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A B S T R A C T

In this paper, we investigate the consequences of dormancy in the ‘rare mutation’ and ‘large population’
regime of stochastic adaptive dynamics. Starting from an individual-based micro-model, we first derive the
Polymorphic Evolution Sequence of the population, based on a previous work by Baar and Bovier (2018).
After passing to a second ‘small mutations’ limit, we arrive at the Canonical Equation of Adaptive Dynamics,
and state a corresponding criterion for evolutionary branching, extending a previous result of Champagnat and
Méléard (2011).

The criterion allows a quantitative and qualitative analysis of the effects of dormancy in the well-known
model of Dieckmann and Doebeli (1999) for sympatric speciation. In fact, quite an intuitive picture emerges:
Dormancy enlarges the parameter range for evolutionary branching, increases the carrying capacity and niche
width of the post-branching sub-populations, and, depending on the model parameters, can either increase
or decrease the ‘speed of adaptation’ of populations. Finally, dormancy increases diversity by increasing the
genetic distance between subpopulations.
1. Introduction

Motivation. Dormancy is a ubiquituous trait in (but not restricted
to) microbial communities. It allows individuals to enter a reversible
state of reduced metabolic activity for a limited period of time. While
it is known that dormancy contributes to the maintenance of microbial
diversity (see e.g. Jones and Lennon, 2010; Lennon et al., 2021),
only few concrete mathematical models seem to have been developed
to study the impact of dormancy on the evolution of species. Here,
we focus on a stochastic modelling approach using the methods of
adaptive dynamics, which has been employed by Champagnat and
Méléard (2011). However, long before the advent of stochastic adaptive
dynamics, the study of deterministic Lotka–Volterra systems already
laid the foundations for the analysis of the evolution and interaction
of species with density dependent competition.

One early example is the discrete-time Lotka–Volterra model in
Roughgarden (1972). There, individuals live on a resource axis – what
is known in adaptive dynamics as the trait space – and individuals
at position 𝑥 on the axis have an equilibrium population size 𝐾(𝑥)
and they have competition for resources which is expressed via a
competition function 𝑐(𝑥, 𝑦) for competition between positions 𝑥 and 𝑦.
An interesting question arising in this context is the width of the niche
occupied by a species, which is the space that the species occupies on
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the resource axis. Roughgarden found that the niche width depends
on the difference of the variance of the carrying capacity and the
competition function. Precisely this term later appears in Dieckmann
and Doebeli (1999) as a criterion for evolutionary branching in a slightly
different, continuous time model.

The term ‘evolutionary branching’ describes the splitting of a
monomorphic population into a dimorphic population around a crit-
ical trait with a subsequent divergence of the traits away from the
branching point. This dimorphism may be interpreted as two branches
of the population which are close to each other initially but are driven
apart due to the accumulation of specific (beneficial) mutations. For
this to happen, usually it is assumed that a monomorphic population
first converges towards a critical point which, once the population has
arrived, constitutes a local fitness minimum, so that the coexistence
of multiple traits in its vicinity becomes possible. Hence one may
observe evolutionary branching. For a more detailed description and
interpretation of this mechanism we refer to Doebeli (2011, Chapter
2) and Waxmann and Gavrilets (2005, Section 2.9). The theory of
evolutionary branching in a non-geographic trait space as developed
by Dieckmann and Doebeli (1999) based on classical results was a
milestone of adaptive dynamics modelling for sympatric speciation
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– the emergence of new species without geographic separation be-
tween populations. However, this theory is also seen as difficult to
prove (Coyne, 2007).

Note that Dieckmann and Doebeli provide a continuous space vari-
ant of a model introduced by Christiansen and Loeschke (1980) in
which the speciation mechanism only depends on the concentration of
the competition kernel and the carrying capacity. While this result is
not entirely new as we have mentioned above, it was the first time
to be stated in the context of evolutionary branching and sympatric
speciation. A plethora of further models with many different features
which exhibit evolutionary branching have been investigated around
the time (cf. Geritz et al. 1998, Geritz and Kisdi 2000, Doebeli et al.
2004, Sagitov et al. 2013 and references therein). However, we are not
aware of any models in this area incorporating dormancy.

The assumptions in all these models sparked a discussion on the use-
fulness, limitations and need of adaptive dynamics as a modelling ap-
proach. A particular criticism of Waxmann and Gavrilets in their survey
article on adaptive dynamics (Waxmann and Gavrilets, 2005) concerns
the (limited) parameter ranges for sympatric speciation. We will show
that the introduction of a competition-induced dormancy mechanism
as presented in Blath and Tóbiás (2020) relaxes the criterion for evo-
lutionary branching as long as the strength of the mechanism is of the
same order as the competition kernel and the carrying capacity. In par-
ticular, we claim that dormancy can favour evolutionary branching and
therefore may be seen as a factor contributing to sympatric speciation
(within the limitations of the existing models, i.e. asexual reproduction,
homogeneous environment, mostly monomorphic populations etc.).

Moreover, we observe that dormancy can enrich the diversity of
microbial communities in numerous other ways besides helping evolu-
tionary branching. Firstly, we observe larger carrying capacities. This
happens in two ways: due to dormancy, individuals can tolerate higher
levels of competition and hence the total population size increases.
Furthermore, the introduction of dormancy can help the population to
occupy larger portions of the trait space. This occurs through wider
branches which we also refer to as wider niches. Secondly, our dor-
mancy mechanism can increase or decrease the speed of adaptation.
This is to say that the evolution towards a fitness optimum from a
lower fitness level may both be favourably or adversely impacted by
dormancy depending on the model parameters. Thirdly, we can show
that the (genetic) distance between subpopulations after evolutionary
branching can be increased. And lastly, we observe the emergence of
alternative pathways to dimorphic populations.

In order to make these claims mathematically sound, we will use the
stochastic model of Champagnat and Méléard (2011) as our foundation.
The polymorphic evolution sequence (PES) is the result of an additional
assumption on rare mutations, i.e. a mutant trait fixates before a second
mutation emerges. While this assumption prevents clonal interference
and may alter the effects of other evolutionary features, it is one of the
simplest models for polymorphic populations in the large population
limit and has been adopted into several different settings before, such as
cancer modelling (Baar et al., 2016) or predator–prey dynamics (Costa
et al., 2016). The second building stone is the canonical equation
of adaptive dynamics, which is the small mutation limit of the trait
substitution sequence (the monomorphic equivalent of the PES), the
latter of which was introduced in Metz et al. (1996). This equation
describes the evolution of the trait over time as a differential equation
and has been discussed in several different models (cf. Champagnat and
Méléard 2011, Collet et al. 2013). With these means we obtain a precise
mathematical criterion for evolutionary branching.

Organization of the paper. The remainder of the paper is struc-
ured as follows: In Section 2 we present the model and necessary math-
matical notation and results: Section 2.1 contains the basic stochastic
ndividual-based model. Section 2.2 provides the corresponding poly-
orhic evolution sequence in the many particles and rare mutations

egime. Section 2.3 considers the small mutation limit and states the
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volutionary branching criterion of Champagnat and Méléard in the c
context of dormancy. In Section 3 we then specialize our results to the
set-up of Dieckmann and Doebeli, now extended to include dormancy.
We are able to provide quantitative results for the parameter ranges
leading to evolutionary branching in the presence of dormancy, and
also provide simulations to illustrate them (Section 3.1). In Section 3.2,
we discuss further effects of dormancy for adaptive diversification,
including the speed of adaptation, diversity in trait space, and potential
alternative pathways to polymorphic populations.

2. Model and theoretical results

2.1. A micro-model for competition-induced dormancy

We extend a stochastic individual-based model with rare mutations
introduced by Champagnat and Méléard (2011) to include dormancy.
More specifically, we assign to each individual of our population model
a trait 𝑥 ∈  which we also refer to as the genotype, where  ⊆ R𝓁

ith 𝓁 ≥ 1 is a compact set. This trait determines the behaviour of
he individual. Furthermore, each trait 𝑥 may exhibit an active and a
ormant state (or phenotype), which we denote by 𝑎 and 𝑑 respectively.
he combination of trait and state is then denoted by (𝑥, 𝑎) or (𝑥, 𝑑). For
ach 𝑥, 𝑦 ∈  we introduce the functions

• 𝜆(𝑥) ≥ 0 is the rate at which active individuals with trait 𝑥
reproduce,

• 𝜇(𝑥) ≥ 0 is the rate of natural mortality for active individuals with
trait 𝑥. We assume 𝜇(𝑥) ≤ 𝜆(𝑥) for all 𝑥 ∈  .

• 𝐾 ∈ N is the carrying capacity which governs the population size
via the competition kernel,

• 𝛼(𝑥, 𝑦)∕𝐾 ≥ 0 is the competition kernel which determines the
competition an active individual of trait 𝑦 ∈  exerts onto
an active individual of trait 𝑥 ∈  . At such a competition
event, 𝑝(𝑥) ∈ [0, 1] is the probability with which the affected
individual of trait 𝑥 can become dormant, and otherwise (i.e. with
probability 1 − 𝑝(𝑥)) this individual dies,

• 𝑢𝐾𝑚(𝑥) ∈ (0, 1] is the probability of mutation at birth where
𝑢𝐾 , 𝑚(𝑥) ∈ (0, 1],

• 𝑢𝐾𝜙(𝑥) ∈ [0, 1] is the rate of mutation of a dormant individual of
trait 𝑥 with 𝜙(𝑥) ≥ 0,

• 𝑀((𝑥, 𝑟), ℎ)𝑑ℎ with 𝑟 ∈ {𝑎, 𝑑} is the mutation kernel determining
the law of the mutant trait 𝑥+ℎ ∈  when the mutant is born from
an individual with trait 𝑥 in the case 𝑟 = 𝑎 or when the mutant is
born from a dormant individual with trait 𝑥 for 𝑟 = 𝑑.

• 𝜅(𝑥) ≥ 0 is the rate at which dormant individuals of trait 𝑥 die.
Usually, we will assume 𝜅(𝑥) ≤ 𝜇(𝑥).

• 𝜎(𝑥) > 0 is the rate at which dormant individuals of trait 𝑥
resuscitate (become active),

ue to independent reproduction and death events (naturally and by
ompetition), the total population size will fluctuate around 𝐾. Note
hat there are no assumptions regarding symmetry of the competition
ernel or the mutation kernels. In fact, real world data from Roughgar-
en (1972) provide an example of an asymmetric competition kernel.
e also allow for mutations in the dormant state. This could occur for

xample through ionizing radiation. For many applications we think
f such mutations to be less frequent than mutations at birth as was
iscussed in Lennon et al. (2021). However, in the area of cancer cells,
here are some hints that mutations may in fact be more frequent while
he cells are dormant (Russo et al., 2022).

Our set-up is almost a special case of the general model with
henotypic plasticity which was considered by Baar and Bovier in Baar
nd Bovier (2018). There, mutations only occur at reproduction (in
articular, they cannot occur in the dormant state), and some rates
nly depend on the phenotype but not the genotype. However, a simple
odification of their arguments can be used to show that their results

oncerning the limiting behaviour of the population also apply in our

ase.
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2.2. Many particles and rare mutations: The polymorphic evolution se-
quence

Under suitable assumptions regarding the behaviour of the mutation
rate 𝑢𝐾 and the carrying capacity 𝐾 the dynamics of the population
converge as 𝐾 → ∞ and 𝑢𝐾 → 0 simultaneously towards a pure jump
Markov chain. This is due to the so-called ‘‘rare mutations regime’’
which allows for a mutant trait to establish itself in the population
before another mutation emerges. We will briefly sketch the way to our
result. Denote by 𝑁𝐾 (𝑡) the total population size at time 𝑡 ≥ 0 and let
𝑁𝐾

𝑥,𝑟(𝑡) with 𝑟 ∈ {𝑎, 𝑑} denote the active and dormant population size of
trait 𝑥 at time 𝑡, respectively. As 𝐾 → ∞, the population sizes will tend
to infinity as well, therefore we consider the rescaled population and
count how often each trait is represented, where we denote the trait of
the 𝑖th individual at time 𝑡 and its phenotype by 𝑧𝑖(𝑡), i.e. 𝑧𝑖(𝑡) = (𝑥𝑖, 𝑟𝑖)
for some 𝑥𝑖 ∈  and 𝑟𝑖 ∈ {𝑎, 𝑑}. Then we can write

𝐾
𝑡 = 1

𝐾

𝑁𝐾 (𝑡)
∑

𝑖=1
𝛿𝑧𝑖(𝑡)

which counts the number of active/dormant individuals of each trait.
If the trait space is finite, say  = {𝑥1,… , 𝑥𝑘}, then we can represent
𝜈𝐾𝑡 as the vector

𝜈𝐾𝑡 = 1
𝐾

(

𝑁𝐾
𝑥1 ,𝑎

(𝑡), 𝑁𝐾
𝑥1 ,𝑑

(𝑡),… , 𝑁𝐾
𝑥𝑘 ,𝑎

(𝑡), 𝑁𝐾
𝑥𝑘 ,𝑑

(𝑡)
)

.

n the absence of mutations, it is well known from Ethier and Kurtz
1986, Theorem 11.2.1) that the dynamics of 𝑁𝐾

𝑥𝑖 ,𝑟
(𝑡)∕𝐾 for a finite

number of traits {𝑥1,… , 𝑥𝑘} ⊆  converges on finite time intervals as
𝐾 → ∞ to the solution 𝑛𝑥𝑖 ,𝑟(𝑡) of the dynamical system

𝑛̇𝑥𝑖 ,𝑎(𝑡) = 𝑛𝑥𝑖 ,𝑎(𝑡)

(

𝜆(𝑥𝑖) − 𝜇(𝑥𝑖) + 𝜎(𝑥𝑖)𝑛𝑥𝑖 ,𝑑 (𝑡) −
𝑘
∑

𝑗=1
𝛼(𝑥𝑖, 𝑥𝑗 )𝑛𝑥𝑗 ,𝑎(𝑡)

)

̇ 𝑥𝑖 ,𝑑 (𝑡) = 𝑝(𝑥𝑖)𝑛𝑥𝑖 ,𝑎(𝑡)
𝑘
∑

𝑗=1
𝛼(𝑥𝑖, 𝑥𝑗 )𝑛𝑥𝑗 ,𝑎(𝑡) − 𝑛𝑥𝑖 ,𝑑 (𝑡)

(

𝜅(𝑥𝑖) + 𝜎(𝑥𝑖)
)

.

(1)

We say that the traits 𝑥1,… , 𝑥𝑘 can coexist, if this system admits a
unique coordinatewise positive and locally stable equilibrium. Denote
this equilibrium by 𝑛̄ = (𝑛̄𝑥1 ,𝑎, 𝑛̄𝑥1 ,𝑑 ,… , 𝑛̄𝑥𝑘 ,𝑎, 𝑛̄𝑥𝑘 ,𝑑 ). Then we know
from Athreya and Ney (1972, Chapter V.7.) that the probability of an
invading mutant trait 𝑦 ∈  to go extinct is given by the coordinate
𝑞𝑎 for an initially active mutant and the coordinate 𝑞𝑑 for an initially
dormant mutant corresponding to the unique solution of

𝜆(𝑦)(𝑞2𝑎 − 𝑞𝑎) + 𝑝(𝑦)(𝑞𝑑 − 𝑞𝑎)
𝑘
∑

𝑗=1
𝛼(𝑦, 𝑥𝑗 )𝑛̄𝑥𝑗 ,𝑎

+

(

𝜇(𝑦) + (1 − 𝑝(𝑦))
𝑘
∑

𝑗=1
𝛼(𝑦, 𝑥𝑗 )𝑛̄𝑥𝑗 ,𝑎

)

(1 − 𝑞𝑎) = 0

𝜎(𝑦)(𝑞𝑎 − 𝑞𝑑 ) + 𝜅(𝑦)(1 − 𝑞𝑑 ) = 0

in [0, 1]2 ⧵ {(1, 1)}. Denote this unique solution by 𝑞𝑎(𝑦, 𝐱) for an active
and similarly 𝑞𝑑 (𝑦, 𝐱) for an initially dormant mutant of trait 𝑦. Now,
we can formulate the convergence result for 𝜈𝐾𝑡 .

Theorem 2.1. Fix traits 𝑥1,… , 𝑥𝑘 ∈  and assume that they can coexist.
Further, assume that at time 𝑡 = 0, these are the only existing traits and
their population size converges as 𝐾 → ∞ to their equilibrium, i.e.

lim
𝐾→∞

𝜈𝐾0 =
𝑘
∑

𝑗=1
𝑛̄𝑥𝑗 ,𝑎𝛿𝑥𝑗 ,𝑎 + 𝑛̄𝑥𝑗 ,𝑑𝛿𝑥𝑗 ,𝑑 .

Moreover, assume that the mutation parameter satisfies

exp(−𝑉 𝐾) ≪ 𝑢𝐾 ≪ 1
𝐾 log(𝐾)

for all 𝑉 > 0 as 𝐾 → ∞,

and that 𝜆, 𝛼, 𝜇, 𝜅 and 𝜎 are bounded. Lastly, assume that the solution of
the dynamical system (1) for coexisting traits 𝑥 ,… , 𝑥 and an invading
68

1 𝑘 a
new trait 𝑥𝑘+1 ∈  converges towards a unique locally strongly stable
quilibrium 𝑛∗(𝑥1,… , 𝑥𝑘, 𝑥𝑘+1) from any sufficiently small neighbourhood
of the initial condition (𝑛̄, 0, 0).

Then the process (𝜈𝐾𝑡∕(𝐾𝑢𝐾 ))𝑡≥0 with initial condition 𝜈𝐾0 converges in the
sense of finite dimensional distributions on the space of finite measures on
 × {𝑎, 𝑑} equipped with the weak topology as 𝐾 → ∞ to the jump process
(𝑍𝑡)𝑡≥0 with transitions from
𝑘
∑

𝑗=1
𝑛̄𝑥𝑗 ,𝑎𝛿𝑥𝑗 ,𝑎 + 𝑛̄𝑥𝑗 ,𝑑𝛿𝑥𝑗 ,𝑑 to

𝑘+1
∑

𝑗=1
𝑛∗𝑥𝑗 ,𝑎𝛿𝑥𝑗 ,𝑎 + 𝑛∗𝑥𝑗 ,𝑑𝛿𝑥𝑗 ,𝑑

t rate
𝑘
∑

𝑗=1
𝜆(𝑥𝑗 )𝑚(𝑥𝑗 )𝑛̄𝑥𝑗 ,𝑎(1 − 𝑞𝑎(𝑥𝑘+1, 𝐱))𝑀((𝑥𝑗 , 𝑎), 𝑥𝑘+1 − 𝑥𝑗 )

𝑘
∑

𝑗=1
𝜙(𝑥𝑗 )𝑛̄𝑥𝑗 ,𝑑 (1 − 𝑞𝑑 (𝑥𝑘+1, 𝐱))𝑀((𝑥𝑗 , 𝑑), 𝑥𝑘+1 − 𝑥𝑗 )

nd initial condition

0 = lim
𝐾→∞

𝜈𝐾0 =
𝑘
∑

𝑗=1
𝑛̄𝑥𝑗 ,𝑎𝛿𝑥𝑗 ,𝑎 + 𝑛̄𝑥𝑗 ,𝑑𝛿𝑥𝑗 ,𝑑 .

roof. The proof consists of a straightforward modification of the proof
f Baar and Bovier (2018, Theorem 3.6). □

.3. The small mutation limit and a criterion for evolutionary branching

We now turn towards obtaining a scaling limit as the allowed radius
f mutation is scaled down to 0. For this, we need to assume that
he trait space  ⊆ R𝓁 is convex. Further, we introduce the scaling
arameter 𝜀 > 0 into the mutation kernel by defining the mutant trait
y 𝑦 = 𝑥 + 𝜀𝑌 where now 𝑌 is distributed according to 𝑀((𝑥, 𝑟), ℎ)𝑑ℎ.
ote, that for each (𝑥, 𝑟) ∈  × {𝑎, 𝑑} the mutation kernel may be
ifferent. In addition, we assume that there are no mutations in the
ormant population, i.e. 𝜙 ≡ 0. Then from Theorem 2.1, letting 𝐾 → ∞
and hence also 𝑢𝐾 → 0), we obtain a polymorphic evolution sequence
ependent on 𝜀, which we call 𝑍𝜀 = (𝑍𝜀

𝑡 )𝑡≥0, and subsequently letting
→ 0 gives us convergence of 𝑍𝜀 to a deterministic limit. However, we
eed a new scaling of time to account for the smaller size of mutations.

As in Champagnat and Méléard (2011, Section 4) we will assume
monomorphic population. Then we can associate the polymorphic

volution sequence (𝑍𝜀
𝑡 )𝑡≥0 with a jump Markov process (𝑋𝜀

𝑡 )𝑡≥0 via
𝜀
𝑡 = 𝑛̄𝑋𝜀

𝑡 ,𝑎
𝛿𝑋𝜀

𝑡 ,𝑎
+ 𝑛̄𝑋𝜀

𝑡 ,𝑑
𝛿𝑋𝜀

𝑡 ,𝑑
. The process (𝑋𝜀

𝑡 )𝑡≥0 now takes values in
𝓁 and describes the trait of the population at time 𝑡.

heorem 2.2. Under the assumptions of Theorem 2.1 assume that the
rocesses (𝑍𝜀

𝑡 )𝑡≥0 have a monomorphic initial condition
𝜀
0 = 𝑛̄𝑥,𝑎𝛿𝑥,𝑎 + 𝑛̄𝑥,𝑑𝛿𝑥,𝑑 , i.e. 𝑋𝜀

0 = 𝑥

or some 𝑥 ∈  . Also, assume that the mutation rates satisfy 𝜙(𝑥) = 0 for
ll 𝑥 ∈  , and that the function

(𝑦, 𝑥) = 𝜆(𝑥)𝑚(𝑥)𝑛̄𝑥,𝑎(1 − 𝑞𝑎(𝑦, 𝑥))

s continuous on 2 and continuously differentiable with respect to 𝑦.
urthermore, let the map 𝑥 ↦ 𝑀((𝑥, 𝑎), ℎ)𝑑ℎ be Lipschitz with respect to
he Wasserstein metric on the set of probability measures and let𝑀((𝑥, 𝑎), ℎ)
ave finite and bounded in 𝑥 third-order moments. Then (𝑋𝜀

𝑡 )𝑡≥0 converges
eakly in the space of càdlàg paths D([0, 𝑇 ],R𝓁) on any finite time interval
0, 𝑇 ] with 𝑇 > 0 to a deterministic function 𝑥(𝑡) with 𝑥(0) = 𝑥 and which
olves the following canonical equation of adaptive dynamics
𝑑𝑥(𝑡)
𝑑𝑡

= ∫R𝓁
ℎ[ℎ ⋅ ∇1𝑔(𝑥(𝑡), 𝑥(𝑡))]+𝑀((𝑥(𝑡), 𝑎), ℎ)𝑑ℎ.

Here, ∇1𝑔(𝑥, 𝑥) with 𝑥 ∈ R𝓁 denotes the gradient of 𝑔 with respect to
he first vector. Further, the term in square brackets is to be understood

s scalar product.
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Proof. Note that we can calculate the equilibrium

̄𝑥,𝑎 =
(𝜆(𝑥) − 𝜇(𝑥))(𝜅(𝑥) + 𝜎(𝑥))

𝛼(𝑥, 𝑥)(𝜅(𝑥) + (1 − 𝑝(𝑥))𝜎(𝑥))

nd the probability of survival of the mutant trait against a monomor-
hic resident population

− 𝑞𝑎(𝑦, 𝑥) = 1 −
𝛼(𝑦, 𝑥)𝑛̄𝑥,𝑎(𝜅(𝑦) + (1 − 𝑝(𝑦))𝜎(𝑦))

𝜆(𝑦)(𝜅(𝑦) + 𝜎(𝑦))
−

𝜇(𝑦)
𝜆(𝑦)

explicitly. In particular, it is possible to define a function

𝑓 (𝑦, 𝑥) = 𝜆(𝑦) − 𝜇(𝑦) −
𝛼(𝑦, 𝑥)𝑛̄𝑥,𝑎(𝜅(𝑦) + (1 − 𝑝(𝑦))𝜎(𝑦))

𝜅(𝑦) + 𝜎(𝑦)
(2)

such that

𝑔(𝑦, 𝑥) = 𝜆(𝑥)𝑚(𝑥)𝑛̄𝑥,𝑎
𝑓 (𝑦, 𝑥)
𝜆(𝑦)

.

bserve that this is the form of the transition function found in Cham-
agnat and Méléard (2011, Theorem 4.1) with similar properties.
herefore, one can now continue exactly as in their proof to obtain
he result. □

emark 2.3. In Baar et al. (2017) it has been shown in the case
ithout dormancy that one can obtain a similar result even when
ne takes the limits simultaneously instead of successively as we have
one. However, the corresponding proof is significantly more technical.
ince the proof relies heavily on coupling arguments and makes explicit
se of properties of one-type branching processes, manoeuvring these
rguments with two-type branching processes becomes more involved.
hile we believe that a corresponding result with dormancy should ex-

st, we stick with the simpler version provided here, which is sufficient
or our purposes. We also believe that our dormancy mechanism does
ot alter the general time scales required for the canonical equation
ince dormancy and resuscitation both work on the 𝑂(1) time scale.

Our next aim is to derive an explicit criterion for what is called
volutionary branching in one dimension. Recall that the term describes
he situation where at a point 𝑥∗, a previously monomorphic population
iving in a neighbourhood of 𝑥∗ may suddenly become dimorphic with
n increasing distance between the genotypes. Consider now  ⊆ R as

a closed interval and let 𝑥∗ be a point towards which the solution of
the canonical equation converges. We will focus on traits which satisfy
𝜕1𝑔(𝑥∗, 𝑥∗) = 0 or equivalently 𝜕1𝑓 (𝑥∗, 𝑥∗) = 0. We refer to such traits as
evolutionary singularities which in the literature are also called evolution-
ary singular strategies or evolutionary singular points. While this point will
never be reached by 𝑥(𝑡), we can ask, how the stochastic system behaves
around these points. A criterion for evolutionary branching was derived
by Metz et al. (1996). A more rigorous version was then proved by
Champagnat and Méléard. Under the assumptions of Theorem 2.2, they
found the following result, which carries over one-to-one to our model:

Theorem 2.4. Consider the process 𝑍𝜀 and assume that the canonical
equation of adaptive dynamics with initial condition 𝑥 converges towards
an evolutionary singularity 𝑥∗ in the interior of  . We also assume that
𝜆, 𝜇, 𝜅, 𝜎 and 𝑝 are three times continuously differentiable and 𝛼(𝑥, 𝑦) is four
imes continuously differentiable. Further assume that the mutation kernel
((𝑥, 𝑎), ⋅) has mass on the positive and negative real axis for any 𝑥 in

he interior of  . Assume that the function 𝑓 in (2) from the proof of
heorem 2.2 satisfies

22𝑓 (𝑥∗, 𝑥∗) > 𝜕11𝑓 (𝑥∗, 𝑥∗) and 𝜕22𝑓 (𝑥∗, 𝑥∗) + 𝜕11𝑓 (𝑥∗, 𝑥∗) ≠ 0.

hen,

• if 𝜕11𝑓 (𝑥∗, 𝑥∗) > 0, then there is almost surely evolutionary branching
at 𝑥∗,

• if 𝜕11𝑓 (𝑥∗, 𝑥∗) < 0, then there is almost surely no evolutionary
branching.
69
ketch of Proof. Most of the proof can be taken from the proof
f Champagnat and Méléard (2011, Theorem 4.10). However, we need
o specify the fitness function for an invading mutant trait 𝑧 in a
imorphic population consisting of traits 𝑥 and 𝑦. This is done by setting

(𝑧; 𝑥, 𝑦) = 𝜆(𝑧) − 𝜇(𝑧) −
(𝛼(𝑧, 𝑥)𝑛̂𝑥,𝑎 + 𝛼(𝑧, 𝑦)𝑛̂𝑦,𝑎)(𝜅(𝑧) + (1 − 𝑝(𝑧))𝜎(𝑧))

𝜅(𝑧) + 𝜎(𝑧)
,

where 𝑛̂𝑥,𝑎 and 𝑛̂𝑦,𝑎 denote the active population sizes of trait 𝑥 and 𝑦 re-
pectively in their dimorphic equilibrium. To calculate these explicitly,
e consider the dynamical system

𝑛̇𝑎𝑥(𝑡) = 𝑛𝑎𝑥(𝑡)
(

𝜆(𝑥) − 𝜇(𝑥) − 𝛼(𝑥, 𝑥)𝑛𝑎𝑥(𝑡) − 𝛼(𝑥, 𝑦)𝑛𝑎𝑦(𝑡)
)

+ 𝜎(𝑥)𝑛𝑑𝑥(𝑡)

𝑛̇𝑑𝑥(𝑡) = 𝑝(𝑥)𝑛𝑎𝑥(𝑡)(𝛼(𝑥, 𝑥)𝑛
𝑎
𝑥(𝑡) + 𝛼(𝑥, 𝑦)𝑛𝑎𝑦(𝑡)) − (𝜎(𝑥) + 𝜅(𝑥))𝑛𝑑𝑥(𝑡)

𝑛̇𝑎𝑦(𝑡) = 𝑛𝑎𝑦(𝑡)
(

𝜆(𝑦) − 𝜇(𝑦) − 𝛼(𝑦, 𝑥)𝑛𝑎𝑥(𝑡) − 𝛼(𝑦, 𝑦)𝑛𝑎𝑦(𝑡)
)

+ 𝜎(𝑦)𝑛𝑑𝑦 (𝑡)

̇ 𝑑𝑦 (𝑡) = 𝑝(𝑦)𝑛𝑎𝑦(𝑡)(𝛼(𝑦, 𝑥)𝑛
𝑎
𝑥(𝑡) + 𝛼(𝑦, 𝑦)𝑛𝑎𝑦(𝑡)) − (𝜎(𝑦) + 𝜅(𝑦))𝑛𝑑𝑦 (𝑡),

(3)

hich describes the behaviour of the two traits in absence of mutations
s is known from standard theory (cf. Blath and Tóbiás 2020, Ethier and
urtz (1986)). It is easily verified that the equilibrium of (3) satisfies

(𝑦, 𝑥)𝑛̂𝑥,𝑎 + 𝛼(𝑦, 𝑦)𝑛̂𝑦,𝑎 =
(𝜆(𝑦) − 𝜇(𝑦))(𝜅(𝑦) + 𝜎(𝑦))
𝜅(𝑦) + (1 − 𝑝(𝑦))𝜎(𝑦)

and

𝛼(𝑥, 𝑥)𝑛̂𝑥,𝑎 + 𝛼(𝑥, 𝑦)𝑛̂𝑦,𝑎 =
(𝜆(𝑥) − 𝜇(𝑥))(𝜅(𝑥) + 𝜎(𝑥))

𝜅(𝑥) + (1 − 𝑝(𝑥))𝜎(𝑥)
.

ence, 𝑓 (𝑧; 𝑥, 𝑦) is well-defined if and only if the above linear system
as a unique solution and hence 𝛼(𝑦, 𝑥)𝛼(𝑥, 𝑦) ≠ 𝛼(𝑥, 𝑥)𝛼(𝑦, 𝑦). With this
efinition and explicit representation one can show the properties given
n Champagnat and Méléard (2011, Proposition 4.13) from which the
esult follows. □

Aside from the technical assumptions, 𝜕11𝑓 (𝑥∗, 𝑥∗) decides whether
he singularity 𝑥∗ is a local fitness minimum or maximum. If it is a min-
mum, then invading traits from the left and the right of the singularity
ave a higher fitness and can coexist for suitable combinations. Since
hese traits are now coexisting, the singular trait 𝑥∗ is no longer able
o invade (but traits further away may still be able to invade and push
he coexisting traits further apart). If on the other hand 𝜕11𝑓 (𝑥∗, 𝑥∗) < 0
nd 𝑥∗ is a fitness maximum, then surrounding traits of 𝑥∗ may invade
ut not extinguish the singular trait if 𝜕11𝑓 (𝑥∗, 𝑥∗) + 𝜕22𝑓 (𝑥∗, 𝑥∗) > 0.
his leads to coexistence of multiple traits in a small neighbourhood
f the singular trait as was shown by Champagnat and Méléard (2011,
roposition 4.11). A graphical description of how these situations may
rise is given in Figures 2.3 and 2.4 of Doebeli (2011). Here, the model
s slightly different but the interpretation also applies to our situation.

While the above criterion in its abstract formulation is unchanged
rom the one stated by Champagnat and Méléard, the implicit presence
r absence of dormancy will significantly affect the emergence of
volutionary branching, as we will investigate in an important special
cenario below. In general, the impact of dormancy depends heavily on
he shape of the functions 𝜅, 𝜎 and 𝑝 which makes a general discussion
ather complex.

. Dormancy in a classical model for evolutionary branching

.1. A simple explicit criterion for evolutionary branching in the presence
f dormancy

In order to gain an understanding of the consequences of dormancy
n our abstract evolutionary branching criterion, we now discuss dor-
ancy in the concrete set-up provided by Champagnat and Méléard,
hich is in turn based on Dieckmann and Doebeli (1999), Christiansen
nd Loeschke (1980), Roughgarden (1972) and references therein.

Here, the parameters of the general micro-model from the beginning
f Section 2 are specified to

= [−2, 2], 𝜇(𝑥) = 0, 𝑚(𝑥) = 𝑚, 𝜙(𝑥) = 0 𝑀((𝑥, 𝑎), ℎ)𝑑ℎ ∼  (0, 𝜌2),
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𝜆(𝑥) = exp

(

− 𝑥2

2𝜎2
𝑏

)

, 𝛼(𝑥, 𝑦) = exp
(

−
(𝑥 − 𝑦)2

2𝜎2
𝛼

)

.

We introduce a specific type of dormancy by letting

𝜅(𝑥) = 0, 𝜎(𝑥) = 𝜎, 𝑝(𝑥) = 1 − exp(−|𝑥|𝑟∕(2𝜎2𝑝 ))

for 𝜎𝑝, 𝑟 > 0. Note that the choice 𝑟 = 2 appears particularly natural,
since then dormancy and competition/fitness act on similar scales.

Further, note that our choice for the dormancy-initiation function
𝑝 introduces a reproductive trade-off into the system, in the sense that
ndividuals who can evade death by becoming dormant more efficiently
n turn have lower reproduction rate which can be seen as a cost
o maintaining the dormancy mechanism. Such a trade-off has been
eported in the dormancy literature (e.g. Lennon et al., 2021) and is
crucial modelling assumption.

In order to get an explicit criterion for evolutionary branching in
he presence of competition-induced dormancy as realized above, we
ow need to calculate the derivatives of the fitness function 𝑓 and then
pply Theorem 2.4. We obtain

(𝑦, 𝑥) = 𝜆(𝑦) −
𝛼(𝑦, 𝑥)𝜆(𝑥)
1 − 𝑝(𝑥)

(1 − 𝑝(𝑦)).

Calculating the first derivative yields

𝜕1𝑓 (𝑥, 𝑥) = 𝜆′(𝑥) +
𝜆(𝑥)𝛼(𝑥, 𝑥)𝑝′(𝑥)

1 − 𝑝(𝑥)
− 𝜕1𝛼(𝑥, 𝑥)𝜆(𝑥)

= 𝜆′(𝑥) +
𝜆(𝑥)𝛼(𝑥, 𝑥)𝑝′(𝑥)

1 − 𝑝(𝑥)
, (4)

and similarly the second derivative with respect to the first component
gives

𝜕11𝑓 (𝑥, 𝑥) = 𝜆′′(𝑥) − 𝜕11𝛼(𝑥, 𝑥)𝜆(𝑥) +
𝜆(𝑥)𝛼(𝑥, 𝑥)𝑝′′(𝑥)

1 − 𝑝(𝑥)
, (5)

Note that more generally, these equations hold as long as we assume
the competition function to be at a maximum for identical traits.

For our choice of 𝑝, the first derivative takes the form

𝜕1𝑓 (𝑥, 𝑥) = −𝑥𝑒−𝑥
2∕(2𝜎2𝑏 )

𝜎2𝑏
+

𝑟𝑥|𝑥|𝑟−2𝑒−𝑥
2∕(2𝜎2𝑏 )

2𝜎2𝑝
= 0 ⟺

𝑟𝑥|𝑥|𝑟−2

2𝜎2𝑝
= 𝑥

𝜎2𝑏
.

or 𝑟 > 1, this admits the solution 𝑥 = 0 but if 𝑟 ≠ 2 there are up to two
urther solutions which can be computed in the closed form:

1,2 = ±

(

𝑟𝜎2𝑏
2𝜎2𝑝

)−1∕(𝑟−2)

.

These two points are also the only equilibria in the case 𝑟 ∈ (0, 1]. Of
particular interest is stability of equilibria. This describes the property
that the population will be attracted to an equilibrium. We define this
in line with Doebeli (2011, Chapter 2).

Definition 3.1. We call an equilibrium 𝑥∗ ∈  locally stable, if the
fitness function 𝑓 satisfies
𝑑
𝑑𝑥

𝜕1𝑓 (𝑥, 𝑥)|𝑥=𝑥∗ < 0.

In other words, an equilibrium is stable if and only if it is a local fitness
maximum which is the case if and only if the solution of the canonical
equation of adaptive dynamics converges to 𝑥∗ from any sufficiently
small neighbourhood. We call an equilibrium 𝑥∗ ∈  globally stable if it
is locally convergence stable and the solution of the canonical equation
converges to 𝑥∗ from any initial value 𝑥0 ∈  .

The stability of the zeros 𝑥1,2 of the first derivative depends only
on 𝑟 (for 𝑟 ≠ 2). For 𝑟 > 2, only 0 is stable, whereas for 𝑟 < 2, the
equilibrium 0 becomes unstable and 𝑥1,2 both become stable.

In the most interesting case when 𝑟 = 2, the equilibrium 0 is stable
if and only if the stability condition
1
2
< 1

2

70

𝜎𝑝 𝜎𝑏
is satisfied.
The second derivative in our scenario reads

𝜕11𝑓 (𝑥, 𝑥) =
(𝑥2 − 𝜎2𝑏 )𝑒

−𝑥2∕(2𝜎2𝑏 )

𝜎4𝑏
+ 𝑒−𝑥

2∕(2𝜎2𝑏 )

𝜎2𝛼

−
𝑟|𝑥|𝑟(𝑟|𝑥|𝑟 − 2𝜎2𝑝𝑟 + 2𝜎2𝑝 )𝑒

−𝑥2∕(2𝜎2𝑏 )

4𝑥2𝜎4𝑝
.

If now 𝑥∗ = 0 is the stable evolutionary singularity, then this simplifies
to

𝜕11𝑓 (0, 0) =

⎧

⎪

⎨

⎪

⎩

1
𝜎2𝛼

− 1
𝜎2𝑏
, if 𝑟 > 2

1
𝜎2𝛼

− 1
𝜎2𝑏

+ 1
𝜎2𝑝
, if 𝑟 = 2.

We also compute

𝜕22𝑓 (0, 0) =

⎧

⎪

⎨

⎪

⎩

1
𝜎2𝛼

+ 1
𝜎2𝑏
, if 𝑟 > 2

1
𝜎2𝛼

+ 1
𝜎2𝑏

− 1
𝜎2𝑝
, if 𝑟 = 2.

The criterion for evolutionary branching in the case of 𝑟 < 2 is
also dependent on the equilibrium itself and as such the relationship
between the parameters becomes more involved. For now, we only
consider the case 𝑟 ≥ 2. We find that 𝜕22𝑓 (0, 0) > 𝜕11𝑓 (0, 0) is always
satisfied. Comparing our criterion for evolutionary branching around
0 with the criterion obtained by Champagnat and Méléard (2011), we
see no change in the case 𝑟 > 2. This is due to the effect of dormancy
being too weak in the neighbourhood of the singularity and in fact
being of different order compared to the birth and competition rates.
However, when they are of the same order in the case 𝑟 = 2, then
we obtain an additional positive constant depending on the dormancy
parameter 𝜎𝑝. This shows that evolutionary branching is supported by
dormancy, as long as the mechanism is sufficiently strong. At the same
time, dormancy must not be too strong, i.e. 1∕𝜎2𝑝 > 1∕𝜎2𝑏 , because the
population would not converge to the evolutionary singularity 0 but
instead be driven towards the boundary of the trait space.

Hence we arrive at the main result of this section.

Theorem 3.2 (Evolutionary Branching in the Presence of Dormancy).
Under the above notation, with 𝑟 = 2, assume that the stability condition
1
𝜎2𝑝

< 1
𝜎2𝑏

is satisfied. Then, we observe local convergence into the stable singularity at
0 with subsequent evolutionary branching, if
1
𝜎2𝛼

− 1
𝜎2𝑏

+ 1
𝜎2𝑝

> 0.

In particular, the presence of dormancy always increases the parameter
range for evolutionary branching.

Note, that as 𝜎2𝑝 → ∞ (and hence absence of dormancy) this
coincides with the case without dormancy. Also, when there is uni-
form competition 𝜎2𝛼 = ∞, then we either have a stable evolutionary
singularity at 0 and no branching, or 0 is unstable.

We illustrate the theorem in Fig. 1 and with concrete simulations
of the stochastic population model. For this, we have chosen 𝑟 = 2,
𝜎2𝑝 = 2, 𝜎2𝛼 = 2 and different 𝜎𝑏. To perform all our simulations, we
used the scheme shown in Fig. 2. The full source code used is available
at https://doi.org/10.5281/zenodo.8351373.

The results are shown in Fig. 3. Note that in the case 𝜎2𝑏 = 1.2, there
would be no evolutionary branching without the aid of dormancy since
1∕𝜎2𝛼 − 1∕𝜎2𝑏 < 0.

Remark 3.3 (The Impact of the Parameter 𝑟). We display in Fig. 4(a)
a selection of fitness landscapes for different parameters of 𝑟. We see
that in the case 𝑟 ≥ 2, the stable singularity 0 is a local maximum

https://doi.org/10.5281/zenodo.8351373


Theoretical Population Biology 156 (2024) 66–76

71

J. Blath et al.

Fig. 1. The dashed curve (showing 𝜕11𝑓 (0, 0) = 0) separating areas 𝐴 and 𝐵 decides whether there is evolutionary branching, the dotted curve (showing 1∕𝜎2
𝑝 = 1∕𝜎2

𝑏 ) separating
areas 𝐵 and 𝐶 decides whether 0 is a stable evolutionary singularity. In area 𝐴 (light grey), 0 is a stable singularity, but there is no evolutionary branching. Area 𝐵 (dark grey)
shows the admissible combinations such that 0 is a stable singularity and the evolutionary branching criterion 𝜕11𝑓 (0, 0) > 0 is satisfied. In area 𝐶, 0 is not a stable singularity.
We omit the comparison of 𝜎𝛼 against 𝜎𝑏 because it is qualitatively similar to Figure (a).

Fig. 2. A flowchart for our simulation procedure. We start simulations at time 𝑡0 = 0 with some initial configuration of 𝑁𝐾
𝑥,𝑟(𝑡0). In each step we wait until the next event which

we obtain from an exponential distribution. We use the various uniform random variables to determine probabilities for the different events. After determining each kind of event,
we can update the composition of the population. This repeats until we reach the desired time horizon. When mutations occur, we always need to search for the closest point in
the discretized trait space. We use a mesh of 1000 evenly spaced points to discretize the continuous space [−2, 2].
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Fig. 3. Simulations showing the population size of each trait over time. The trait space is on the vertical line with the number of individuals of a given trait at a given time
being indicated by the colour corresponding to the scale next to the image. Initially, the population is composed of 250 active individuals with trait −1.
Fig. 4. Equilibrium population sizes and gradients of the fitness function for various choices of 𝑟.
of the equilibrium population. However, as soon as 𝑟 < 2, this for-
mer local maximum turns into a local minimum with two new local
maxima emerging symmetrically around 0. These are the new stable
singularities that we computed previously. Regarding the stability, we
see that for 𝑟 > 2, the singularity 0 may not be globally stable. This
effect becomes even more pronounced if we plot the partial derivative
𝜕1𝑓 (𝑥, 𝑥) with the same parameters as is depicted in Fig. 4(b). However,
in the critical case 𝑟 = 2, there seems to be a dichotomy between
either an unstable singularity or a globally attracting singularity at
0. For 𝑟 < 2, each of the two singularities are stable in the sense
that there is convergence to the singularity which is closest to the
starting trait. Heuristically, as long as 𝑟 ∈ (1, 2), the population could
cross the equilibrium 0 as long as the driving forces of evolutionary
branching are sufficiently strong, since there is only little resistance to
overcome (boundedness of 𝜕1𝑓 (𝑥, 𝑥) around 0). However, if 𝑟 ≤ 1, then
the derivative becomes unbounded and the fitness valley can only be
crossed by a sufficiently large mutation.

Already the fact that there are two stable singularities indicates that
we should be able to observe another enrichment in species diversity.
In fact, in our model mutations are normally distributed on the trait
space, so even if there is no evolutionary branching in the sense of
our criterion 𝜕11𝑓 (𝑥∗, 𝑥∗) > 0 at the equilibrium 𝑥∗, we still can –
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and eventually will – obtain mutations which are closer to the second
equilibrium. The traits at the two equilibria can coexist, since they have
the same fitness but the competition may drive the branches further
apart.

Remark 3.4 (More General Dormancy Functions 𝑝). It is easy to see that
a dormancy mechanism with constant 𝜎 and no death in the dormant
state always extends the classical parameter range for evolutionary
branching, if 𝑝 is convex around the singularity, since then the last
term in (5) is strictly positive. In the setting described in Doebeli (2011,
Chapter 2), the fitness function around a singularity can also be thought
of as a trade-off function. The forces taken into account are the birth
rate and the competition rates. Moving away from an optimal state
requires the reduction in reproduction to be compensated by lower
competition or vice versa an increase in competitive pressure to be
compensated by increased birth rates. If 𝜕11𝑓 (𝑥∗, 𝑥∗) > 0, then this
shows a convex trade-off between the function governing births and
the function determining competition around the singularity. By this we
mean that the loss in reproduction is outweighed by a gain in reduced
competition. Since dormancy may be seen as another decrease in
competitive pressure by allowing individuals to escape into a dormant
state, the shape of the dormancy initiation probability impacts the
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Fig. 5. Simulations showing the population size of each trait over time. Initially, the population is composed of 250 active individuals with trait −1. The distance between the
branches before secondary branchings is significantly increased on the left.
shape of the fitness function directly. If 𝑝 if convex, then it increases
the curvature of 𝑓 , while if it is concave, it decreases the curvature.
However, this may still be difficult to investigate, since we can see
from Eq. (4) that 𝑝 also affects the position of the singularity. Suppose
that 𝑥∗ is a singularity in the model without dormancy. The simplest
comparison in this situation can be made, when we assume 𝑝(𝑥∗) to
be a local minimum or maximum. Then the singularity is present in
both settings and having a local minimum of 𝑝 at 𝑥∗ benefits evolu-
tionary branching around this point, while a local maximum reduces
the parameter range for branching.

3.2. Further consequences of competition-induced dormancy

Now we investigate some further aspects of dormancy (apart from
the criterion for evolutionary branching that we determined in Sec-
tion 3.1), which we will justify partially mathematically and partially
only heuristically or via simulations.

Dormancy can increase the number of subsequent branchings.
Note that our criterion for evolutionary branching only applies for
the first branching since after that point, we no longer have the
approximation of the process via the canonical equation. In order to
investigate the impact of dormancy on subsequent branching events,
we use the example parameters shown in Fig. 5. We highlight that in
both cases – with and without dormancy – the criterion for evolutionary
branching is satisfied for the evolutionary singularity 0. However, in the
setting with dormancy, an additional branch emerges compared to the
simulation with identical parameters but without dormancy. This shows
that dormancy may also favour evolutionary branching in a setting
which we cannot describe accurately with our approach.

Dormancy can both decrease and increase the speed of adap-
tation. To investigate the speed of adaptation (that is, the speed with
which sub-populations reach equilibria in trait space) we focus on the
case 𝑟 = 2. To this aim, we compare the transition rates of the PES with
and without dormancy. Suppose that in both models all rates are equal
except for the additional dormancy mechanism and that the population
is monomorphic with resident trait 𝑥 ∈  . Then the rate at which a
mutant trait 𝑦 invades is given by

𝜆(𝑥)𝑚(𝑥) ⋅
𝜆(𝑥) − 𝜇(𝑥)
𝛼(𝑥, 𝑥)

⋅ (1 − 𝑞(𝑦, 𝑥))𝑀(𝑥, 𝑦 − 𝑥)

in the model without dormancy, where 𝑞(𝑦, 𝑥) is the probability of
extinction of a single individual of trait 𝑦 against trait 𝑥 and 𝑀(𝑥, 𝑦−𝑥)
is the mutation kernel governing the probability of obtaining trait 𝑦
from a mutant offspring of trait 𝑥. In the setting with dormancy where
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mutations only result from births, we obtain

𝜆(𝑥)𝑚(𝑥) ⋅
𝜆(𝑥) − 𝜇(𝑥)

𝛼(𝑥, 𝑥)(1 − 𝑝(𝑥))
⋅ (1 − 𝑞𝑎(𝑦, 𝑥))𝑀((𝑥, 𝑎), 𝑦 − 𝑥).

as the rate of invasion of a mutant trait 𝑦. In our concrete example,
recall 𝜇(𝑥) = 0 and 𝛼(𝑥, 𝑥) = 1. Since the rate of birth, mutation
probability and mutation kernel are assumed to be equal, we need to
investigate the relationship between

𝑠(𝑦, 𝑥, 𝑎) =
𝜆(𝑥) − 𝜇(𝑥)
𝛼(𝑥, 𝑥)

⋅ (1 − 𝑞(𝑦, 𝑥)) = 𝜆(𝑥) −
𝛼(𝑦, 𝑥)𝜆2(𝑥)

𝜆(𝑦)

and

𝑠(𝑦, 𝑥, 𝑑) =
𝜆(𝑥) − 𝜇(𝑥)

𝛼(𝑥, 𝑥)(1 − 𝑝(𝑥))
⋅ (1 − 𝑞𝑎(𝑦, 𝑥))

=
𝜆(𝑥)

1 − 𝑝(𝑥)
−

𝛼(𝑦, 𝑥)𝜆2(𝑥)(1 − 𝑝(𝑦))
𝜆(𝑦)(1 − 𝑝(𝑥))2

.

Plugging in our rates and letting 𝑦 = 𝑥 + 𝜀 yields

𝑠(𝑥 + 𝜀, 𝑥, 𝑑)
𝑠(𝑥 + 𝜀, 𝑥, 𝑎)

= 𝑒𝑥
2∕(2𝜎2𝑝 ) ⋅

1 − exp(− 𝜀2

2𝜎2𝛼
− 𝑥2

2𝜎2𝑏
+ (𝑥+𝜀)2

2𝜎2𝑏
+ 𝑥2

2𝜎2𝑝
− (𝑥+𝜀)2

2𝜎2𝑝
)

1 − exp(− 𝜀2

2𝜎2𝛼
− 𝑥2

2𝜎2𝑏
+ (𝑥+𝜀)2

2𝜎2𝑏
)

𝜀→0
←←←←←←←←←←←←←←←←←→ 𝑒𝑥

2∕(2𝜎2𝑝 )
(

1 −
𝜎2𝑏
𝜎2𝑝

)

.

In particular, in the small mutation limit the rate of evolution is faster
in the model with dormancy if and only if

1 −
𝜎2𝑏
𝜎2𝑝

> 𝑒−𝑥
2∕(2𝜎2𝑝 ) ⟺ |𝑥| >

√

√

√

√2𝜎2𝑝 log

(

𝜎2𝑝
𝜎2𝑝 − 𝜎2𝑏

)

.

Hence, close to the singularity 0, the introduction of our dormancy
mechanism slows down the evolutionary process. This can also be seen
in Fig. 5. The forces acting against each other are an increased rate of
mutation from a larger equilibrium population size and the fact that a
larger population size decreases the probability of a successful invasion
due to increased competition. Far from the optimal population size,
more frequent mutations outweigh more competition since population
sizes are small.

Dormancy can increase the diversity in trait space. If branches
are pushed further apart, we consider this as an ‘increase in diversity’
in trait space. While we have seen that the introduction of dormancy
may facilitate additional branching, we will investigate the location
of the branches after the first branching event and before any further
branchings have occurred. The simplest case is given by symmetric
branching around the singularity 0, so we will assume the parameters
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Fig. 6. Simulations showing the population size of each trait over time. Initially, the population is composed of 250 active individuals with trait −1. The branches with dormancy
appear thicker and additional branches are produced.
to be as in Fig. 5. Note that we can assume symmetric branching since
all of the functions are symmetric around 0. Let us assume that the
population in the rare mutation limit only consists of the two coexisting
traits 𝑥1 > 0 > 𝑥2. Due to symmetry, we expect 𝑥 ∶= 𝑥1 = −𝑥2.
One could then ask about the distance between the coexisting traits
after they have settled into their equilibrium. For this, we consider
the dynamical system (3) where we replace the trait 𝑦 by −𝑥. Then,
using the symmetry of the involved functions and the traits as well as
𝛼(𝑥, 𝑥) = 1, we find that the non-trivial equilibrium population satisfies

𝑛𝑎1 = 𝑛𝑎2 =
𝜆(𝑥) − 𝜇(𝑥)

(1 + 𝛼(−𝑥, 𝑥))(1 − 𝑝(𝑥))

and

𝑛𝑑1 = 𝑛𝑑2 =
(𝜆(𝑥) − 𝜇(𝑥))2𝑝(𝑥)

𝜎(𝑥)(1 + 𝛼(−𝑥, 𝑥))(1 − 𝑝(𝑥))2
.

In our case, we obtain

𝑛𝑎1 = 𝑛𝑎2 =
𝑒−𝑥

2∕(2𝜎2𝑏 )+𝑥
2∕(2𝜎2𝑝 )

1 + 𝑒−(2𝑥)2∕(2𝜎2𝛼 )

and

𝑛𝑑1 = 𝑛𝑑2 =
(𝑒−𝑥

2∕(2𝜎2𝑏 ))2(1 − 𝑒−𝑥
2∕(2𝜎2𝑝 ))

𝜎(1 + 𝑒−(2𝑥)2∕(2𝜎2𝛼 ))(𝑒−𝑥2∕(2𝜎
2
𝑝 ))2

.

Now, an invading mutant trait 𝑦 is successful against this coexis-
tence if and only if its invasion fitness is positive. We know from Blath
et al. (2023, Appendix A) that the invasion fitness in our setting can be
calculated by the formula

ℎ(𝑦, 𝑥) =
𝜌(𝑦, 𝑥) − 𝜎 +

√

(𝜌(𝑦, 𝑥) + 𝜎)2 + 4𝜎𝑝(𝑦)(𝛼(𝑦, 𝑥) + 𝛼(𝑦,−𝑥))𝑛𝑎1
2

where 𝜌(𝑦, 𝑥) = 𝜆(𝑦) − (𝛼(𝑦, 𝑥) + 𝛼(𝑦,−𝑥))𝑛𝑎1. This follows from the death
rate in the approximating branching process being 𝑑 = 𝜇(𝑦)+𝛼(𝑦, 𝑥)𝑛𝑎1+
𝛼(𝑦,−𝑥)𝑛𝑎2. Now, we consider the invading trait to be close to 𝑥 > 0, say
𝑦 = 𝑥+𝜀 with 𝜀 > 0. Then the first positive zero of ℎ(𝑥+𝜀, 𝑥) = ℎ̃𝜀(𝑥) only
depends on 𝜀. Denote this zero by 𝑧(𝜀). As the radius of mutation tends
to zero, the fitness of a mutant trait can be approximated by ℎ̃𝜀(𝑥) with
𝜀 → 0. In particular, the point at which there are no further successful
invasions is given by 𝑧 = lim𝜀→0 𝑧(𝜀). Unfortunately, we cannot hope
for a simple explicit form of 𝑧, as the zeros of ℎ or ℎ̃𝜀 respectively are
not easy to compute. However, we can numerically approximate these
endpoints of the branching. Similar computations have been conducted
by Sagitov et al. (2013) in a related model without dormancy. Due to a
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simpler form of the fitness function, they were able to find an explicit
formula.

One could also expect the traits to optimize over time, such that
the active population is maximized. In other words, the population will
evolve towards the trait 𝑥 and −𝑥 respectively for which the maximum
of 𝑛𝑎1 is achieved. In fact, this is the first point where

𝑑
𝑑𝑥

𝑛𝑎1 = 0.

However, while this idea is indeed correct in a population consisting
of a single trait, as it is known that the invasion fitness of populations
with competition induced dormancy is positive if and only if the
active equilibrium population size is larger (cf. Blath and Tóbiás 2020,
Eq 2.5), this is not the case in a polymorphic population. For the
example presented in Fig. 5 we calculate the position of the traits
before any secondary branchings to be 𝑥 ≈ 0.897 while the approach
via maximizing the active population size would yield 𝑥 ≈ 1.10. This
shows that the coexistence of traits prevents the population to reach
its maximal resource efficiency. Similarly, we calculate the position
of the branches for the same parameters without dormancy to be 𝑥 ≈
0.589. Hence, if one interprets the trait space as genetic distance, then
dormancy may lead to an increase in this distance. If speciation only
occurs when a certain threshold of distance in trait space is surpassed,
then dormancy can contribute to speciation in this sense.

Dormancy increases the carrying capacity of sub-populations.
We also compare the total population size with the example given
in Fig. 6: when dormancy is involved, the environment can support
significantly more individuals as is seen from the colour scale indicating
the current size of the trait. This is due to the fact that dormant
individuals do not use any resources. Another qualitative feature of
these simulations is the thickness of each branch. We may think of the
branches as different subspecies, the thickness of a branch indicates the
genetic variation within a given subspecies or the width of the niche the
given subspecies occupies. Here, the branches with dormancy occupy
a larger range of the trait space, while the ones without dormancy
appear narrow and light. This observation can also be made in Fig. 3.
Note that this stems from a slow rate of resuscitation (on average
once per ten units of time). Hence the population experiences less
exposure to stochastic fluctuations in the trait. Mutations which are
not necessarily advantageous remain in the population for longer due
to the escape into dormancy. When the resuscitation rate is increased,
this effect is reduced as can be seen in Fig. 5. We can only confirm
our observations for finite populations, since we cannot calculate the
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Fig. 7. Simulation showing the population size of each trait over time. Initially, the
population is composed of 250 active individuals with trait −1. The parameters are
𝑟 = 2, 𝜎2

𝑏 = 0.7, 𝜎2
𝛼 = 0.49, 𝜎2

𝑝 = 5, 𝑚 = 0.1, 𝜎 = 0.01, 𝜌2 = 0.01 and 𝐾 = 1000.

coexistence equilibria for an arbitrary number of traits and hence
cannot give an exact simulation of the PES. However, it may be possible
that even in the limit 𝐾 → ∞ we see wider ranges for coexistence.

Dormancy can create alternative paths to dimorphic popula-
tions. In the stochastic system, it may happen by chance that some
individuals stay dormant for long enough until the general population
sits at a large distance. When these individuals wake up, they may
experience little competition and survive to create a new branch. We
call this effect ‘‘tunnelling’’ and an example of this effect is displayed
in Fig. 7.

Note however that this is not possible when we consider the scaling
of 𝐾 → ∞ in the setting of the polymorphic evolution sequence because
mutations are rare. In fact, the rarity of mutations prevents the survival
of any dormant individuals against the dominating trait unless they can
coexist. Hence, this is a purely stochastic effect. For one, we require a
dormant individual to remain dormant for a sufficient period of time,
which only depends on 𝜎. Secondly, we require this individual to have
a positive fitness at the time of resuscitation, which depends on the
birth rate 𝜆 and the competition experienced. The latter implicitly
depends on the mutation parameter 𝑚, since more mutations allow the
population to evolve faster into the reproduction optimum. Suppose
that the population has evolved towards its reproduction optimum
0 and a resuscitating ‘‘mutant’’ trait 𝑦 enters the active population.
For convenience, we will assume that the trait 0 has been adopted
by the population and hence the equilibrium population size of a
monomorphic population is assumed. Then, the invasion fitness of trait
𝑦 against trait 0 is positive if and only if the branching criterion is
satisfied. Hence, this mechanism of branching does not allow a larger
range of parameters to observe a splitting of the population. In fact, we
expect the two branches of the population to end up in the same regions
of the trait space as the branches from evolutionary branching around 0
would. However, it significantly changes the history of the population
and it may allow for temporary additional branches as can be seen in
Fig. 7. While the behaviour in the stochastic setting after resuscitation
of a subpopulation by tunnelling is difficult to understand, we have not
observed a similar structure in simulations without such a tunnelling
effect. A similar observation regarding the effects of stochasticity on
qualitative aspects of evolutionary dynamics has been made by Wakano
and Iwasa (2013). In their model, they found that evolutionary branch-
ing only occurs for sufficiently large population sizes. This contrasts
our result, since we require sufficiently small populations, but also
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demonstrates the importance of finite population sizes when analysing
the models.
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