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PREDICTION ERROR IN THE WORD N1 3

Abstract24

Do early effects of predictability in visual word recognition reflect prediction error?25

Electrophysiological research investigating word processing has demonstrated26

predictability effects in the N1, or first negative component of the event-related potential27

(ERP). However, findings regarding the magnitude of effects and potential interactions of28

predictability with lexical variables have been inconsistent. Moreover, past studies have29

typically used categorical designs with relatively small samples and relied on30

by-participant analyses. Nevertheless, reports have generally shown that predicted31

words elicit less negative-going (i.e., lower amplitude) N1s, a pattern consistent with a32

simple predictive coding account. In our preregistered study, we tested this account via33

the interaction between prediction magnitude and certainty. A picture-word verification34

paradigm was implemented in which pictures were followed by tightly matched35

picture-congruent or picture-incongruent written nouns. The predictability of target36

(picture-congruent) nouns was manipulated continuously based on norms of association37

between a picture and its name. ERPs from 68 participants revealed a pattern of effects38

opposite to that expected under a simple predictive coding framework.39

Keywords: N1, N170, Prediction, Predictive Coding, Word Recognition40
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PREDICTION ERROR IN THE WORD N1 4

Can Prediction Error Explain Predictability Effects on the N1 during Picture-Word41

Verification?42

Introduction43

Readers and listeners routinely use context to predict upcoming semantic and44

lexical content. Evidence for such predictive processes arises from both behavioural and45

neural correlates of language comprehension (Kuperberg & Jaeger, 2016; Luke &46

Christianson, 2016; Pickering & Gambi, 2018; Rayner et al., 2011; Van Petten & Luka,47

2012), with demonstrated facilitation for the processing of predicted information48

(Federmeier, 2007; Pickering & Garrod, 2013).49

A key question in this area is, how early in the processing stream are predictive50

processes able to modulate visual word recognition. One early stage in visual word51

recognition, which may be sensitive to prediction, involves the processing of visual word52

forms. A word form can be defined as the visual pattern of a single written word,53

comprised of smaller orthographic components (e.g., letters, letter bigrams, graphemes,54

strokes). While some electrophysiological evidence suggests sensitivity to orthographic55

variables in an earlier posterior P1 component peaking at around 100 ms after word56

presentation (e.g., Nobre et al., 1994; Segalowitz & Zheng, 2009; Sereno et al., 1998),57

the event-related potential (ERP) component most identified as an index of orthographic58

processing across different scripts is the first posterior negative-going wave, the N159

(Bentin et al., 1999; Lin et al., 2011; Ling et al., 2019; Maurer, Brandeis, & McCandliss,60

2005; Maurer et al., 2008; Pleisch et al., 2019). The N1 is also sometimes referred to as61

the N170 due to the timing of its peak in some studies, at around 170 ms. This typically62

occipitotemporal, negative-going component shows reliable differences between63

orthographic and non-orthographic stimuli (e.g., words elicit more negative-going N1s64

than false-font strings do; Appelbaum et al., 2009; Bentin et al., 1999;65

Eberhard-Moscicka et al., 2016; Maurer, Brandeis, & McCandliss, 2005; Maurer, Brem,66

et al., 2005; Pleisch et al., 2019; Zhao et al., 2014).67
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PREDICTION ERROR IN THE WORD N1 5

Accounts of orthographic processing often stress the importance of top-down68

predictions, and their interactions with bottom-up sensory input. For instance, the69

interactive account of the ventral occipito-temporal cortex (vOT), a region which is a70

likely generator of the N1 ERP component (Allison et al., 1994; Brem et al., 2009; Cohen71

et al., 2000; Dale et al., 2000; Maurer, Brem, et al., 2005; Nobre et al., 1994; Taha et al.,72

2013; Woolnough et al., 2021), suggests that sensitivity to orthography arises through73

the synthesis of bottom-up visuospatial information and top-down predictions informed74

by prior experience and knowledge (Price & Devlin, 2011). Such accounts exist within a75

predictive coding framework, according to which the brain utilises higher-level76

information to build, maintain, and continually update hierarchical series of estimators77

that form generative models of sensory information (Friston, 2010; Rao & Ballard, 1999;78

Rauss et al., 2011). Predictive coding accounts have been employed to explain79

prediction effects observed in early evoked responses across a range of domains, such80

as the mismatch negativity (Garrido et al., 2009) and sensory attenuation of81

self-generated percepts (Knolle et al., 2013). A key feature of such accounts is that82

higher-level predictions cause lower-level features to be preactivated, and that the83

difference between the bottom-up sensory input and top-down predictions corresponds to84

a prediction error, which the brain attempts to minimise (Clark, 2013; Walsh et al., 2020).85

In a predictive coding framework, prediction errors are commonly determined by86

two key attributes: the magnitude of the error, and the precision or certainty of the error87

(Feldman & Friston, 2010; Kanai et al., 2015). Such variants of predictive coding models88

are commonly referred to as precision-weighted. Feldman and Friston (2010) likened the89

error signal to the calculation of the t statistic, where magnitude of an observation (i.e.,90

mean, or mean difference) is divided by the inverse of its precision (i.e., standard error).91

Prediction errors, weighted by precision in this manner, can be conceptualised as92

representing the degree of “surprise” associated with a set of observations under a93

specified hypothesis.94
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PREDICTION ERROR IN THE WORD N1 6

Firstly, the magnitude of the error should determine the size of the error signal,95

with larger prediction errors resulting from greater mismatch between descending96

(top-down) predictions and ascending (bottom-up) sensory input. In neutral97

(non-biasing) contexts, a predictive coding account that includes learning of statistical98

regularities over extended periods would assert that error signals should vary as a99

function of stimulus regularity. More specifically, a predictive coding account of100

orthographic processing would expect error signals to vary as a function of the size of101

the difference between a general orthographic prior (e.g., an average word form) and a102

presented word form. Some recent findings appear to support the notion that the N1103

reflects a neutral-context error signal, with greater distance from an orthographic prior104

eliciting greater amplitude (Gagl et al., 2020), while the profile of the N1’s sensitivity to105

word form regularity over experience matches that expected under a predictive coding106

account (Huang et al., 2022; Zhao et al., 2019).107

Secondly, the precision or certainty of the prediction error should influence the108

response, with more certain descending predictions, and more certain ascending109

sensory input, eliciting greater error signals when predictions are violated. In neutral110

contexts, predictions, and certainty about them, may not be expected to vary much from111

a context-general prior. Indeed, it is easier to envisage the expected role of prediction112

precision for orthographic processing in biasing contexts, where precision is more113

variable than it is in neutral contexts. A predictive coding model of orthographic114

processing that allows for online, context-informed updating of orthographic priors would115

expect that the predictability of word forms should influence error responses, with more116

predictable contexts eliciting stronger prediction error effects. For instance, a sentential117

context that elicits a clear and reliable prediction for an upcoming word (i.e., that has high118

Cloze probability) should show a larger prediction error difference, between succeeding119

prediction-congruent and -incongruent word forms, than should a more neutral sentential120

context that is consistent with a large number of low-probability candidate words.121
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PREDICTION ERROR IN THE WORD N1 7

In this paper, we examine whether a simple predictive coding account that122

includes online updating of context-biased predictions and expectations can explain123

neural activity, captured in the N1, elicited by a word in context. Specifically, we examine124

whether sensitivity to prediction error in the N1 is dependent on contextual predictability125

in the manner that a predictive coding account would expect. This question is prompted126

by (1) the emerging evidence that the N1 in neutral contexts is consistent with an127

orthographic prediction error signal (Gagl et al., 2020; Huang et al., 2022; Zhao et al.,128

2019), and (2) existing evidence that biasing semantic contexts can modulate the N1129

ERP (outlined below). To address our question, we employ a paradigm informed directly130

by predictive coding models, manipulating prediction congruency and precision131

independently, to examine whether the N1 shows the pattern of amplitudes expected132

under such a model, in biasing contexts. Moreover, we maximise our sensitivity to an133

orthographic prediction error by presenting prediction-congruent and -incongruent words134

that are carefully matched item-wise on possible confounders, with maximal orthographic135

distance from one another. Importantly, evidence for a context-informed prediction error136

signal at an early, likely orthographic, stage of processing, would not preclude the137

existence of similar prediction error signals at later stages. Indeed, the hierarchically138

composed generative model posited by a predictive coding account is fully compatible139

with the production of prediction errors spanning a hierarchy of linguistic representations.140

We hypothesise that according to a simple predictive coding model, the N1 should141

be larger for prediction-incongruent than prediction-congruent word forms (i.e., prediction142

error), in a manner dependent on the level of predictability (i.e., precision). We143

hypothesise that as predictability increases, so too should the prediction error effect.144

We begin by reviewing findings from prior studies. We make a distinction between145

those studies that have biased expectations via linguistic cues (text preceding the target146

word), and those that have employed non-linguistic cues (e.g., cross-modal contexts and147

manipulation of task demands).148
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PREDICTION ERROR IN THE WORD N1 8

Biasing Word Form Predictions via Linguistic Cues149

Readers’ predictions of upcoming word forms are generally manipulated via150

linguistic cues. In these studies, a target word’s predictability is typically determined in a151

pre-experiment norming study, operationalised via Cloze probability (i.e., the probability152

that the target is correctly guessed given its preceding context). Such a measure of word153

form predictability aligns closely with the concept of prediction precision or certainty in a154

predictive coding account.155

Recent ERP investigations that have manipulated sentential context have also156

often varied word frequency, with the assumption that an interaction of predictability with157

word frequency would provide evidence for top-down influences on lexical access. In158

Table 1, we summarise N1 results reported from studies using sentential paradigms that159

have employed such Predictability × Frequency designs. While effects often extend to160

earlier and later components, we limit our summary to those involving predictability161

within the N1 window. In Figure 1 we visualise the timing of N1 windows applied in these162

studies and others cited in this introduction. Sentential studies using a Predictability ×163

Frequency design have demonstrated effects in the N1, although the pattern of effects164

observed across studies is varied (for a review, see Sereno et al., 2019). We also note165

that studies using average reference showed more posterior effects, while effects166

reported from studies using mastoid reference showed more centroparietal topography.167

In addition to such studies that focused on the N1, some studies designed to168

focus on N400 effects of predictability may also provide insight into early prediction169

effects. For instance, Brothers et al. (2015) examined correlates of prediction accuracy170

in the N400, in a sentential design with cloze probability of either medium (.5) or low171

(<.01) cloze probability. Although they did not report effects in the N1, Brothers et al. did172

show that accurate predictions of upcoming words were associated with more positive173

amplitudes after 200 ms, in a P2 component immediately following the N1. In another174

N400 study using a design related to that employed in the present study, Lau et al.175
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Study and Results Summary SOA Window Effect Sites Reference

Sereno et al. (2003)
More negative amplitudes at lower
predictability, but only for low fre-
quency words.

450 132-192 Posterior
& Anterior a

Average

Penolazzi et al. (2007) b
More negative amplitudes at higher
predictability, and no interaction with
frequency.

700 170-190 Centroparietal Mastoids

Dambacher et al. (2012)
More negative amplitudes for low
than high frequency words, but only
at higher predictability.

280 c 135-155 Posterior Average

More negative amplitudes for low
than high frequency words, and no in-
teraction with predictability.

280 c 190-260 Posterior Average

Kretzschmar et al. (2015)
More negative amplitudes at higher
predictability, and no interaction with
frequency.

- d 150-200 Centroparietal Mastoids

Sereno et al. (2019)
More negative amplitudes at higher
predictability, but only for high fre-
quency words.

300 160-200 Left Average

More negative amplitudes at lower
predictability, but only for high fre-
quency words.

300 160-200 Right Average

SOA: Stimulus Onset Asynchrony (ms).
Window: Analysed ERP Window (ms).

a This topography describes the first factor in a spatial factor analysis.
b This study additionally manipulated word length, finding no interaction in the N1.
c SOA varied (280, 490, & 700 ms), with N1 effects only observed at the SOA of 280 ms.
d This study analysed Fixation-Related Potentials in self-paced reading.

Table 1
Summary of N1 effects reported in studies that biased word form predictions in sentential
paradigms, using a Predictability (low, high) × Frequency (low, high) factorial design.
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Figure 1
N1 windows in predictability studies.

Segalowitz and Zheng (2009)

Wang and Maurer (2020)

Wang and Maurer (2017)

Strijkers et al. (2015)

Chen et al. (2015)

Chen et al. (2013)

Bentin et al. (1999)

Kim and Gilley (2013)

Kim and Lai (2012)

Sereno et al. (2019)

Kretzschmar et al. (2015)

Dambacher et al. (2012)

Penolazzi et al. (2007)

Sereno et al. (2003)

120 140 160 180 200 220 240 260
Latency (ms)

Some studies analysed two N1 windows (e.g., onset and offset). N1 windows reported to
show a predictability effect are highlighted in black, while N1 windows that failed to show
a predictability effect are highlighted in grey. Studies are listed in order of their mention in
our review. For reference, the blue region displays the N1 period that we pre-registered.

(2016) presented adjective-noun pairs to participants in which the effects of both176

congruency and predictability were examined, showing small congruency, and large177

predictability, effects in the N400. As with Brothers et al., Lau et al. report ERPs with no178

robust differences prior to a P2 component.179

Instead of manipulating error precision or certainty, as the above studies have by180

varying predictability, Kim and Lai (2012) manipulated the orthographic error magnitude.181

Using a 550 ms SOA, the target word or alternative orthographic versions of it were182

presented in contexts that were acutely predictive of the target (MCloze=.90). Contexts183

were followed by the predictable target word (e.g., cake), an orthographically similar184

pseudoword (e.g., ceke), an orthographically dissimilar pseudoword (e.g., tont), or a185

consonant-string nonword (e.g., srdt). Consistent with an orthographic explanation for186

prediction effects in the N1, relative to targets, N1 (175-205 ms) amplitude was more187
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PREDICTION ERROR IN THE WORD N1 11

negative-going for orthographically dissimilar pseudowords and nonwords (i.e., when188

orthographic prediction error magnitude was greater). Orthographically similar189

pseudowords, while significantly different from all other conditions in the earlier P1,190

elicited N1 components more similar in amplitude to target words.191

Another linguistic cue that has been manipulated is grammaticality. Kim and192

Gilley (2013) demonstrated effects of syntactic anomaly on the N1. Sentences leading to193

a strong prediction for the determiner, the, were presented unchanged or with the194

determiner replaced with an agrammatic preposition (e.g., The thief was caught by195

the/for police). The left-lateralised occipitotemporal N1 (170-270 ms) was more196

negative-going with the syntactically anomalous preposition than with the determiner. As197

the authors point out, the N1 effect is unlikely to be evidence for sensitivity to syntax per198

se. Rather, given evidence of the N1’s sensitivity to orthographic features, it is probably199

more accurate to posit that the high predictability of the determiner’s orthographic200

features elicited a less negative-going N1 when these predictions were confirmed.201

Kim and Gilley’s simultaneous manipulation of orthography and syntax highlights202

a prevalent issue within the literature: namely, altering the visual word form necessitates203

alteration of the semantics, syntax, and/or plausibility of the sentence or wider discourse.204

Another limitation shared by studies using word-by-word presentation of sentences is205

that ERPs elicited by the target word can become difficult to disentangle from ERPs206

elicited by preceding or succeeding words, especially if the SOA is short or unjittered.207

While fast presentation times of sentential contexts and targets are useful for208

demonstrating that early modulation by predictive processes extends to realistic reading209

rates, their application may not be necessary to demonstrate that such modulation can210

occur. It is also of note that in a recent review of ERP studies using sentence- and211

discourse-level contexts to examine early neural correlates of word form prediction,212

Nieuwland (2019) concluded that findings thus far have been weak, inconsistent, and in213

need of more replication attempts. Moreover, most studies to date were not214
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pre-registered and often used inappropriate analysis models that did not account for215

measurement variability, raising questions about false positives in that literature.216

Biasing Word Forms via Non-Linguistic Cues217

Effects of prediction and expectation may alternatively be investigated using218

paradigms that modulate non-linguistic features of tasks and stimuli. In one approach,219

identical or suitably matched stimuli are presented under different task instructions (e.g.,220

Compton et al., 1991). In that context, tasks requiring more explicit lexical and semantic221

processing cause words to elicit more negative-going N1s (144-176 ms; Chen et al.,222

2013). Tasks requiring more in-depth lexicosemantic processing may also increase223

sensitivity to lexical variables such as word frequency in the N1 (144-176 ms, Chen et al.,224

2015; 150-250 ms, Strijkers et al., 2015), and may increase the size of script familiarity225

effects (more negative amplitudes for familiar scripts) (F. Wang & Maurer, 2017). This226

may be especially in the N1’s offset period (172-253 ms F. Wang & Maurer, 2017), where227

onsets and offsets are defined respectively as the periods in the component’s time228

window which precede and succeed its peak. F. Wang and Maurer (2020) further229

showed that biasing participants’ word form predictions towards expecting a familiar230

script increased the size of the script familiarity effect in the N1 offset (162-212 ms).231

In addition to task manipulations, non-sentential semantic contexts, leading to232

predictions for specific words or categories of words, have also been used to investigate233

predictive processing. Segalowitz and Zheng (2009) reported an interaction between234

stimulus type (word vs. pseudoword) and expectation (one vs. five categories) in the N1235

(158-178 ms), wherein expectation affected N1 amplitudes for words but not for236

pseudowords. Their finding suggested that the N1 was sensitive to the greater predictive237

strength of a single semantic category. Using a similar paradigm, Hauk et al. (2012)238

compared ERPs in lexical and semantic decision tasks, showing that effects of category239

relevance were observed in the semantic decision task as early as 166 ms (data were240

analysed continuously, with no N1 window definition). This finding suggests, consistent241
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with the findings of Segalowitz and Zheng, an early sensitivity to category relevance242

during the N1 which, given the N1’s robust sensitivity to orthography, is likely to reflect an243

influence of semantic-level predictions on orthographic processing.244

In another attempt to modulate top-down expectancy without linguistic context,245

Dikker and Pylkkänen (2011) implemented a picture-noun phrase verification task. An246

image of a target object alone or an image of objects related to the target object was247

followed by a written noun phrase (article + noun) denoting the target object. They248

manipulated congruency and predictability. For congruent trials, the noun phrase referred249

to a food/drink or animal (e.g., the apple or the monkey) that matched the prior image of250

the object presented on its own or ‘contained’ in a stylized image (e.g., a grocery bag or251

Noah’s Ark, respectively). In the incongruent condition, the noun phrase did not match252

the prior image (single object or collection of objects). Predictability was considered high253

when the target object appeared on its own, and was considered low when the target254

object could be inferred to exist within the stylized images. Example conditions for the255

noun phrase, the apple, are determined by its preceding image as follows: an apple256

(congruent, high predictability), a banana (incongruent, high predictability), a bag of257

groceries (congruent, low predictability), or Noah’s Ark (incongruent, low predictability).258

Noun phrases (40 food/drink, 40 animal) were repeated four times across conditions.259

Although Dikker and Pylkkanen did not examine effects in the MEG equivalent of an N1260

window, they did find effects of congruency only in the high predictive condition (i.e., the261

apple preceded by an apple vs. a banana image) in temporal windows preceding (∼100262

ms) and succeeding (250-400 ms) the N1. Their stimuli were designed to minimise263

orthographic similarity between congruent and incongruent pairs of noun phrases (i.e.,264

maximising the magnitude of orthographic errors), suggesting that the authors265

anticipated that any early sensory effect of predictability may be related to orthographic266

processing. With only 7 participants, the study likely lacked the sample size necessary to267

identify such an effect in an N1-like window. In a study using the same stimuli as Dikker268
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and Pylkkänen, Cheimariou et al. (2019) examined the effects of aging on lexical269

prediction indexed by the N400 component. Cheimariou et al. also did not analyse an270

N1 window, and used Mastoid reference sites, but did show that an early, though wide,271

window from 125-348 ms showed topographically broad prediction effects in younger272

adults, with more negative amplitudes for predictive content.273

We note that related paradigms using fMRI often show orthography-semantics274

interactions in the likely N1 generator, the left vOT (e.g., Branzi et al., 2022; Kherif et al.,275

2011; J. Wang et al., 2019). However, fMRI prevents the interpretation of the timing of276

such effects - its coarse temporal resolution means that mapping of semantic content to277

representations in vOT could occur so late after word presentation as to be irrelevant to278

initial orthographic word recognition processes.279

One advantage of paradigms like picture-word verification tasks is that the280

researcher can control and manipulate variables like predictability and specificity of the281

picture-word relation. This was demonstrated in the design used by Dikker and282

Pylkkänen (2011), where the picture preceding the target word unambiguously biased283

participants’ expectations to a single word form (with an image of one clearly identifiable284

object), or instead biased a set of semantically related possible word forms (with an285

image inducing multiple object candidates). Such a manipulation is comparable to the286

use of Cloze probability in sentential contexts or single versus multiple category priming,287

and similarly aligns with the concept of error precision or certainty.288

The Present Study289

In the present study, we adapted the picture-word verification paradigm to290

examine the Congruency-Predictability interaction in the N1. We presented participants291

with PICTURE-word pairs that were congruent (e.g., ONION-onion) or incongruent (e.g.,292

ONION-torch). Predictability of the congruent word, given the picture that precedes it,293

was operationalised via a continuous variable drawn from picture naming norms294

(Brodeur et al., 2014) reflecting the probability of the congruent word being given as a295
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name for the picture (Figure 2). Picture-congruent words with very low predictability296

were always semantically appropriate names for their associated image, though they297

were difficult to predict, often because several acceptable names exist. For example, the298

image for spear in Figure 2 could also be plausibly named with words like lance, javelin,299

or pole. Incongruent words, meanwhile, were specifically selected to be semantically300

incongruent with congruent words, but matched on relevant psycholinguistic dimensions.301

By manipulating both Congruency and Predictability of word forms, we were able to302

examine whether the effect of Congruency on the N1 (sensitivity to prediction error) is303

contingent on Predictability (certainty or precision of prediction errors), in the manner304

expected according to a simple predictive coding account of the N1 in which observed305

N1 magnitude indexes prediction error.306

Figure 2
Illustration of the experimental stimuli.
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PICTURE-word pairs were either congruent (e.g., NAPKIN-napkin) or incongruent (e.g.,
NAPKIN-weasel), while predictability of congruent picture-word pairs varied continu-
ously. Ten example picture-congruent and -incongruent pairs are presented, with their
predictability corresponding to the histogram bin they appear above.

We hypothesised, consistent with such a predictive coding account, that that there307

would be a Congruency-Predictability interaction in which at the highest levels of308

Predictability, N1s elicited by picture-incongruent words would be more negative-going309

than those elicited by picture-congruent words, while at the lowest level of Predictability310

picture-congruent and -incongruent words should elicit N1s of similar magnitude. We311
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anticipated three patterns of results that would have been consistent with this hypothesis:312

(1) higher levels of Predictability lead to a reduction in N1 magnitude only for313

picture-congruent words, with no such effect for picture-incongruent words (Figure 3a);314

(2) higher levels of Predictability lead to an increase in N1 magnitude only for315

picture-incongruent words, with no such effect for picture-congruent words (Figure 3b);316

or317

(3) higher levels of Predictability lead to both a reduction in N1 magnitude for318

picture-congruent words and an increase in N1 magnitude for picture-incongruent words319

(Figure 3c).320

In our power analysis, we focused on the first of these possible patterns of results,321

but importantly, the Congruency-Predictability interaction term that we pre-registered to322

test our hypothesis would capture any of these patterns, as the interaction term’s323

coefficient would be in the same direction in all cases.324

In our analysis, we found a pattern of effects counter to our pre-registered325

hypothesis (Figure 3d), with a Congruency-Predictability interaction in the opposite326

direction. An exploratory Bayesian analysis revealed that the observed interaction was327

16.61 times more likely than our hypothesis. Based on these findings, we argue our328

results suggest that such a simplistic predictive coding account is, at least on its own,329

insufficient to explain the pattern of prediction effects observed in the N1 during a330

picture-word verification task.331

This study was pre-registered at https://osf.io/jk3r4 and the reported methodology332

and planned analysis conform to that specified in the pre-registration, except for two333

changes: an accidental change to timing of stimuli, and a lowering of the EEG high-pass334

filter cut-off. We explain these changes in the relevant sections, and demonstrate in335

Supplementary Materials F that the change to the high-pass filter cut-off had minimal336

effect on the results and conclusions. All data and code are available at337

https://osf.io/389ce/.338
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Figure 3
A comparison between the predicted (a,b,c) and observed (d) patterns of results.
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The predicted pattern of results was based on a predictive coding interpretation of the
N1, according to which the magnitude of the N1 should be smaller for picture-congruent
words relative to picture-incongruent words, and to a greater extent as Predictability
increases. The observed pattern of results depicts the fixed effect predictions from the
pre-registered linear mixed-effects model, with dashed lines depicting 95% bootstrapped
prediction intervals (estimated from 5,000 bootstrap samples).

Method339

The experiment included two separate tasks: The principal picture-word task was340

preceded by a localiser task to account for between-participant variability in the N1’s341

timing and location. The details of stimulus selection and control as well as presentation342

timing are provided in the following sections. For clarity, we first introduce the overall343

Congruency-Predictability design of the picture-word task. In this task, pictures of single344

objects are presented, followed by a noun, and participants decide whether the noun345

corresponds to the object. The level of Predictability of the noun was determined from346

norms of possible terms used to label a set of individual pictures (Brodeur et al., 2014).347

The most frequent, modal name agreement varied across pictures. Thus, level of noun348

Predictability was continuous and varied between 7% and 100%. The Congruency of the349

noun was either congruent (matching the modal name of the picture) or incongruent (a350

semantically unrelated noun matched across several lexical variables).351
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Materials: Picture-Word Task352

A total of 400 words (200 per Congruency condition) were selected with LexOPS353

(Taylor et al., 2020), a package for the generation and control of lexical variables in the R354

programming language (R Core Team, 2021). Picture-congruent and -incongruent words355

were matched precisely in an item-wise manner on a range of relevant psycholinguistic356

variables, comprising word length, frequency, concreteness, OLD20, and character357

bigram probability. To ensure that picture-incongruent words were not inadvertent358

possible descriptors for images, we minimised the semantic relatedness between pairs359

of words. Additionally, counterbalanced sets of stimuli were matched on distributions in360

these variables using a measure of distributional similarity (Pastore & Calcagnì, 2019). A361

full description of the method by which stimuli were selected, and a full list of stimuli, is362

available in Supplementary Materials A.363

Before embarking on the electrophysiological picture-word experiment, we first364

ran a proof-of-concept behavioural experiment using a different stimulus set generated365

from a very similar pipeline. We anticipated that increased Predictability should cause366

faster response time (RT) for congruent trials and have either no effect or a minimal367

effect on performance for incongruent trials. The results from this behavioural validation368

are presented in Supplementary Materials B. In short, we observed the pattern of369

results consistent with our expectations, with Predictability leading to faster RTs for370

congruent trials, but having almost no effect on incongruent trials.371

Materials: Localiser Task372

The precise location of the N1, and timing of its peak amplitude, is known to vary373

across studies and among participants. As such, we did not specify a common N1374

electrode or timepoint shared among all participants before data collection. Instead, we375

employed a localiser task to identify, within an appropriate region and time period of376

interest, the electrode and timepoint at which each participant’s maximal sensitivity to377

orthography emerges (i.e., more extreme amplitudes for words than false-font stimuli).378
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This data could then be used to extract N1 amplitudes in the picture-word task, while379

accounting for variability among participants in timing and topography of orthographic380

processes.381

For the localiser task, three categories of stimuli were presented for 100 trials382

each (Figure 4). These consisted of matched triplets of words (Courier New font),383

false-font strings (BACS2serif font; Vidal et al., 2017), and phase-shuffled words. The384

comparison between words and false-font strings is a standard measure of N1 sensitivity385

to orthography, with previous evidence suggesting a more robust difference than exists386

between nonwords and words (Brem et al., 2018; Maurer, Brandeis, & McCandliss,387

2005; Pleisch et al., 2019). However, phase-shuffled words were employed as an388

alternative comparison for exploratory analyses, with equal spatial-frequency amplitude389

and permuted spatial-frequency phase. Similar phase-shuffled word stimuli have shown390

robust differences to word forms in fMRI investigations of vOT activity (Rauschecker391

et al., 2012; Rodrigues et al., 2019; White et al., 2019; Yeatman et al., 2013).392

The word stimuli were selected to be widely known by participants (>90%393

proportion known), and to be representative on a range of psycholinguistic variables394

including length, frequency, part of speech, and prevalence. A full description of how the395

Localiser Stimuli were selected, and a list of all word stimuli, is presented in396

Supplementary Materials C.397

Participants398

The sample size of 68 participants was decided via a power analysis using399

Monte-Carlo simulations of a realistic effect size (Supplementary Materials D). This400

revealed that with ≥68 participants we could expect >80% statistical power in the long401

run (Figure 5). All 68 participants (40 female, 27 male, 1 non-binary) were monolingual402

native English speakers. Participants were randomly allocated into one of the four403

combinations of stimulus set (Set 1, Set 2) and response group (i.e., the left-right404

mapping of the two response buttons for affirmative and negative responses), such that405
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Figure 4
Ten example stimuli for each stimulus type in the localiser task.

Each row represents a matched triplet of word, false-font string, and phase-shuffled word
stimuli. The phase-shuffled word images were generated uniquely for each trial.

each combination of stimulus set and response group comprised 17 participants. No406

participants reported diagnosis of any reading disorder. Ages ranged from 18 to 37 years407

(M=22.69, SD=4.9), and all participants reported having normal or corrected-to-normal408

vision. Participants’ handedness was assessed via the revised short form of the409

Edinburgh Handedness Inventory (Veale, 2014), with participants only permitted to take410

part if they scored a laterality quotient of +40 indicating right handedness. Exclusion411

criteria for participants were determined prior to data collection as follows: (1) if 10 or412

more channels showed an offset more extreme than ±25 mV (as measured on the413

BioSemi acquisition software, ActiView), or (2) if more than 5% of the trials were lost due414

to technical issues with the EEG system. As no participants satisfied these criteria, no415

participants were excluded after data collection. Data collection was approved by the416

Ethics Committee of the University of Glasgow College of Science and Engineering417

(application number: 300200117), and all participants provided informed consent.418

Procedure419

Stimuli were presented on a VPixx Technologies VIEWPixx screen (resolution420

1920×1080 pixels, diagonal length 23”, model VPX-VPX-2004A). Participants completed421
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Figure 5
Estimated relationship between number of participants and statistical power.
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Black points and error bars depict point estimates ±99% Binomial confidence intervals,
each from 500 simulations. As 500 simulations provides a noisy estimate, we interpolated
the relationship between N and power via a loglinear, logit-link Binomial model. The or-
ange region depicts the 99% confidence intervals of this loglinear model.

the experiment on a chin rest positioned 48 cm from the centre of the screen. Stimuli422

were presented on a grey background equal to 50% of the maximum intensity in each423

colour channel, roughly 12.3 cd/m2. The experiment was written using the Python library424

PsychoPy (Peirce, 2007), and all code and materials are available in the repository425

associated with the study. All stimuli were presented centrally (horizontally and426

vertically). All trials in both tasks were presented in a pseudo-randomised order, such427

that no more than five consecutive trials required the same response from the428

participant. Trials were randomised across blocks, with the exception of the practice429

block, for which trials were randomised within the one block.430

A mistake in the lab setup, which we discovered after data collection, meant that431

the display screen was running at 120 Hz rather than an expected 60 Hz. As we were432

controlling stimulus presentation by screen refreshes, this meant that all our stimuli were433

presented for half the expected durations. For this reason, the veridical stimulus434

durations described here differ from those described in the pre-registration.435

Participants started with the localiser task, in the form of a lexical decision task436

(Figure 6a). The localiser task began with 30 practice trials, and was then followed by437
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300 trials split into 5 blocks of 60 trials. Each trial began with the bullseye fixation target438

recommended by Thaler et al. (2013) (outer and inner circle diameters were 0.6° and439

0.2° of visual angle), presented for 150 ms. This was followed by a jittered interval of440

between 150 and 650 ms, during which the screen was blank. The stimulus (word,441

false-font string, or phase-shuffled word image) was then presented at a height of 1.5°442

(width of 1.07° for one character). Words and false-font strings were presented in white443

(80 cd/m2), in the respective fonts of non-proportional Courier New and BACS2serif font.444

The stimulus was visible for 250 ms, after which the font colour changed to green to445

signal participants to respond. Participants were requested to respond once after the446

stimulus changed colour, quickly and accurately, to indicate whether the stimulus they447

saw in each trial was either a word or not a word. The stimulus remained on screen until448

the participant responded. Responses were given with the right and left control (‘Ctrl’)449

keys of a QWERTY keyboard, with the mapping of affirmative and negative responses450

counterbalanced across participants. After the participant had responded, there was a451

delay of around 100 ms (variable as data was saved to disk during this interval), and452

then the next trial began.453

After the localiser task, participants completed the picture-word task (Figure 6b),454

comprising an initial practice block of 20 trials, followed by 200 trials split into 5 blocks of455

40 trials. As in the localiser task, each trial in the picture-word task began with the456

bullseye fixation point, presented for 150 ms, after which there was a blank screen for a457

jittered interval of between 150 and 650 ms. An image was then presented for 1000 ms,458

at a size of 10x10°. The bullseye fixation point was then presented again for 150 ms,459

followed by another interval jittered between 150 and 650 ms. The word was then460

presented in white Courier New font, at a height of 1.5° (width 1.07° for one character).461

After 500 ms, the word turned green, and participants could provide their response to462

indicate whether the word described the image they saw. The word remained on screen463

until the participant responded. As in the localiser task, responses were given with the464
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Figure 6
Trial structure of the (a) localiser task and (b) picture-word task.
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This figure is illustrative and the sizes are not to scale; in the experiment, images were in
fact presented at a much larger scale than words.

right and left control (‘Ctrl’) keys of a QWERTY keyboard, with the mapping of affirmative465

and negative responses counterbalanced across participants, but kept consistent within466

participants across the two tasks. After participants had responded, there was a delay of467

around 100 ms (again, variable as data was saved to disk during this interval), and then468

the next trial began. There was no deadline for participants to respond. The instructions469

given to participants for the picture-word task are presented in Supplementary470

Materials E.471

The first blocks of both tasks consisted of practice trials with 10 exemplars for472

each stimulus type (word or false-font string or phase-shifted image, and congruent or473

incongruent noun for the localiser and picture-word tasks, respectively), during which474

participants were additionally given immediate feedback on their accuracy for each trial.475

These practice trials were followed by green text reading ”CORRECT!” if the participant476

responded correctly, or else by red text reading ”INCORRECT!”, presented in Courier477
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New font with a height of 1.5°, for 1000 ms. Participants had self-paced breaks between478

blocks for each task. Before the practice trials and at the start of every experimental479

block, participants were presented with instructions for the task (available in480

Supplementary Materials E), summarising what would occur in each trial, and481

specifying that they should respond as quickly and accurately as possible once the482

stimulus turned green. These instructions also specified which keys participants should483

press to indicate their decision. After each experimental block, including the practice484

trials, participants were presented with their average accuracy and median response485

time. After the practice trials, participants were additionally given the option to run the486

practice trials again. In the experimental blocks, no trial-level feedback was provided.487

Recording488

EEG data were recorded using a 64-channel BioSemi ActiveTwo system,489

sampling at 512 Hz, with an online anti-aliasing low-pass filter cutoff at one fifth of the490

sample rate (i.e., 102.4 Hz). Electrodes were positioned in the standard 10-20 system491

locations. Four electro-oculography (EOG) electrodes were placed to record eye492

movements and blinks: 2 were placed to the sides of eyes (on the right and left outer493

canthi), and 2 below the eyes (on the infraorbital foramen). Electrode offset was kept494

stable and low through the recording, within ±25 mV, as measured by the BioSemi495

ActiView EEG acquisition tool. Electrodes whose activity exceeded this threshold were496

recorded but were removed (and interpolated) in data preprocessing.497

Preprocessing498

The following section details the procedure applied to EEG data from each499

individual session, with the same pipeline being applied to both the localisation task and500

picture-word task unless otherwise specified. EEG preprocessing was achieved using501

functions from the EEGLAB (Delorme & Makeig, 2004) toolbox for MATLAB (MATLAB,502

2022) or OCTAVE (Eaton et al., 2020). For both tasks, trials were excluded if responded503

to incorrectly (total of Ntrials=368, or .02%, in localiser task, and Ntrials=226, or .02%, in504
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picture-word). Further trials were excluded if responded to later than 1500 ms after the505

word (or nonword) changed colour (total of Ntrials=41, or .002%, in localiser task,506

Ntrials=42, or .003%, in picture-word).507

Channels recorded as having offsets ±25 mV during data acquisition were508

removed from the data (in both tasks, 56 channels, or 1.27%, were removed across all509

participants), with their activity to be later interpolated. In addition, we found that even510

when not identified as problematic during recording, the channel PO4 was consistently511

noisy, and so we interpolated this channel for all participants. PO4 was not part of our512

left occipitotemporal region of interest, but was interpolated for exploratory analyses of513

the whole scalp, and to avoid affecting other preprocessing steps. Interpolating electrode514

PO4 was not a preregistered step. However, we note that this change did not alter the515

direction of any results, rather, only reducing the size of effects. After interpolation, the516

EEG data were then re-referenced to the average activity across all electrodes and517

filtered with a 4th order Butterworth filter between .1 and 40 Hz. To counteract the518

distortion in signals’ timing (phase) that is inherent to causal filters, the filter was applied519

in both directions (i.e., two-pass), with the MATLAB function filtfilt(). In our520

pre-registration, we specified that we would apply a Butterworth filter with a bandpass of521

.5-40 Hz. However, after the pre-registration, we considered that, consistent with522

research into the effects of high-pass filters (Rousselet, 2012; Tanner et al., 2015;523

VanRullen, 2011), this could produce artefactually early effects. As a result, we lowered524

the high-pass filter to a less problematic .1 Hz. For comparison, demonstrating that our525

change to the pre-registered pipeline had minimal effect on the results or our526

conclusions, the results using the original filter are presented in Supplementary527

Materials F.528

Segments of data outside of experimental blocks (i.e., in break periods) were529

identified and removed so they did not impact the independent components analysis530

(ICA) applied later in the pipeline. Blocks were identified as beginning 500 ms before531
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stimulus presentation in the first trial of each block, ending 500 ms after the end of the532

last trial’s epoch. To reduce the impact of occasional non-stationary artefacts with high533

amplitude (such as infrequent muscle movements), artefact subspace reconstruction534

(ASR; Chang et al., 2020) was used with a standard deviation cutoff of 20 to remove535

non-stationary artefacts. Following this, an ICA was run on the data to identify more536

stationary artefacts. The ICA was run using the FastICA algorithm (Hyvärinen & Oja,537

1997), with a recorded random seed for reproducibility. The ICA was run on a copy of the538

data with channel offsets removed to allow for better sensitivity to electro-oculogram539

(EOG) artefacts (Groppe et al., 2009). The ICLabel classifier (Pion-Tonachini et al.,540

2019) was used to automatically identify artefacts which were eye- or muscle-related.541

Components classified by ICLabel as eye-related or muscle-related with a probability of542

≥85% were removed from the data. Following eye movement artefact removal, activity543

from channels which were removed was interpolated via spherical splines (Localiser:544

M=1.14 per participant, SD=1.58; Picture-Word: M=1.68, SD=2.03), as implemented in545

EEGLAB. Trials were then epoched and baseline-corrected to the 200 ms preceding546

stimulus presentation. For the localiser task, stimulus presentation refers to the time547

point at which words, false-font strings, or phase-shuffled images were presented; in the548

picture-word task, stimulus presentation refers to the target word.549

For the planned analysis, we pre-registered an approach to maximise sensitivity550

to effects of Congruency and Predictability on the N1. To encompass the typical551

topography and timing of the posterior left-lateralised N1, we selected eight552

occipitotemporal electrodes (Figure 7; electrodes O1, PO3, PO7, P5, P7, P9, CP5, and553

TP7) and a 120-200 ms window. In contrast to some previous studies whose N1554

windows extended beyond 200 ms, we set 200 ms as an upper bound for the possible555

maximal timepoint in the main analysis, to ensure effects were indeed restricted to the556

N1, and not later components like the N400. For each participant, we identified the557

electrode that showed maximal sensitivity to orthographic information in the N1 during558
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the localisation task. Specifically, each participant’s “maximal electrode” (within the559

region of interest and selected time window) was the one which showed the largest560

mean amplitude difference, in the expected direction, across all localiser trials between561

word and false-font string stimuli. The expected direction was a more negative-going N1562

for words than for false-font strings, a pattern based on previous findings (Appelbaum563

et al., 2009; Bentin et al., 1999; Eberhard-Moscicka et al., 2016; Pleisch et al., 2019;564

Zhao et al., 2014). Each participant’s “maximal timepoint” was the timepoint at which the565

maximal electrode showed the greatest sensitivity to the word-versus-false-font566

difference in the expected direction. Each participant’s maximal electrode and maximal567

timepoint were then used to extract their trial-level N1 amplitudes from the picture-word568

task. To reduce the influence of noise on trial-level data, the trial-level N1 amplitudes in569

the picture-word task were calculated as the maximal electrode’s mean amplitude across570

3 timepoints: the participant’s maximal timepoint, and the timepoints immediately571

preceding and following it. At the recorded sample rate of 512 Hz, this is equivalent to a572

window of 5.85 ms (i.e., 1/512*3) centred on the maximal timepoint.573

Figure 7
The left-lateralised occipitotemporal region of interest selected for the N1 (highlighted in
red).

Planned Analysis574

Our planned analysis tested the pre-registered hypothesis of a575

Congruency-Predictability interaction in which N1 amplitudes are reduced (i.e., less576

negative going) for picture-congruent trials than for picture-incongruent trials, and in577
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which this difference is greatest at the highest levels of predictability, and smallest at the578

lowest levels of predictability. This was based on the notion that the N1 indexes579

prediction error in biasing contexts.580

The trial-level N1 amplitudes from the picture-word task were modelled using a581

linear mixed-effects model fit with the R package lme4 (Bates et al., 2015), estimating582

the maximal random effects structure justified by the experiment’s design (Barr et al.,583

2013) as detailed in the section on the power analysis. The model was fit using the584

bobyqa optimiser (Powell, 2009). In lme4 syntax, the formula for the mixed-effect model585

was specified as:586

amplitude ~ 1 + congruency * predictability +587

(1 + congruency * predictability | participant_id) +588

(1 + congruency | image_id) +589

(1 | word_id)590

591

In this formula, amplitude is the trial-level N1 amplitude in microvolts, while592

congruency is a deviation-coded categorical variable indicating whether a given trial’s593

word was picture-congruent or -incongruent, and predictability refers to the proportion of594

name agreement in the BOSS norms, normalised between 0 and 1. A consequence of595

this coding method is that the model’s intercept reflects the predicted amplitude at the596

lowest level of Predictability, averaged across both levels of Congruency, while the597

slopes’ coefficients are standardised and directly comparable in their magnitude. The598

variables of participant_id, image_id, and word_id, in the formula, identify each trial’s599

participant, image, and word, respectively.600

Results601

The planned, pre-registered analysis examined whether the hypothesised effect602

of a Predictability-dependent reduction of N1 amplitudes for picture-congruent words603

was observed at the electrode/timepoint in which each participant showed maximal604

sensitivity to orthography. We then present exploratory analyses, which respectively605
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examine the Bayesian probability that our data are consistent with the hypothesis, and606

delineate the time-course of the Congruency-Predictability interaction. We also607

conducted further exploratory analyses, which we report in the supplementary materials,608

examining behavioural results in the picture-word study (Supplementary Materials G),609

and EEG and behavioural results from the localiser task (Supplementary Materials H)610

Planned Analysis611

The fixed effect relationships estimated in the planned analysis are presented in612

Figure 8. The model intercept, reflecting the average N1 amplitude at the lowest level of613

Predictability, was estimated to be β=-3.4 µV (SE=.48). The fixed effect of Congruency614

from this model was estimated as β=-.12 µV (SE=.34), which captures that, at the lowest615

level of Predictability (7%), N1 components for picture-congruent and -incongruent words616

were estimated to be quite similar (.12 µV difference). The main effect of Predictability617

was estimated as β=.25 µV (SE=.27), meaning that N1 amplitudes, averaged across618

congruent and incongruent conditions, were .25 µV less negative-going at the highest619

level (100%) than at the lowest level of Predictability (7%). The effect of interest, the620

interaction between Congruency and Predictability, was in the opposite direction from621

that hypothesised, estimated as β=-.79 µV (SE=.52). As our hypothesis was directional,622

with a prediction in the opposite direction, we interpret these results as a failure to find623

evidence in favour of the hypothesis.624

To describe the estimated interaction, for picture-incongruent words, the effect of625

Predictability was estimated to be β=.63 µV (SE=.36), while for picture-congruent words,626

the effect of Predictability was estimated to be β=-.15 µV (SE=.4). As such, the slopes for627

the effect of Predictability in both Congruency conditions were of different magnitudes,628

and were both in directions inconsistent with our predictive coding hypothesis.629

For comparison, we also analysed the data altering aspects of our planned630

analysis method: first using the maximal electrodes that would be identified from the631

comparison between words and phase-shuffled words, and second using averages632
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Figure 8
Fixed effect predictions from the planned analysis of the picture-word task.
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(a) Model-derived fixed-effect predictions, visualised over results from all trials (individual
points). (b) Fixed-effect predictions visualised alone for visibility, with dashed lines depict-
ing the bounds of 95% bootstrapped prediction intervals (estimated from 5,000 samples),
where bootstrapped predictions were generated using the bootMer() function of lme4.
For feasibility, bootstrapped predictions were generated from a version of the model that
lacked random slopes.

within the occipitotemporal region of interest (Supplementary Materials I). These633

exploratory analyses revealed very similar patterns of effects, with estimates of the634

Congruency-Predictability interaction similarly inconsistent with our hypothesis, which we635

derived from a simple predictive coding account of the N1.636

Exploratory Bayesian Analysis637

We observed a Congruency-Predictability interaction in the opposite direction638

(i.e., negative) to what we expected under our predictive coding hypothesis (i.e.,639

positive). To explicitly quantify the probability of our predictive coding hypothesis, we fit a640

Bayesian implementation of the model described in the planned analysis, in STAN641

(STAN Development Team, 2023) via brms (Bürkner, 2017). This model was fit to the642

same data, and estimated the same hierarchical formula, with the same Gaussian link643

function as that described above, but was specified with weakly informative priors for the644
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fixed effects. Specifically, the prior for the fixed effect intercept was specified as a normal645

distribution of mean -5, and SD 10, while all fixed effect slopes’ priors were specified as646

normal distributions centred on 0, with SDs of 5. Covariance matrices were assigned flat647

priors, and default priors for brms were used for random effect SDs and the sigma648

parameter of the normal distribution. The model was fit with 5 chains and 5000 iterations649

per chain (split equally between warmup and sampling) such that there were a total of650

12,500 posterior samples. Consistent with the linear mixed-effects model we fit via lme4,651

this analysis revealed a median posterior estimate for the Congruency-Predictability652

interaction of β=-.79 µV (89% highest density interval = [-1.59, .013]; Figure 9). We653

calculated, given this posterior distribution, that the Congruency-Predictability interaction654

is 16.61 times more likely to be less than 0, than it is to be greater than zero (that is,655

BF01), which we consider to be strong evidence against our hypothesis.656

Figure 9
Posterior density for the Congruency-Predictability interaction.
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The region of the posterior distribution consistent with the predictive coding hypothesis
(where β>0) is highlighted in red. The point and horizontal line below the density plot
depict respectively the median estimate and 89% highest density interval of the posterior
distribution.

We considered that our use of a localiser task may have been an inappropriate657

approach for identifying electrodes sensitive to orthographic information. Indeed, our658

pre-registered approach for identifying maximal electrodes specified the direction of the659

difference that should be used, with more negative N1s for words than for false-font660

strings. However, exploratory ERP analyses of the localiser task showed that661
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left-lateralised occipitotemporal electrodes showed a more negative N1 peak overall for662

false-font strings than for words (Supplementary Materials H). Our approach may663

therefore have systematically selected electrodes that are not representative of the ROI.664

As a result, we re-ran the Bayesian analysis as described above, but modelling average665

amplitudes from all electrodes in the left occipitotemporal ROI (Supplementary666

Materials I). This revealed even stronger evidence against the hypothesis, with a667

Congruency-Predictability interaction for the average amplitude in the ROI of β=-1.03 µV668

(89% highest density interval = [-1.52, -.058], estimated to be 2082 times more likely to669

be less than 0, than it is to be greater than zero.670

Exploratory Time-Course Analysis671

To examine the time-course of effects, we fit separate linear mixed-effects models672

to sample level data for the left-lateralised occipitotemporal region of interest, with673

variables coded as described for the planned analysis. For feasibility, data were674

down-sampled to 256 Hz, and the models did not estimate random slopes. To account675

for variability between electrodes, and for per-participant differences in topography,676

random intercepts were estimated for each combination of participant and electrode. In677

lme4 syntax, the model formula was specified as follows:678

amplitude ~ 1 + congruency * predictability +679

(1 | participant_id) +680

(1 | participant_id:electrode_id) +681

(1 | image_id) +682

(1 | word_id)683

684

The results (Figure 10) reproduced findings from the planned analysis, with685

increases in Predictability associated with more negative (larger) N1 amplitudes for686

picture-congruent words, and with less negative (smaller) N1 amplitudes for687

picture-incongruent words. The Congruency-Predictability interaction of interest688

remained negative, and thus in the opposite direction to that hypothesised, throughout689

the N1.690
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Figure 10
Time-course of fixed effects from the sample-level analysis of the left-lateralised
occipitotemporal region of interest.
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(a) Time-course of fixed effects estimates, with blue-shaded regions depicting 95% confi-
dence intervals. The model intercept (reflecting average amplitudes at the lowest level of
Predictability) is depicted as a grey line on each panel to provide a reference for timing and
magnitude of effects. (b) Fixed-effect predictions for picture-congruent and -incongruent
words at levels of Predictability from 10 to 100%, in steps of 10%. (c) Same data as (b),
but split by Predictability rather than Congruency. The rapid change in amplitude after 650
ms was likely elicited by the stimulus colour change at 500 ms, as shown more clearly in
Figure 12.
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The sample-level analysis additionally suggested that the difference was largest691

in the N1’s offset period (succeeding the peak). A later Congruency-Predictability692

interaction was also observed, peaking at around 400 ms (possibly resulting from effects693

in the N400 component) in the opposite direction to that observed for the N1’s offset. To694

better understand the time-course of the Congruency-Predictability interaction, we695

examined the time-course of the effect of Predictability for picture-congruent and696

-incongruent words separately (i.e., simple effects; Figure 11). This showed more clearly697

that Predictability reduced amplitudes in the N1 for picture-incongruent words, but698

increased amplitudes for picture-congruent words. This difference peaked around 225699

ms, but reversed in direction after 300 ms. It is of note that the peak of the observed700

effects in the N1 was later than originally anticipated (the planned analysis was limited to701

≤200 ms). Nevertheless, the model intercept (Figure 10a) clearly shows that these702

effects peaked during the N1’s offset period.703

Figure 11
Time-course of the effect of Predictability for picture-congruent and -incongruent words.
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Central lines depict effect estimates, derived from sample-level models that were coded
such that the model intercept lay at the respective levels of picture-word Congruency.
Estimates reflect occipitotemporal ERPs for words at the maximum level of Predictability,
minus those at the minimum level of Predictability. Shaded areas depict 95% confidence
intervals of model estimates.
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Exploratory Scalp-Wide Analysis704

Finally, we examined how the full topography of effects changed over time705

(Figure 12). Specifically, we fit a linear mixed-effects model to data from each time-point706

and electrode separately, with variables coded as described in the section on the707

time-course analysis of the region of interest. As in that analysis, we again excluded708

random slopes for feasibility:709

amplitude ~ 1 + congruency * predictability +710

(1 | participant_id) +711

(1 | image_id) +712

(1 | word_id)713

714

Results confirmed that the Congruency-Predictability interaction at left715

occipitotemporal sites was the earliest fixed effect to emerge, and that the effect was716

small relative to that observed at later time points. It additionally showed that the switch717

in direction of the Predictability-Congruency interaction shown to peak at around 400 ms718

in Figure 11 exhibits a frontocentral topography. This effect was sustained until around719

475 ms. Interestingly, if this effect captures changes in an N400 component, then the720

direction of the N400 modulation was, as was the case for the effect on the N1, arguably721

inconsistent with a simple predictive coding account. This is because the direction of722

effects suggests that prediction-congruent words elicited the most negative-going N400723

amplitudes at the lowest level of predictability. As predictability increased, N400724

amplitudes elicited by picture-congruent words became less extreme, increasingly725

approaching the N400 amplitudes elicited by picture-incongruent words (Supplementary726

Materials J). The modulation observed in the opposite direction at occipitotemporal sites727

in Figure 10 at around 400 ms likely results from the use of average reference.728

The scalp-wide analysis also revealed that the main effect of picture-word729

Congruency shown in Figure 10 indeed peaks at around 400 ms, with a centroparietal730

topography. Interpreting this as a modulation of the N400 would mean that, at the lowest731
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Figure 12
Time-course of scalp-wide fixed-effects estimates.

The first dashed vertical line (0 ms) indicates stimulus (word) onset. The second dashed
vertical line (500 ms) indicates the time-point at which the word changed colour to green.
Topographic plots of fixed effects are highlighted at key time-points. Model intercepts
(reflecting average amplitudes at the lowest level of Predictability) are depicted as grey
lines on each panel to provide a reference for timing and magnitude of effects.
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level of predictability, picture-congruent words elicited more negative-going N400s732

overall than picture-incongruent words did.733

Finally, this analysis covered an extended period of time, which revealed a clear734

negative-going posterior component at around 650 ms. This component peaked around735

150 ms after the stimulus changed colour to indicate that participants could respond.736

Given the timing and topography of this component, this is likely to reflect an N1737

response to the colour change.738

Discussion739

In the present study, we tested whether a simple predictive coding account could740

explain online prediction effects on the amplitude of N1 ERP components elicited by741

words in biasing contexts. We biased expectations for upcoming words via images of742

varying predictability. Based on a predictive coding framework, we hypothesised that743

there would be an interaction between picture-word Predictability and Congruency in744

which N1 amplitude scales with prediction error. Planned analyses failed to find745

evidence for this hypothesis, and exploratory analyses revealed, despite strong evidence746

for prediction effects in the N1, that the direction of the interaction was opposite to that747

expected under the hypothesis. Specifically, increases in Predictability were associated748

with greater-amplitude N1s for picture-congruent words, and smaller-amplitude N1s for749

picture-incongruent words. On this basis, we conclude that a simple predictive coding750

explanation of the N1 cannot explain predictability effects observed in the picture-word751

verification task used here.752

In recent years, predictive coding models have been increasingly applied to753

explain neural phenomena observed during language processing. This includes754

predictive coding perspectives on the N1 specifically (e.g., Gagl et al., 2020; Huang755

et al., 2022; Zhao et al., 2019), or its likely generator, vOT (Price & Devlin, 2011), and756

other areas of language processing. For example, consider the well-researched N400757

ERP component, generally recognised since its initial identification as capturing activity758
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related to semantic processes (Kutas & Federmeier, 2011; Kutas & Hillyard, 1980). The759

N400 shows sensitivity to word- and sentence-level surprise or predictability760

(Delaney-Busch et al., 2019; Lau et al., 2013; Lindborg et al., 2023; Mantegna et al.,761

2019; Van Petten & Kutas, 1990), in a manner that may be consistent with predictive762

coding (Bornkessel-Schlesewsky & Schlesewsky, 2019; Eddine et al., 2023; Rabovsky &763

McRae, 2014). Similar interpretations have been made of other signals, as capturing764

prediction errors for phonological, semantic, or syntactic representations (Fitz & Chang,765

2019; Gagnepain et al., 2012; Van Petten & Luka, 2012; Ylinen et al., 2016, 2017).766

Indeed, emerging evidence is beginning to support the broader contention that767

naturalistic language comprehension utilises a predictive coding hierarchy spanning the768

language network (Caucheteux et al., 2023; Schuster et al., 2021; Shain et al., 2020;769

L. Wang et al., 2023). In this way, evidence for predictive coding in language reflects the770

growing, although not definitive, empirical evidence for predictive coding models in771

perception more generally (Clark, 2013; Heilbron & Chait, 2018; Hodson et al., 2024;772

Walsh et al., 2020).773

We do not believe our findings refute the existence of predictive coding774

mechanisms during the N1. This is informed by our review of the literature outlined in the775

Introduction, in which we found evidence broadly consistent with a predictive coding776

interpretation of the N1. Instead, we argue that a simple predictive coding account of the777

N1, in which the component’s amplitude straightforwardly indexes prediction error in a778

manner dependent on prediction certainty, is insufficient to explain the pattern of effects779

we observed in the picture-word verification task we used here. For a predictive coding780

model to better account for these data, it would require elaboration. One feature that781

may be relevant is the nature of the task. We elected to use a picture-word verification782

task as it encourages explicit prediction of word forms from non-linguistic contexts.783

However, this task paradigm may alter predictive processing of word forms in two key784

ways. First, participants will have soon learned that the observed word form only785
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matches its preceding image 50% of the time, which could have interacted with the effect786

of Predictability (prediction certainty) in unexpected ways. Second, the requirement for787

explicit verification of prediction congruency may have encouraged artificial processing788

strategies that are not representative of naturalistic word recognition and reading789

processes. To better understand whether and how such factors influence any possible790

predictive coding effects on the N1, we could manipulate prediction error magnitude and791

precision while the participant’s task instructions do not explicitly require processing of792

the cue. For instance, we could use a picture-word priming design (Sperber et al., 1979;793

Vanderwart, 1984), presenting picture-word pairs, as in the current study, but ask794

participants to respond with lexical decisions. Here, prediction error magnitude could be795

operationalised as the orthographic distance between the string (whether word or796

non-word), and precision as the predictability of a word given its picture. We believe that797

such an approach could provide insight into whether, and which, features of the798

paradigm we used could have resulted in the unexpected pattern of results. Finally, it is799

possible that dynamics of predictive processing were influenced by the slow presentation800

rate employed in the present study, relative to more naturalistic reading paradigms.801

Indeed, previous research has highlighted the importance of presentation rate in802

prediction effects during reading (e.g., Dambacher et al., 2012), and recent findings have803

shown that unpredictability in stimulus presentation timing (e.g., with jittered804

inter-stimulus intervals) may interfere with predictive processes, as indexed by the805

mismatch negativity component (Tsogli et al., 2022). This explanation of our results could806

be tested by study designs examining how the congruency-predictability interaction807

varies over stimulus onset asynchronies of different durations. In sum, while predictive808

coding mechanisms may ultimately underlie the pattern of effects we observed, the809

simple account we have tested requires elaboration, informed by insights from other810

paradigms, for it to explain why our current pattern of effects is opposite to that expected.811

Our study is not the first to identify patterns in evoked responses that seemingly812
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run counter to a simple predictive coding model (e.g., Bowman et al., 2013; Eisenhauer813

et al., 2022; Mangun & Hillyard, 1991; Vidal-Gran et al., 2020). One suggested814

elaboration to a simple predictive coding model that could allow expected stimuli to elicit815

greater evoked responses than unexpected stimuli supposes that, in such cases,816

expected stimuli may benefit from greater precision than is allotted to deviant stimuli817

(Bowman et al., 2023; Heilbron & Chait, 2018; Kok et al., 2012). In our experiment,818

matched picture-congruent and -incongruent words followed the same pictures, such819

that predictability, which we used as a measure of top-down prediction precision, should820

have been identical prior to word presentation. However, if top-down effects can821

penetrate early stages of visual processing that precede the N1, it is conceivable that822

processing after word presentation, but prior to the N1, could have up-weighted the823

precision of information in picture-congruent words’ representations, resulting in the824

observed pattern of effects. In simulations, Bowman et al. (2023) recently demonstrated825

that precision-modulated predictive coding models can indeed produce ”contra-vanilla”826

patterns in prediction errors if prediction-congruent stimuli benefit from higher precision,827

but that this should be expected to affect the evoked response non-linearly. Specifically,828

the latency of the evoked response should be shorter for the prediction-congruent829

stimulus. Our findings did indeed reveal a latency difference in the N1 offset period,830

between congruent and incongruent words at the highest level of predictability (Figure831

10), but the direction of this difference was opposite to that predicted by Bowman et al.832

(2023), with a shorter offset period for picture-incongruent words. As such, it is unclear833

how an elaboration based on differential precision between picture-congruent and834

-incongruent words may relate to our findings.835

We acknowledge the possibility that the insufficiency of predictive coding836

accounts to explain the data we observed may reflect a more fundamental shortcoming.837

Indeed, an enduring criticism of predictive coding models is that some evidence for them838

may also be explained by alternative models (de Lange et al., 2018; Hodson et al.,839
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2024). To speculate, predictive coding models may account for activity in the N1 in840

previously tested paradigms without accurately describing the underlying neural841

processes. For instance, Luthra et al. (2021) showed that, in spoken word recognition,842

interactive activation models may provide an alternative account of the ERP amplitude843

reduction observed in response to prediction violations, without invoking key features of844

predictive coding models. Indeed, effects indicative of predictive processing may emerge845

in a system that that lacks any representations of, or mechanisms implementing,846

predictions or prediction errors, instead only implementing ”pattern completion”847

(Falandays et al., 2021). It is tentatively possible that the picture-word verification848

paradigm we applied here may be a scenario that employs the same neurocognitive849

processes in the N1 as those employed in other paradigms, but elicits cognitive850

dynamics whose corresponding neural activity reveals differences from a predictive851

coding model. It is possible that processing indexed by the N1 can only be explained by852

a model distinct from the predictive coding framework, even though predictive coding853

models may correlate with patterns of activity seen in most paradigms. Justifying the854

development of such a model, distinct from predictive coding, would require much more855

evidence for the shortcomings of a predictive coding account, and we do not believe our856

study provides the insights necessary to speculate on the form such a model could take.857

Such further insights may be provided by an approach that examines patterns in858

the representational content of neural activity, rather than univariate patterns of overall859

activity. Such an approach has been exploited previously as a way of comparing860

prediction error models, in which neural signals represent unexplained content, with861

sharpening models of language processing, in which neural signals contain sharper862

representations of predicted content (Desimone, 1996; Grill-Spector et al., 2006). While863

these models can account for similar patterns in overall neural activity, they predict864

dissociable patterns in corresponding representational content (Blank & Davis, 2016).865

For instance, Blank and Davis (2016) employed a Congruency (matching, neutral) ×866
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Precision (signal quality: 4 or 12 vocoder channels) design in an fMRI experiment on867

speech perception. Representational similarity analyses of fMRI activity from the868

posterior superior temporal sulcus showed a pattern consistent with the representational869

content expected under a prediction error account, and not a sharpening account.870

Analyses of EEG signals in a similar paradigm by Sohoglu and Davis (2020) also show871

evidence for patterns of representational enhancement and suppression that match a872

prediction error account, from 100 ms after stimulus presentation. Further evidence for873

prediction error accounts of early speech perception processes is seen in fMRI and MEG874

analyses of two-syllable words, where precision is quantified as the predictability of875

syllable two, given syllable one (Sohoglu et al., 2023). In contrast, however, an MEG876

study on the representation of lexical-semantic information during visual word877

recognition found evidence more consistent with a sharpening account (Eisenhauer878

et al., 2022). Although their use was motivated by a need to disentangle two879

explanations of evoked-response patterns that are both consistent with predictive880

coding, we believe that such analyses, focusing on representational content, may also881

provide an avenue to further investigate the pattern we observed that was seemingly882

inconsistent with predictive coding. This could reveal whether the N1’s modulation is883

accompanied by the representation of more or less stimulus-relevant information, and884

may more clearly point to the underlying mechanisms.885

Representational content is also of particular importance when testing predictive886

coding accounts because it determines the depth in the hierarchy to which top-down887

predictions can be conveyed and effectively implemented. This is because in a888

hierarchical model of predictive coding, where levels of the hierarchy utilise different889

representational formats, the interaction between ascending input and descending890

predictions must involve some mapping of higher-level onto lower-level representations.891

For instance, if semantic context can influence processing that is closer to sensory input892

and indexed by early ERP components (e.g., Enge et al., 2023; Getz & Toscano, 2019;893
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Segalowitz & Zheng, 2009), then higher-level semantic information must be translated894

into predictions of upcoming lower-level sensory signals. In the case of our study’s895

modulation of the N1, if the N1 is implicated in visual-orthographic processing (Bentin896

et al., 1999; Brem et al., 2018; Ling et al., 2019; Maurer, Brandeis, & McCandliss, 2005),897

then predictions of upcoming words must be translated into a visual-orthographic code.898

Such a mapping could be expected to be very computationally lossy; predictions for899

visual-orthographic features of a single word should be expected to also confer900

facilitation for words that are orthographically similar, yet picture-incongruent (Kim & Lai,901

2012). In contrast, a later ERP more directly implicated in semantic processing, like the902

N400, may be expected to be less limited by such mappings.903

From one perspective, mapping of predictions to lower-level representations may904

be considered a requisite for a phenomenon to be considered top-down modulation905

(Rauss et al., 2011). This relates to a long-standing debate on whether prediction effects906

at the lexical level of language processing necessitate top-down input informed by907

higher-level semantic processes, or could instead result from perhaps more908

parsimonious intralexical effects (Fodor, 1983; Forster, 1979). A similar argument could909

be made that context effects on the N1 could be interpreted as intra-orthographic,910

resulting from local interactions in a possible orthographic module. As an example, the911

orthographic features of the word form fish may preactivate features of the word form912

chips simply through learned co-occurrence rather than top-down modulation, entirely913

within an orthographic processing module that possesses nothing approaching a914

semantic representation. Such facilitation could be implemented via an extension to915

classic interactive activation models (e.g., McClelland & Rumelhart, 1981) in which there916

are excitatory lateral connections between word-level units whose strength is determined917

by co-occurrence frequency. We consider this point to highlight an advantage of918

paradigms such as ours, that use non-linguistic contexts (e.g., task instructions, images,919

etc.) to cue upcoming words and word forms. Effects of context that map across920
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representations in this way necessitate transfer of information across levels of the921

processing hierarchy, and may thus be considered stronger evidence for an influence of922

top-down predictions.923

An aspect of the predictive coding account that our design did not fully test also924

relates to this idea of representational mapping. We dichotomised the variable of925

congruency (prediction error magnitude), with orthographic Levenshtein distance926

maximised between picture-congruent and -incongruent word forms. However,927

prediction error magnitude should also be expected to vary continuously, from928

unpredicted word forms that are less to more orthographically similar to the predicted929

word form. This is comparable to Gagl et al.’s (2020) use of a pixel distance metric to930

calculate the continuous distance between a presented word form and a context-neutral931

prior. Such an approach could be applied to biasing contexts by instead calculating the932

orthographic distance between a presented word form and a context-informed prior,933

where the probability of observing certain pixels (or orthographic features) could be934

up-weighted proportional to prediction certainty. We believe such an approach could935

provide useful insights in elucidating the pattern of effects we observed.936

We note that exploratory analyses at the typical latency of the N400 revealed a937

pattern which also appears to run counter to a simple predictive coding account of938

predictability effects. This is seemingly inconsistent with interpretations of the N400 as939

indexing prediction error (Bornkessel-Schlesewsky & Schlesewsky, 2019; Eddine et al.,940

2023; Rabovsky & McRae, 2014). At the lowest level of predictability, we observed941

greater N400 amplitudes for picture-congruent words, than for picture-incongruent942

words. As predictability increased, meanwhile, N400 amplitudes became less extreme943

for picture-congruent words, rather than becoming more extreme for picture-incongruent944

words. We caution against over-interpreting these results. In addition to these results945

being entirely exploratory, we used an average EEG reference, rather than the more946

standard mastoid reference for later centroparietal components like the N400.947
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Furthermore, when elicited by words in context, such as a sentence or picture, evidence948

suggests that the N400 indexes both prediction and integration processes (Nieuwland949

et al., 2018). Nevertheless, that our design elicited effects on the N400 that are950

seemingly inconsistent with existing findings from more traditional experimental designs951

may point to our specific experimental design playing a key role in the pattern of effects952

we observed in the N1.953

In sum, we tested a simple predictive coding account of the word-elicited N1, but954

failed to find evidence in favour of it. Exploratory analyses suggest that the pattern of955

effects in the Congruency-Predictability interaction were in the opposite direction to that956

expected under a simple predictive coding model. We argue that such a model is957

insufficient to explain the pattern of effects we observed, and we have identified avenues958

of future research that could better delineate how predictive processes interact with959

processing during the N1.960
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