Illapel, and Maule, had the
most accurate magnitude estimations. They reached the minimum RMS
values of 0.09, 0.1, 0.17, and 0.13, respectively. These results are
consistent with those obtained from the testing with synthetic data.
However, in some cases such as Nicoya2012 Case I, Mentawai Case I,
and Maule Case II, we noticed that the errors had a more dispersed
pattern. Our first assumption is that the noise content in real data could
increase the error since our models are trained with ideal and clean data.
We also pointed out some other observations:

1. Mw 7.6 Nicoya: the highest RMS value of 0.49 was obtained for this
earthquake. All grouped stations were within an epicentral distance
of less than 1° and displacements of nearly 50 cm were observed in
the first 20 s (Fig. 12a). The overestimation could be because during
the training rarely all stations in the same group were within such a
short radius with large displacements.

2. Mw 7.7 Mentawai: the results for this earthquake are acceptable for
Case I and Case II, with an RMS of 0.2. However, in Case III, the RMS
of 0.44 represents a considerable error that, as for the Nicoya
earthquake, could be associated with the epicentral distances of the
stations used in the testing. In the test with this earthquake most of
the waveforms have the largest amplitude within the first 100 s since
only one station is at A > 3° (Fig. 12b), whereas the model for this
case was trained using groups with at least two stations at A > 3°,
with the maximum amplitudes distributed along the 500 s of the time
series (such as in Tehuantepec earthquake; Fig. 12c).

3. Mw 8.1 Iquique: as mentioned above, the magnitude for this earth-
quake had the best fit in Case II, with an RMS value of 0.09. However,
for Case III, the RMS value was 0.33. In this case, the magnitude
estimations were from groups with stations mostly at A < 3° because
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the dataset only contained three stations farther than 3.5° away
(Fig. 13a).

4. Mw 8.2 Tehuantepec: seven stations were used for this earthquake
and only two of them were located within a 3° radius from the
epicenter (Fig. 12¢). In Cases I and II, stations located more than 3°
away were used in the models, which resulted in waveforms with
smaller displacements than those used in the model training.
Therefore, the magnitude estimations for these models were ex-
pected to be underestimated and, even so, the errors were low.

5. Mw 8.8 Maule: only five of the stations were located within a radius
of 3° from the epicenter (Fig. 12¢). In Case II, stations located at A >
3° were used in the testing and hence, the insufficient time window
to capture the entire signal of the earthquake at distances higher than
3° could have caused the scattered and higher errors observed in
Case II.

6. Summary and conclusions

The DL architecture proposed in this work is an experimental version
for earthquake magnitude estimations. It has been trained using syn-
thetic displacement time series from groups of three and seven HR-GNSS
stations, and different window sizes containing 180 s (3 min) and 500 s
(just over 8 min) after the earthquake origin time. The performance of
this preliminary DL model for the estimation of earthquake magnitude
from synthetic data has been satisfactory.

Despite being trained with synthetic data from Chile, the model has
given comparable results in tests using synthetic data from Cascadia,
which represents a different tectonic region. Additionally, the results of
using real data from earthquakes with different magnitudes and from
different regions showed good accuracy of the estimations, provided
that the data from a particular group of stations have similar epicentral
distance constraints to those used during the model training. The length
of the time series should also be long enough to fit most of the earth-
quake signals within the time window, as incomplete signals could affect
the estimations.

Our experimentation across Cases I, II, and III has provided insights
into the performance and limitations of our seismic magnitude
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Fig. 13. Examples of HR-GNSS real data used for the model testing: Iquique,
Illapel, and Maule (Chile) earthquakes. The time series are in three components
(U: up, N: north, and E: east directions). The initial time is referenced to the
origin time of the earthquake. On the left side, the signals are from epicentral
distance A < 3°, and on the right, from A > 3°. Colors are related to the
epicentral distance of the station. The dashed lines refer to a window size of
181 s.

estimation model. Notably, we observed distinct patterns in the accu-
racy of magnitude estimation across different seismic events and sce-
narios. Cases I and II exhibited favorable results for a majority of
magnitudes within the range of 7.0-8.3, with noticeable increase in
error for higher magnitudes. The shorter time windows in these cases
may have contributed to challenges in capturing the complete seismic
signals, particularly for larger earthquakes. On the other hand, Case III
demonstrated improved performance for a broader range of magnitudes,
7.0 to 9.5, attributed to the use of longer time series.

The interesting aspect of first having been working with noiseless
data lies in the ability to observe whether the model is indeed penalized
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by the absence of noise in the training, and additionally, considering the
epicentral distance of the record from the source. Naturally, we would
expect that for longer distances, noise significantly affects the data,
causing the model to have greater errors in magnitude prediction.
However, the results have shown that this is not always the case and that
the error does not solely depend on distance and noise, but also on the
number of stations included in the analysis, the time windows length,
and the magnitude.

While the DL models performed well using real data with some noise
content, and regardless of the tectonic region of the earthquake, it would
be advisable to evaluate their robustness by including noise in the
training data.

The magnitude estimation might not be significantly affected by
earthquake depth based on the analyzed time series features. However,
it is important for further investigation or alternative methodologies to
comprehensively explore the potential impact of depth on the model’s
estimation performance.

Also, addressing the challenge of dataset uniformity by magnitude or
synthesizing sufficient data remains an area we intend to investigate in
subsequent research endeavors.

This approach proposes a DL model designed for specific shapes of
input data (number of stations and windowing), but the architecture
could be improved to work independently from the window size of the
time series and the number of stations. This would enable a faster esti-
mation by the model using only near-field data from stations within a
radius of less than 1° from the epicenter, which could provide reliable
magnitude estimation with less than 2 min of data after the earthquake
origin time.

It is worth emphasizing that the effectiveness and reliability of the
models are intricately linked to how meticulously we handle and choose
the data used for training. A numerical approach demands careful
consideration of the data input, its quality, and relevance to ensure that
the models developed through this method are robust and reflect
physical realities.

The DL architecture proposed in this work is the result of a pre-
liminary analysis. The trade-offs between time window lengths, seismic
event characteristics, and noise considerations highlight areas for future
exploration. As we continue to enhance our model, incorporating more
realistic data scenarios and refining our training strategies, we antici-
pate addressing these trade-offs to improve the reliability and robustness
of seismic magnitude estimations using HR-GNSS data.

Data and resources

Modeling and data processing were performed at the Frankfurt
Institute for Advanced Studies, with a GPU cluster funded by BMBF for
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The databases used in this work were provided by https://doi.org/10.
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The programming was carried out using the Python language (Pilgrim
and Willison, 2009). The deep learning modeling was done using the
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Appendix A. a) Learning rate function used during the training model. b), c), and d) show the model performance during the training and validation for every case
described in Table 1. The loss values for both training and validation decrease, having a very slim gap between the curves, and reaching stability to the point of low
MSE values: 0.02, 0.02, and 0.01, for Case I, Case II, and Case III, respectively. Also, the number of epochs necessary to get the minimum losses with a good fit of

training and validation were: 139, 108, and 134 epochs, respectively.
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