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Abstract 22 

The hippocampal-dependent memory system and striatal-dependent memory system modulate 23 

reinforcement learning depending on feedback timing in adults, but their contributions during 24 

development remain unclear. In a 2-year longitudinal study, 6-to-7-year-old children performed a 25 

reinforcement learning task in which they received feedback immediately or with a short delay following 26 

their response. Children’s learning was found to be sensitive to feedback timing modulations in their 27 

reaction time and inverse temperature parameter, which quantifies value-guided decision-making. They 28 

showed longitudinal improvements towards more optimal value-based learning, and their hippocampal 29 

volume showed protracted maturation. Better delayed model-derived learning covaried with larger 30 

hippocampal volume longitudinally, in line with the adult literature. In contrast, a larger striatal volume 31 

in children was associated with both better immediate and delayed model-derived learning 32 

longitudinally. These findings show, for the first time, an early hippocampal contribution to the dynamic 33 

development of reinforcement learning in middle childhood, with neurally less differentiated and more 34 

cooperative memory systems than in adults. 35 

  36 
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Introduction 37 

As children enter school during middle childhood, they must learn to act appropriately in new situations 38 

through feedback. For example, children receive positive feedback when raising their hand before 39 

speaking in class, which reinforces them to repeat the same action in the future. Reinforcement learning 40 

(RL)1 provides a useful mechanistic framework to describe such feedback-driven value-based learning 41 

and decision-making. RL models allow to explicitely test for the influence of separate components 42 

during value-based learning, such as model-free and model-based learning2, social and non-social 43 

learning3,4, or the contribution of different memory systems5–7.  44 

The memory systems account is a theoretical framework that proposes that different types of 45 

memory are supported by distinct neural systems in the brain. Specifically, this account suggests that 46 

there are two memory systems: a hippocampal-dependent system and a striatal-dependent system. These 47 

systems modulate memory and value-based learning, and their interactive development has been of 48 

particular interest to developmental research8,9. The hippocampal-dependent memory system has been 49 

shown to contribute to episodic memory during reinforcement learning and is more engaged during 50 

feedback that is presented with a delay6,10,11, as opposed to the striatal-dependent memory system, which 51 

is more engaged after immediate feedback and supports habitual memory5,12–14. Specifically, 52 

hippocampal activation was greater during delayed feedback than during immediate feedback, whereas 53 

striatal activation was greater during immediate feedback than during delayed feedback5. The 54 

engagement of the hippocampus during delayed feedback was further supported by enhanced episodic 55 

memory for incidentally presented objects compared to objects presented with immediate feedback. 56 

Taken together, these studies suggest that feedback timing modulates the engagement of the 57 

hippocampal and striatal memory systems during value-based learning in adults. Given the differential 58 

developmental trajectories of these systems and the impact the systems have on reinforcement learning 59 

and memory, it is important to understand whether children would show similar feedback timing 60 

modulations as previously shown in adults. In addition, whether such feedback timing modulation 61 

changes over time remains largely unexplored. To this end, in this study, we examined the contributions 62 

of hippocampal and striatal structural volumes during the longitudinal development of reinforcement 63 

learning across two years in 6-to-7-year-old children. 64 

 Reinforcement learning behavior modulated by feedback timing can be modeled 65 

computationally using at least three parameters that reflect feedback-based learning and decision-66 

making. For feedback-based learning, a learning rate parameter determines the extent to which the 67 

reward prediction error, defined as the difference between the received reward and the expected reward, 68 

influences the update of the future choice values. A higher learning rate emphasizes recent outcomes, 69 

whereas a lower learning rate reflects learning integrated over a longer outcome history15. Value updates 70 

may further depend on an outcome sensitivity parameter that scales the individual magnitude of received 71 

rewards. Finally, in decision-making, the inverse temperature parameter plays a key role in determining 72 

the tendency to select the more valuable choice and quantifies choice stochasticity. A higher inverse 73 
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temperature reflects more value-guided, deterministic choice behavior compared to a lower inverse 74 

temperature reflecting more random choices. Learning rates and inverse temperature have been studied 75 

extensively across development, mainly with cross-sectional studies showing mixed findings regarding 76 

their age gradients16. One study reported lower learning rates in children compared to adolescents17, 77 

while other studies found no differences18,19 or even higher learning rates in children8,20. Developmental 78 

differences regarding the inverse temperature parameter are slightly more consistent, with studies 79 

reporting no differences8,21–23 or higher inverse temperature with age that suggests that behavior is 80 

increasingly value-guided and less explorative17–19,24. To the best of our knowledge, outcome sensitivity 81 

has not been modeled computationally across development. However, studies that linked striatal reward 82 

activation to self-reported reward sensitivity showed increasing sensitivity from childhood to 83 

adolescence25,26.  84 

In general, the inconsistencies regarding developmental differences in parameters may be due 85 

to their dependency on model and task properties27, which could be reconciled by comparing 86 

developmental changes to simulation-based optimal learning15. Such comparisons acknowledge that 87 

optimal parameter values vary depending on the context, and it has been suggested that humans develop 88 

towards more optimal parameter values from childhood into adulthood16. Importantly, to our knowledge 89 

previous reinforcement learning studies with children were cross-sectional, and only two studies 90 

investigated children under 8 years of age17,28. Cross-sectional studies, in which developmental change 91 

is inferred as a between-subject factor, do not capture the dynamics in middle childhood if individual 92 

differences are large, whereas longitudinal studies test development as a within-subject factor, which is 93 

crucial for uncovering change across time. Thus, longitudinal changes in reinforcement learning in 94 

middle childhood as well as their putative striatal and hippocampal associations remain unknown. To 95 

this end, learning rates, outcome sensitivity and inverse temperature are relevant computational 96 

parameters to study longitudinal changes in striatal and hippocampal systems during value-based 97 

learning. 98 

Striatal and hippocampal contributions to reinforcement learning during middle childhood may 99 

differ as these brain regions undergo major developmental changes. Whereas earlier structural studies 100 

with relatively small sample sizes showed large developmental variability and a tendency for an earlier 101 

volume peak in the striatum than in the hippocampus29–35, a recent cross-sectional large-scale study was 102 

able to contrast striatal and hippocampal trajectories with greater granularity36. These data showed 103 

striatal volume peaks in the first decade which then declined throughout later developmental periods, 104 

whereas hippocampal volume showed a more protracted inverted-U-shaped trajectory that peaked in 105 

adolescence. Based on these structural findings, striatal and hippocampal systems are expected to 106 

develop functionally at different rates37, with habit memory depending on the earlier developing striatum 107 

and episodic memory depending on the later developing hippocampus38. A direct investigation of the 108 

longitudinal development of both memory systems in childhood would shed light on whether the 109 

memory systems show a differential engagement similar to that of adults5. Such knowledge could be 110 
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useful to structure learning processes according to the developmental status. For example, children's 111 

ability to learn from delayed feedback may depend on how well their hippocampus has developed. In 112 

the same study sample, we previously reported that children’s hippocampal volume was related to their 113 

family's income level39. Additionally, previous research has shown that stress can reduce the 114 

effectiveness of the hippocampal-dependent memory system11. This suggests that environmental factors 115 

such as income and stress may play a role in shaping how well children learn from delayed feedback, 116 

particularly through their impact on hippocampal development. By identifying the specific 117 

environmental factors that impact children's learning and brain development, we can identify risk groups 118 

and tailor interventions to ameliorate adverse effects. 119 

 This study aimed to explore the development of value-based learning in children and its 120 

relationship with structural brain development over time. We hypothesized that the timing of feedback 121 

would modulate children's learning from reinforcement, and that such modulation can be captured by 122 

reinforcement learning (RL) model parameters. Additionally, we predicted that children's value-based 123 

longitudinal development would shift towards more optimal learning behavior. Regarding structural 124 

brain development, we expected the striatum to be relatively mature by middle childhood compared to 125 

the protracted hippocampal maturation. Our second objective was to investigate the relationship between 126 

value-based learning and structural brain development using longitudinal structural equation modeling. 127 

We anticipated that there would be differentiated brain-cognition links between brain volume and value-128 

based learning. Specifically, we predicted that immediate feedback learning would be more strongly 129 

associated with striatal volume, whereas hippocampal volume would be more closely linked to delayed 130 

feedback and the facilitation of episodic memory encoding. Finally, we examined how these brain-131 

cognition dynamics would change over time by analyzing their longitudinal changes. 132 

 133 

Methods 134 

 135 

Participants 136 

Children and their parents took part in 2 waves of data collection with an interval of about 2 years (mean 137 

= 2.07, SD = 0.17, range = 1.69 – 2.68). The inclusion criteria for wave 1 were children attending first 138 

or second grade, no psychiatric or physical health disorders, at least one parent speaking fluent German, 139 

and born full-term (≥ 37 weeks of gestation). At wave 1, 142 children (46% female, age mean = 7.19, 140 

SD = 0.46, Range = 6.07 - 7.98) and their parents or caregivers participated in the study. 141 children 141 

completed the probabilistic learning task, one child was later excluded due to technical problems during 142 

the task, hence 140 were included in the analysis. A subgroup of 90 children (49% female, 100% right-143 

handed), who was randomly selected, completed magnetic resonance imaging (MRI) scanning at wave 144 

1, and 82 of them contributed to structural data after removing scans with excessive movement. At wave 145 

2, 127 children (46% female, age mean = 9.25, SD = 0.45, Range = 8.30 -10.2) continued taking part in 146 

the study, while families of the remaining children were unable to be contacted or decided not to return 147 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2023. ; https://doi.org/10.1101/2023.04.13.536699doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536699
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Longitudinal Changes in Value-based Learning in Middle Childhood 5 

to the study. 126 children at wave 2 completed the reinforcement learning task and were included in the 148 

analysis. All children at wave 2 were invited for MRI scanning, and 104 of them completed scanning 149 

(45% female, 92% right-handed). 99 children contributed to structural data, after removing scans with 150 

excessive movement. In total, 73 children contributed to the longitudinal MRI data and 126 children 151 

contributed to the longitudinal learning data. As previously reported for this study sample, we found no 152 

systematic bias due to wave 2 dropout39. 153 

 154 

Procedure 155 

The study consisted of a series of cognitive tasks tested during two behavioral sessions, including a 156 

reinforcement learning task, and one MRI session at wave 139,40. Two years later, the children underwent 157 

one behavioral and one MRI session. MRI scanning was performed within three weeks of the behavioral 158 

task session. Each session lasted between 150 and 180 minutes and was scheduled either on weekdays 159 

between 2 p.m. and 6 p.m. or during weekends. Before participation, the parents provided written 160 

informed consent and children’s verbal assent at both waves. All children were compensated with an 161 

honorarium of 8 euro per hour. 162 

 163 

Measures 164 

Reinforcement learning task. Children completed an adapted reinforcement learning task5 in which they 165 

learned the preferred associations between four cues (cartoon characters) and two choices (round-shaped 166 

or square-shaped lolli) through probabilistic feedback (87.5 % contingent and 12.5 % non-contingent 167 

reward probability). In each trial, after an initial inter-trial interval of 0.5 s, a cue and its choice options 168 

were presented for up to 7 s until the child made a choice (Figure 1, choice phase). In the delay phase, 169 

we manipulated feedback timing. For two cues, the selected choice remained visible for 1 s (immediate 170 

feedback condition), whereas for the other two cue characters, it remained visible for 5 s before feedback 171 

was given (delayed feedback condition). A final feedback phase of 2 s indicated a reward by a green 172 

frame, and a punishment by a red frame. Inside each frame, a unique object picture was shown, which 173 

was incidentally encoded and irrelevant to the task. The children were instructed to pay attention to the 174 

feedback indicated by the frame color. In an initial practice phase of 32 trials, the ch practiced the task 175 

with a fifth cartoon character not included in the actual task to avoid practice effects. The experimenter 176 

instructem them to select the choice that was most likely to give them a reward. The Experimenter 177 

checked whether the child learned the more rewarded choice during practice and let it repeat the practice 178 

task otherwise to ensure understanding of the task. In the actual task, 128 trials were presented in four 179 

blocks and with small breaks in between. Cues were presented in a mixed, pseudo-randomized order. A 180 

total of 64 unique objects were shown in the feedback phase, each one twice within the same feedback 181 

condition. In both delay phases, contingent choice and choice location remained the same for each cue 182 

within the task, but were balanced across participants by using four different task versions. At wave 2, 183 

four new cues replaced the previous ones to rule out memory effects.  184 
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Object recognition test. At wave 1, children were additionally tested for recognition memory on the 185 

object pictures that were incidentally encoded during reinforcement learning. A total of 80 objects (48 186 

old objects and 32 new objects) were presented in randomized order. The 48 old objects (24 for each 187 

feedback condition) were selected from the 64 old objects shown during learning based on two lists to 188 

balance the shown and omitted old objects across task versions. Each old object was shown twice during 189 

learning, but if the child failed to respond during learning, no feedback or object was shown in the trial, 190 

so some objects only appeared once. These objects were excluded at the individual level (individually 191 

missing object mean  = 2.71). At recognition, children had 4 response options (‘old sure’, ‘old unsure’, 192 

‘new unsure’, ‘new sure’) with up to 7 s to respond. The children answered verbally, and the 193 

experimenter entered their response. At wave 2, this test was excluded due to time constraints.  194 

 195 

 196 

Figure 1. (A) Depiction of two example trials of immediate and delayed feedback conditions presented 197 

at wave 1. For immediate feedback (top panel), between choice response and feedback, cue and choice 198 

were presented for 1 s. At feedback, a green frame around the incidentally encoded object indicated a 199 

positive outcome, which appeared in 87.5% of the trials when selecting the squard-shaped lolli for this 200 

example cue. For delayed feedback (bottom panel), the delay phase between choice response and 201 

feedback lasted for 5 s. The red frame around the object indicated a negative outcome and appeared in 202 

87.5% of the trials when selecting the squard-shaped lolli for this example cue. (B) For each feedback 203 

condition, two action-outcome contingencies were learned to balance a potential choice bias. With the 204 

four task versions, the cues and outcome contingencies were counterbalanced across participants. 205 

 206 

Brain volume. Structural MRI images were acquired on a Siemens Magnetom TrioTim syngo 3 Tesla 207 

scanner with a 12-channel head coil (Siemens Medical AG, Erlangen, Germany) using a 3D T1–208 

weighted Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence (192 slices; field of view  209 

=  256 mm; voxel size  = 1 mm3; TR  = 2500 ms; TE  = 3.69 ms; flip angle  = 7°; TI  = 1100 ms). 210 

Volumetric segmentation was performed using the Freesurfer 6.0.0 image analysis suite41. Previous 211 

studies suggested that software tools based on adult brain templates provide inaccurate segmentation for 212 
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pediatric samples, which can be improved through the use of study–specific template brains42,43. Thus, 213 

we created two study-specific template brains (one for each wave) using Freesurfer’s 214 

“make_average_subject” command. This pipeline utilized the default adult template brain registrations 215 

of the “recon–all–all” command to average surfaces, curvatures, and volumes from all subjects into a 216 

study–specific template brain. All subjects were then re–registered to this study-specific template brain 217 

to improve segmentation accuracy. Segmented images were manually inspected for accuracy and 8 cases 218 

at wave 1 and 5 cases at wave 2 were excluded for inaccurate or failed registration due to excessive 219 

motion. 220 

 221 

Data analysis 222 

 223 

Behavioral learning performance. Differences in learning accuracy, win-stay probability, lose-shift 224 

probability and reaction time with the predictors feedback timing (immediate, delayed), wave (1, 2), 225 

wave 1 age, and sex (girls, boys) were tested using generalized linear mixed models (GLMM) with the 226 

R package lme444. Learning accuracy was defined as the probability to choose the more rewarding 227 

option, while win-stay and lose-shift refer to the probabilities of staying with the previously chosen 228 

option after a reward and switching to the alternative choice after not receiving a reward, respectively.  229 

All reported models included random slopes for within-subject factors feedback timing and wave (see 230 

Supplementary Material 2 for the model structure). We systematically tested main effects and 231 

interactions between the predictors and their interaction had to statistically improve the predictive ability 232 

of the model to be included in the final reported model. All predictor variables were grand-mean-233 

centered to interpret the interaction effects independent from other predictors. 234 

 235 

Reinforcement learning models. We compared the learning models of basic heuristic strategies and 236 

value-based learning to determine the model that could best capture children’s trial-by-trial learning 237 

behavior. For heuristic strategies, we considered models that reflected a Win-stay-lose-shift (wsls) or a 238 

Win-stay (ws) strategy. Win-stay is a heuristic strategy in which the same action is repeated if it leads 239 

to a positive outcome in the previous trial, and Win-stay-lose-shift additionally switches to a different 240 

action if the previous outcome is negative. The models quantified the learning behavior for each 241 

individual I for each cue c and trial t. The heuristic models consisted of a weight w that reflected the 242 

strategy use. In the case of reward r = 1, w was equal to 1 for the chosen option (eg. choice A), and 0 243 

for the unchosen option (e.g. choice B), thus maximizing win-stay, i.e., choosing A at the subsquent trial 244 

𝑡 + 1: 245 

𝑤!,#,$%&,'|)	+	& = 1 and 𝑤!,#,$%&,,|)	+	& = 0    (1) 246 

For trials r = 0 (applicable only to the wsls model), model weights were the opposite, maximizing lose-247 

shift:  248 

𝑤!,#,$%&,'|)	+	- = 0; 𝑤!,#,$%&,,|)	+	- = 1     (2) 249 
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The initial weights for both choices were set to 𝑤!,#,$+& = 0.5. The weight w then scaled the parameter 250 

𝜏_𝑤𝑠𝑙𝑠 or 𝜏_𝑤𝑠 to estimate the individual strategy use during decision-making. The choice probabilities 251 

were calculated using the softmax function, eg., for the chosen option A:  252 

𝑝(𝐴) = ./0!",$,%,&∗(_!*+*"

./0!",$,%,&∗(_!*+*" 	%./0!",$,%,,∗(_!*+*"
      (3) 253 

Thus, a higher probability of strategy use was reflected by a larger value of	𝜏_𝑤𝑠𝑙𝑠 or 𝜏_𝑤𝑠.  254 

For value-based learning, we considered a Rescorla-Wagner model and several variants based on our 255 

theoretical conceptions. The baseline value-based model 𝑣𝑏𝑚! updated the value v of the selected choice 256 

(A or B) for the next trial t. This value update was determined by calculating the difference between the 257 

received reward r and the expected value v of the selected choice, which was the reward prediction error. 258 

The value update was further scaled by a learning rate 𝛼	(0 < 𝛼 < 1): 259 

𝑣!,#,$%&,' = 𝑣!,#,$,' + 𝛼!(𝑟!,#,$ − 𝑣!,#,$,')     (4) 260 

When the outcome sensitivity parameter 𝜌	(0 < 𝜌 < 20) was included, the reward was additionally 261 

scaled at the value update: 262 

𝑣!,#,$%&,' = 𝑣!,#,$,' + 𝛼!(𝜌! ∗ 𝑟!,#,$ − 𝑣!,#,$,')     (5) 263 

The inverse temperature parameter 𝜏(0 < 𝜏 < 20) was included in the softmax function to compute 264 

choice probabilities: 265 

𝑝(𝐴) = ./0-",$,%,&∗("

./0-",$,%,&∗(" 	%./0-",$,%,,∗("
       (6) 266 

Note, however, that outcome sensitivity and inverse temperature are difficult to fit simultaneously due 267 

to non-identifiability issues45. Therefore, models including outcome sensitivity fixed the inverse 268 

temperature at 1 (outcome sensitivity model family), and models with the inverse temperature in turn 269 

fixed outcome sensitivity at 1 (inverse temperature model family). Each model family consisted of 4 270 

model variants 𝑣𝑏𝑚!"# (1𝛼1𝜏,	2𝛼1𝜏, 1𝛼2𝜏, 2𝛼2𝜏) and	𝑣𝑏𝑚$"% (1𝛼1𝜌,	2𝛼1𝜌, 1𝛼2𝜌, 2𝛼2𝜌), in which 271 

each parameter was either separated by feedback timing or kept as a single parameter across feedback 272 

conditions. Our baseline value-based model 𝑣𝑏𝑚! included a single learning rate and a single inverse 273 

temperature (1𝛼1𝜏). 274 

 275 

Parameter estimation. All choice data were fitted in a hierarchical Bayesian analysis using the Stan 276 

language in R46,47 adopted from the hBayesDM package48. Posterior parameter distributions were 277 

estimated using Markov chain Monte Carlo (MCMC) sampling running 4 chains each with 3,000 278 

iterations, using the first half of the chain as warmup, and group-level parameters and individual-level 279 

parameters were estimated simoultaneously. The hierarchical Bayesian approach provides more stable 280 

and reliable parameter estimates as opposed to point-estimation approaches like maximum likelihood 281 

estimation49. Each model fit both wave 1 and wave 2 data at once, considering the correlation structure 282 

of the same parameter across waves, to account for within-subject dependency using the Cholesky 283 

decomposition. The Cholesky decomposition used a Lewandowski-Kurowicka-Joe prior of 2, and all 284 
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other group-level parameters had a prior normal distribution, Normal (0, 0.5). Non-response trials (wave 285 

1 = 2.41%, wave 2 = 0.97% on average) were excluded in advance.  286 

 287 

Model simulation and model-derived learning score. To appropriately interpret the parameter results 288 

with respect to the optimal parameter combination of the winning model, we simulated 5,000,000 289 

individual datasets using 10,000 different parameter value combinations (covering the whole range of 290 

each parameter) to identify the optimal parameter combination of the winning model that was selected 291 

by model comparison. In addition, we computed the model-derived mean choice probability of the 292 

contingent, i.e., the more rewarded option, and we referred to it as the model-derived learning score. 293 

This model-derived choice probability differs from the observed empirical choice probability (i.e., the 294 

accuracy of selecting the more rewarded option), because the model-derived learning score combines 295 

the model with the data by incorporating latent information carried out by key learning parameters. Thus, 296 

the learning score captures observed behavior based on trial-by-trial latent processes predicted by value-297 

based models. We used this as metric to interpret the fitted posterior parameters in relation to the optimal 298 

parameter combination of our probabilistic learning task. 299 

 300 

Model selection and validation. We conducted a 2-step sequential procedure for the model development 301 

and model selection. As a first step, we compared model evidence for the baseline value-based model 302 

that does not separate learning rate and inverse temperature by feedback timing (𝑣𝑏𝑚&:1𝛼, 1𝜏) to the 303 

non-value-based, heuristic strategy models that reflect Win-stay or Win-stay-lose-shift strategy behavior 304 

(𝑤𝑠,	𝑤𝑠𝑙𝑠). As a second step, we compared model evidence for 8 value-based model variants, 4 of the 305 

model family with learning rate and inverse temperature (1𝛼1𝜏,	2𝛼1𝜏, 1𝛼2𝜏, 2𝛼2𝜏)	and	4	of	the	model	306 

family	with	 learning	rate	and	outcome	sensitivity	 (1𝛼1𝜌,	2𝛼1𝜌, 1𝛼2𝜌, 2𝛼2𝜌). This allowed us to 307 

compare whether children showed separable effects of feedback timing on one of the model parameters. 308 

We compared the model fit using Bayesian leave-one-out cross-validation and obtained the expected 309 

log pointwise predictive density (𝑒𝑙𝑝𝑑122) using the R package loo50. We further computed the model 310 

weights (Pseudo-BMA+) using Pseudo Bayesian model averaging stabilized by Bayesian bootstrap with 311 

100,000 iterations51. To validate our models, we estimated predictive accuracy by comparing one-step-312 

ahead model predictions with the choice data15,52. We performed parameter recovery for the winning 313 

model and model recovery by comparing it to a set of models used during model comparison 314 

(Supplementary Material 1)53. 315 

 316 

Episodic memory at wave 1 317 

We predicted the individual corrected recognition memory (hits-false alarms) by feedback condition in 318 

a linear mixed effects model using the R package lme444. A total of 140 children completed the 319 

recognition memory test and 138 were included in the analysis, with two being excluded due to negative 320 
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corrected recognition memory value (i.e., poor recognition memory). Age and sex were controlled for 321 

as covariates.  322 

 323 

Longitudinal brain-cognition links  324 

We used latent change score (LCS) models to examine the longitudinal relationships between brain and 325 

learning score measures. LCS models are longitudinal structural equation models that have been widely 326 

applied to estimate developmental changes and coupling effects across domains such as the brain and 327 

cognition54,55. LCS models allow the definition of specific paths between multiple variables to test 328 

explicit hypotheses and estimate latent change from the observed variables that account for measurement 329 

error and increase testing power56. We compiled univariate LCS models for each variable separately 330 

(learning scores and brain volumes) to examine whether there was significant individual variance and 331 

change, which could be related within a multivariate LCS model as a next step. Model fit had to be at 332 

least acceptable, with a comparative fit index (CFI) > 0.95, standardized root mean square residual 333 

(SRMR) < .08 and root mean square error of approximation (RMSEA) < .0857. Age and sex were included 334 

as covariates at wave 1, as well as the estimated total intracranial volume (eTIV) when brain volume 335 

was included in the model. Multivariate LCS models allow to estimate meaningful brain-cognition 336 

relationships: a wave 1 covariance between brain and cognition, brain predicting change onto cognition, 337 

or vice versa, and a covariance in both brain and cognition change scores (wave 1 to wave 2). Before 338 

compiling the variables into an LCS model, they were checked for outliers ± 4 SD around the mean. We 339 

identified one outlier for the learning rate at wave 2, which was removed for the explorative LCS model 340 

that included model parameters. There were no further outliers in other cognitive variables or brain 341 

volumes. Continuous variables were standardized to the wave 1 measure so that wave 2 values represent 342 

the change from wave 1, sex was contrast-coded (girls = 1, boys = -1). 343 

 344 

Results 345 

 346 

Behavioral results 347 

 348 

First, we were interested in whether children showed behavioral differences between waves and 349 

feedback timing. A descriptive overview is provided in Table 1 and Figure 2. The details of the reported 350 

GLMM models, including the random effects structure and the effects of age and sex, are described in 351 

the Supplementary Material 2. Since some children were poor learners who failed to reach 50 % average 352 

accuracy in their last 20 trials (13 children at wave 1 and 6 children at wave 2), we also performed 353 

behavioral analyses with a reduced dataset in which results remained unchanged (Supplementary 354 

Materials 3).  355 

 356 
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Children’s learning improved between waves. With the complete dataset, we found that increased 357 

learning accuracy (i.e., the probability of choosing the more rewarding option) was predicted at wave 2 358 

compared to wave 1, but there were no differences in accuracy by feedback timing (𝛽345.+6 = .550, SE 359 

= .061, z  = 8.97, p < .001, 𝛽7..894#:+8.14;.8 = .013, SE = .024, z = 0.54, p = .590). Furthermore, win-360 

stay probability increased and lose-shift probability decreased longitudinally, again without differences 361 

by feedback timing (WS: 𝛽345.+6 = .586, SE = .071, z = 8.22, p < .001, LS: 𝛽345.+6 = -.586, SE = .071, 362 

z = -8.22, p < .001). Reaction times were faster at wave 2 compared to wave 1, and they were faster for 363 

delayed compared to immediate feedback trials (𝛽345.+6  = -218, SE = 22.7, t = -9.61, p < .001, 364 

𝛽7..894#:+8.14;.8  = -14.0, SE = 6.61, t = -2.12, p = .036). To summarize, children, on average, 365 

improved their accuracy over 2 years, while the win-stay probability increased and the lose-shift 366 

probability decreased between waves. Children were able to respond faster to cues paired with delayed 367 

feedback compared to cues paired with immediate feedback, and they became faster in their decision-368 

making across waves (see mixed model effects overview in Table 1). Of note, reaction times were 369 

largely uncorrelated with accuracy and switching behavior (win-stay, lose-shift), while accuracy and 370 

switching behavior showed significant correlations at both waves (Figure 2D). 371 

 372 

Table 1. Descriptive behavioral results of dependent variables Accuracy (ACC, probability correct), 373 

win-stay probability (WS), lose-shift probability (LS), and reaction time (RT, in seconds), as well as 374 

mixed model fixed effects that predicted these dependent variables. 375 

 Descriptive Results Mixed Model Effects 

  Wave 1  Wave 2  Wave  Feedback 

 Ime Del Ime Del   

ACC 0.69 (0.46) 0.70 (0.46) 0.79 (0.41) 0.80 (0.40) ­ W2 – 

WS 0.81 (0.39) 0.80 (0.40) 0.88 (0.32) 0.88 (0.32) ­ W2 – 

LS 0.47 (0.50) 0.50 (0.50) 0.42 (0.49) 0.42 (0.49) ¯ W2 – 

RT 2.10 (1.31) 2.07 (1.29) 1.70 (1.02) 1.67 (1.00) ¯ W2 ¯ Del 

Note. Mean (standard deviation) of the variables, split by wave and feedback timing, is reported in the 376 

table. Mixed model effects and their directionality (increasing ­ or decreasing ¯) predicting the 377 

dependent variables. W2 = Wave 2, Ime = Immediate feedback, Del = Delayed feedback. 378 

 379 
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 380 

Figure 2. Individual differences in the behavioral reinforcement learning outcomes and their longitudinal 381 

change. (A) Accuracy did not differ by feedback timing and increased between waves. (B) Win-stay and 382 

lose-shift probability did not differ by feedback timing, and win-stay increased and lose-shift probability 383 

decreased between waves. (C) Reaction time differed by feedback timing, in which decisions for cues 384 

learned with delayed feedback were faster, and reaction times were faster at wave 2 compared to wave 385 

1. (D) Correlations between behavioral outcomes reveal that learning accuracy was primarily correlated 386 

with the win-stay and lose-shift probabilities both within and between waves, but was uncorrelated to 387 

reaction time. Significant correlations are circled, p-values were adjusted for multiple comparisons using 388 

bonferroni correction. 389 

 390 

Modeling results 391 

 392 

Children’s behavior was best described by value-based learning. We conducted a 2-step sequential 393 

procedure for model development and model selection. Model comparison using leave-one-out cross 394 

validation showed evidence in favor of the value-based learning model, reflected in the highest expected 395 

log pointwise predictive density and highest model weights, confirming that children’s learning 396 

behavior in the longitudinal data can generally be better described by a value-based rather than by a 397 

heuristic strategy model (𝑒𝑙𝑝𝑑122 = -15154.9, pseudo-BMA+ = 1, Table 2). Children whose individual 398 

fit was better for a heuristic model (𝑤𝑠𝑙𝑠) than for the value-based model (𝑣𝑏𝑚&), were at both waves 399 

more likely to be poor learners (defined as an accuracy below 50% in the last 20 trials). Taken together, 400 

children’s learning behavior was best described by a value-based model, and a heuristic strategy model 401 

captured more poor learners compared to a value-based model.  402 
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 403 

Table 2. Model comparison results.  404 

Model Parameters 𝛥𝑒𝑙𝑝𝑑122	[𝑆𝐸]  𝛴𝑒𝑙𝑝𝑑122	[𝑚𝑒𝑎𝑛] pseudo-BMA+  

Step 1: heuristic strategy models and value-based learning model 

𝑣𝑏𝑚& 1𝛼, 1𝜏 0 [0]  -15154.9 [-0.45] 1 

𝑤𝑠 1𝜏3< -1327.7 [159.5]  -16482.7 [-0.49] <0.01 

𝑤𝑠𝑙𝑠 1𝜏3<1< -4247.3 [284.8]  -19402.3 [-0.58] 0 

Step 2: value-based learning models 

𝒗𝒃𝒎𝟑 𝟏𝜶, 𝟐𝝉 0 [0]  -15045.3 [-0.45] 0.73 

𝑣𝑏𝑚> 1𝛼, 2𝜌 -2.93 [2.92]  -15048.2 [-0.45] 0.24 

𝑣𝑏𝑚? 2𝛼, 1𝜌  -24.34 [8.85]  -15069.6 [-0.45] <0.01 

𝑣𝑏𝑚@ 2𝛼, 2𝜌 -29.71 [15.95]  -15075.0 [-0.45] 0.02 

𝑣𝑏𝑚A 2𝛼, 2𝜏 -43.34[14.89]  -15088.6 [-0.45] <0.01 

𝑣𝑏𝑚6 2𝛼, 1𝜏  -46.45 [13.97]  -15091.7 [-0.45] <0.01 

𝑣𝑏𝑚B 1𝛼, 1𝜌 -59.01 [7.59]  -15104.3 [-0.45] <0.01 

𝑣𝑏𝑚& 1𝛼, 1𝜏 -109.63 [11.98]  -15154.9 [-0.45] <0.01 

Note. Model = heuristic (𝑤𝑠, 𝑤𝑠𝑙𝑠) and value-based models (𝑣𝑏𝑚&C@) that were compared against each 405 

other. Parameters = corresponding model parameters learning rate 𝛼 , inverse temperature 𝜏  and 406 

outcome sensitivity 𝜌 . 𝛥𝑒𝑙𝑝𝑑122[𝑆𝐸]  = difference in the Bayesian leave-one-out cross-validation 407 

estimate of the expected log pointwise predictive density relative to the winning model and its standard 408 

errors. 𝛴𝑒𝑙𝑝𝑑122[𝑚𝑒𝑎𝑛]  = sum of expected log pointwise predictive density of all 33,460 trials, 409 

including all participants and waves, and trial mean. Pseudo-BMA+ = model weight for relative model 410 

evidence using Bayesian model averaging stabilized by Bayesian bootstrap using 100,000 iterations. 411 

 412 

Feedback timing modulated choice stochasticity. Model 𝑣𝑏𝑚D  (1𝛼2𝜏 ) showed the largest model 413 

evidence, reflected in the highest expected log pointwise predictive density and highest model weights  414 

and suggests that feedback timing affected the inverse temperature, but not the learning rate or outcome 415 

sensitivity (𝑒𝑙𝑝𝑑122  = -15045.3, pseudo-BMA+ = 0.73, Table 2). Table 3 and Figure 3A provide a 416 

descriptive overview of the winning model parameters. Of note, there were only small differences in 417 

model fit (𝑒𝑙𝑝𝑑122 ) to the second-best model (𝑣𝑏𝑚>, 1𝛼2𝜌 ,	𝛥𝑒𝑙𝑝𝑑𝑙𝑜𝑜  = -2.93, 𝑒𝑙𝑝𝑑_𝑆𝐸122  = 2.92, 418 

pseudo-BMA+ = 0.24), which suggests a potential separable feedback timing effect on outcome 419 

sensitivity. The average inverse temperature did not differ by feedback condition, but showed large 420 

within-person condition differences at both waves, indicating individual differences in feedback timing 421 

modulation (wave 1: ∆𝜏8.1C!G. Mean = 0.22, SD = 3.80, Range  = 21.74, wave 2:  ∆𝜏8.1C!G. 	Mean = 422 

0.35, SD = 3.70, Range  = 24.03). The correlations between the parameters are shown in Supplementary 423 

Material 4.  424 
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Since reaction times were predicted by feedback timing behaviorally, and inverse temperature is 425 

assumed to reflect decision-making, we were interested in whether differences in reaction time were 426 

related to inverse temperature differences. Indeed, at both waves, children who responded faster during 427 

delayed compared to immediate feedback had a higher inverse temperature at delayed compared to 428 

immediate feedback (wave 1: r = -.261, t = -3.18, p = .002, wave 2: r = -.345, t = -4.10, p < .001, Figure 429 

3B). Taken together, children’s learning behavior was best described by a value-based model, where 430 

feedback timing modulated individual differences in the choice rule during value-based learning. 431 

Interestingly, the differences in the choice rule and reaction time f were correlated. Specifically, more 432 

value-guided choice behavior (i.e., higher inverse temperature) was related to faster responses during 433 

delayed feedback relative to immediate feedback, suggesting a link between model parameter and 434 

behavior in relation to feedback timing. 435 

 436 

437 

Figure 3. (A) Individual differences in the learning rate and inverse temperature of the winning model 438 

and their longitudinal change. The inverse temperature 𝜏  but not learning rate 𝛼  was separated by 439 

feedback timing, and both increased between waves in their values (top panel). The condition difference 440 

in the inverse temperature did not differ on average, but showed individual differences (bottom left 441 

panel). (B) The condition differences in the inverse temperature correlated with reaction time, i.e., higher 442 

delayed compared to immediate inverse temperature was related to faster delayed compared to 443 

immediate reaction time.  444 

 445 

 446 

 447 
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Table 3. Description of model parameters from the winning value-based model 𝑣𝑏𝑚&. 448 

 Wave 1 Wave 2 

 𝛼 𝜏'() 𝜏*)+ 𝑙𝑠'() 𝑙𝑠*)+ 𝛼 𝜏'() 𝜏*)+ 𝑙𝑠'() 𝑙𝑠*)+ 

Mean  0.02 14.6 14.8 

2.37 

5.25 

0.73 0.73 0.05 16.2 16.5 

2.21 

6.85 

0.82 0.82 

SD 0.02 2.04 0.12 0.13 0.04 2.37 0.13 0.13 

Min <0.01 6.73 0.53 0.53 <0.01 4.37 0.53 0.53 

Max 0.09 17.5 17.9 0.94 0.94 0.22 18.6 18.7 0.96 0.96 

Note. 𝛼  = learning rate across feedback timing, 𝜏'()/	𝑙𝑠'() = inverse temperature and learning score for 449 

immediate feedback, 𝜏*)+/	𝑙𝑠*)+	= inverse temperature and learning score for delayed feedback. 450 

 451 

Children’s value-based learning became more optimal. Next, we compared the parameter space 452 

according to model simulation (Figure 4A) with the empirical posterior parameters fitted by the 453 

winning model (Table 3, Figure 4B) to determine whether children increased their value-based 454 

learning towards more optimal parameter combinations. Both fitted and simulated parameter 455 

combinations allowed us to derive a learning score that captured learning performance according to 456 

the winning value-based model. Note that the learning score was defined as the average choice 457 

probability for the more rewarded choice option. We refer to these model-derived choice probabilities 458 

as learning score, since they reflect value-based learning and combine information of learned values, 459 

that depend on the learning rate, and values translated into choice probabilities, that depend on the 460 

inverse temperature. Thus, a higher learning score reflects more optimal value-based learning. We 461 

simulated 10,000 parameter combinations and created a learning score map according to each 462 

parameter combination (Figure 4A). The optimal parameter combination was at a learning rate	𝛼 = 463 

0.29, and an inverse temperature 𝜏 = 19.8, and with an average learning score of 96.5 % (Figure 4A). 464 

Children’s fitted average learning rates ranged 0.01 – 0.22 and inverse temperature 6.73 – 18.70 and 465 

were outside the parameter space above 96 % learning score (Table 3 and Figure 4A). The 466 

longitudinal average increase in learning rate and inverse temperature were mirrored by average 467 

increases in the learning scores, confirming our prediction that their parameters developed towards 468 

optimal value-based learning (arrow in Figure 4B). The one-step ahead predictions of the winning 469 

model captured children’s choices overall well, predictive accuracies were 65.3 % at wave 1 and 470 

75.7 % at wave 2 (Figure 4C). 471 

 472 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2023. ; https://doi.org/10.1101/2023.04.13.536699doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536699
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Longitudinal Changes in Value-based Learning in Middle Childhood 16 

 473 

Figure 4. (A) The model simulation depicts parameter combinations and simulation-based average 474 

learning scores. The cyan “X” in the middle top depicts the optimal parameter combination where 475 

average learning scores were at 96.5 %, and the cyan rectangle depicts the space of the fitted parameter 476 

combinations, (B) Enlarged view of the space of fitted parameter combinations. The colored arrows 477 

depict mean change (bold arrow) and individual change (transparent arrows) of the fitted parameters. 478 

The greyscale gradient-filled dots, that are connected by the arrows, depict the individual learning score, 479 

while the the greyscale gradient in the background depicts the simulated average learning score. The 480 

mean change reveals an overall change towards the higher, i.e., more optimal, learning scores. (C) One-481 

step-ahead posterior predictions of the winning model for each wave. The colored lines depict averaged 482 

trial-by-trial task behavior for each feedback condition, and a cyan ribbon indicates the 95% highest 483 

density interval of the one-step-ahead prediction using the entire posterior distribution. 484 

 485 

Longitudinal brain-cognition links  486 

 487 

Significant longitudinal change in brain and cognition. We first performed univariate LCS model 488 

analyses to estimate a latent change score of immediate and delayed learning scores as well as striatal 489 

and hippocampal volumes (see descriptive changes in Figure 5B-C). All four variables of interest 490 

showed significant positive mean changes and variances, and all univariate models provided a good fit 491 

to the data (Supplementary Material 5). This allowed us to further relate the differences in structural 492 

brain changes to changes in learning. 493 

 494 
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Hippocampal volume exhibited more protracted development during middle childhood. We next fitted 495 

a bivariate LCS model to compare striatal and hippocampal change scores. We theorized that by middle 496 

childhood, the striatum would be relatively mature, whereas the hippocampus continues to develop. We 497 

progressively constructed multiple LCS models to test this idea. First, the bivariate LCS model provided 498 

a good data fit (χ² (14) = 10.09, CFI = 1.00, RMSEA (CI) = 0 (0-.06), SRMR = .04). We then further 499 

fitted two constrained models, to see whether setting the mean striatal change or the mean hippocampal 500 

change to 0 would lead to a drop in the model fit. Compared to the unrestricted model, the constrained 501 

model that assumed no striatal change did not lead to a drop in model fit (𝛥χ² (1) = 2.74, p = .098), 502 

whereas the model that assumed hippocampal change dropped in model fit (𝛥χ² (1) = 12.69, p < .001). 503 

Finally, we tested a more stringent assumption of equal change for striatal and hippocampal volumes, 504 

in which the model dropped in model fit compared to the unrestricted model (𝛥χ² (1) = 18.04, p < .001) 505 

and suggests that striatal and hippocampal change differed. Together, these results support our 506 

postulation of separable maturational brain trajectories in our study sample, suggesting that the 507 

hippocampus continued to grow in middle childhood, whereas striatal volume increased less.  508 

 509 

Hippocampal and striatal volume showed distinct associations to learning. We fitted a four-variate LCS 510 

model to test our prediction of selective brain-cognition links. Specifically, we assumed a larger 511 

contribution of striatal volume at immediate learning, and a larger contribution of hippocampal volume 512 

at delayed learning. The LCS model provided good data fit (χ² (27) = 15.4, CFI = 1.00, RMSEA (CI) = 513 

0 (0 – .010, SRMR = .045), and all relevant paths are shown in Figure 5D (see Table 4 for a detailed 514 

model overview). For the striatal associations to cognition, we found that wave 1 striatal volume 515 

covaried with both immediate learning score and delayed learning score (𝜙HIJ!.,KH",!.= 0.19, z = 2.52, 516 

SE = 0.07, p = .012, 𝜙HIJ!.,KH/,!.= 0.18, z = 2.37, SE = 0.07, p = .018). Constraining the striatal 517 

association to immediate learning to 0 worsened the model fit relative to the unrestricted model (𝛥χ² (1) 518 

= 5.66, p = .017), which was the same when constraining the striatal association to delayed learning to 519 

0 (𝛥χ² (1) = 5.14, p = .023). In summary, larger striatal volume was associated with better learning 520 

scores for both immediate and better delayed feedback.  521 

Hippocampal volume, on the other hand, only covaried with delayed learning at wave 1 (𝜙LMN!.,KH/,!.= 522 

0.14, z = 2.05, SE = 0.07, p = .041), not with immediate learning score (𝜙LMN!.,KH",!.= 0.12, z = 1.68, 523 

SE = 0.07, p = .092). Fixing the path between hippocampal volume and delayed learning to 0 worsened 524 

the model fit relative to the unrestricted model (𝛥χ² (1) = 4.19, p = .041), but not when its path to 525 

immediate learning was constrained to 0 (𝛥χ² (1) = 2.94, p = .086). This suggests that larger hippocampal 526 

volume was spcifically associated with better delayed learning. As a next step, the associations between 527 

striatum and hippocampus to immediate or delayed learning was directly compared against each other. 528 

A model equal-constraining striatal and hippocampal paths to immediate learning (𝛥χ² (1) = 0.41, p 529 

= .521) and another model equal-constraining these paths to delayed learning (𝛥χ² (1) = 0.14, p = .707) 530 

did not lead to a worse model fit compared to the unrestricted model, which suggests that the brain-531 
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cognition links have considerable overlap. This is in line with the high wave 1 covariance and change-532 

change covariance within the brain and cognition domain (see Table 4). We found no longitudinal links 533 

between the brain and cognition domains, which suggests that the found brain-cognition links at wave 534 

1 remained longitudinally stable (see Supplementary Material 5 for an exploratory LCS model that 535 

related the model parameters to striatal and hippocampal volume).  536 

Taken together, the confirmatory LCS model results were in line with our predictions of a relatively 537 

larger involvement of the hippocampus during delayed feedback learning, but the findings on striatal 538 

volume disconfirmed a selective association with immediate feedback learning and suggest a more 539 

general role of the striatum in both learning conditions.  540 

 541 

Weak evidence for enhanced episodic memory during delayed feedback. Finally, we investigated 542 

whether a hippocampal contribution at delayed feedback would selectively enhance episodic memory. 543 

Episodic memory, as measured by individual corrected object recognition memory (hits - false alarms), 544 

showed at trend better memory for items shown in the delayed feedback condition (𝛽7..894#:+8.14;.8  545 

= .009, SE =.005, t = 1.83, p = .069, see Figure 5A). To summarize, there was weak support for enhanced 546 

episodic memory during delayed compared to immediate feedback, in line with the idea of a selective 547 

association between hippocampal volume and delayed feedback learning. 548 

 549 
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 550 
Figure 5. (A) Recognition memory (corrected recognition = hits - false alarms) for objects presented 551 

during delayed feedback was only enhanced at trend. (B) Learning scores depicted here were used in 552 

the LCS analyses. Learning scores were the model-derived choice probability of the contingent choice 553 

using fitted posterior parameters. (C) Hippocampal and striatal volumes increased between waves, while 554 

hippocampal volume increased most. (D) A four-variate latent change score (LCS) model that included 555 

striatal and hippocampal volumes as well as immediate and delayed learning scores. Depicted are 556 

significant paths cross-domain (brain-cognition, dashed lines) and within-domain (brain or cognition, 557 

solid lines), other paths are omitted for visual clarity and are summarized in Table 4. Depicted brain-558 

cognition links included 𝜙HIJ!.,KH"01,!. (covariance between striatal volume and immediate learning 559 

score at wave 1), as well as 𝜙LMN!.,KH/1+,!.  and 𝜙HIJ!.,KH/1+,!.(covariances between hippocampal and 560 

striatal volumes and delayed learning score at wave 1). Brain links included 𝜙HIJ!.,LMN!. and 561 

𝜌∆HIJ,∆LMN  (wave 1 covariance and change-change covariance), and similarly, cognition links included 562 

𝜙KH"01,!.,KH/1+,!.	 and  𝜌∆KH"01,∆KH/1+	 . Covariates included age, sex and estimated total intracranial 563 

volume. ** denotes significance at α < .001, * at α < .05. 564 

 565 
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Table 4. Parameter estimates of a four-variate latent change score model that includes brain (striatal and 566 

hippocampal volume) and cognition domains (immediate and delayed learning score) 567 

 𝑆𝑇𝑅 𝐿𝑆,() 𝐻𝑃𝐶 𝐿𝑆-)+ 

Model fit: χ² = 15.4, df = 27, CFI = 1, RMSEA (CI) = 0 (0-0.01), SRMR = 0.045 

Mean change ∆ 0.06* (0.03) 0.76** (0.08) 0.38** (0.04) 0.75** (0.08) 

wave 1 variance 𝜎 fixed to 1 fixed to 1 fixed to 1 fixed to 1 

change variance 𝜎∆ 0.07** (0.01) 0.88** (0.10) 0.18* (0.07) 0.83** (0.10) 

Intercept-change regression 𝛽 -0.04 (0.04) -0.83* (0.29) -0.16* (0.06) -0.73* (0.27) 

Wave 1 covariates     

age onto Intercept 𝜙 0.19 (0.10) -0.05 (0.08) 0.29* (0.08) 0.08 (0.08) 

sex onto Intercept 𝜙 -0.42** (0.07) -0.14 (0.07) -0.47** (0.07) -0.11 (0.07) 

eTIV onto Intercept 𝜙 0.68** (0.05) – 0.70** (0.05) – 

Brain-cognition links (cross-domain) 𝑆𝑇𝑅–𝐿𝑆,()  𝑆𝑇𝑅–𝐿𝑆-)+ 𝐻𝑃𝐶–𝐿𝑆,() 𝐻𝑃𝐶–𝐿𝑆-)+ 

wave 1 covariation 𝜙 0.19* (0.07) 0.18* (0.07) 0.12 (0.07) 0.14* (0.07) 

change-change covariance 𝜌 <0.01 (0.03) <0.01 (0.03) -0.06 (0.05) -0.07 (0.05) 

wave 1 brain onto cognition change 𝛾 0.25 (0.13) 0.22 (0.12) 0.05 (0.11) 0.06 (0.10) 

wave 1 cognition onto brain change	𝛾 -0.19 (0.13) 0.21 (0.13) 0.05 (0.10) <0.01 (0.10) 

Brain links (within-domain) 𝑆𝑇𝑅–𝐻𝑃𝐶    

wave 1 covariation	𝜙 0.53** (0.07)    

change-change covariance	𝜌 0.03* (0.01)    

wave 1 striatum onto hippocampal change	𝛾 0.06 (0.05)    

wave 1 hippocampus onto striatal change	𝛾 0.02 (0.03)    

Cognition links (within-domain) 𝐿𝑆,()– 𝐿𝑆-)+    

wave 1 covariation	𝜙 0.95** (0.10)    

change-change covariance	𝜌 0.82** (0.10)    

wave 1 𝐿𝑆,()into 𝐿𝑆-)+change	𝛾 -0.07 (0.27)    

wave 1 𝐿𝑆-)+into 𝐿𝑆,()change	𝛾 0.06 (0.28)    

Parameter estimates in bold are the paths of interest depicted in Figure 5D. Standard errors are shown in 568 

parentheses. eTIV = estimated total intracranial volume. ** denotes significance at α < .001, * at α < .05. sex 569 

coded as 1  =  girls, -1 =  boys. 570 

 571 

Discussion 572 

 573 

In this study, we examined the longitudinal development of value-based learning in middle childhood 574 

and its associations with striatal and hippocampal volumes that were predicted to differ by feedback 575 

timing. Children improved their learning in the 2-year study period. Behaviorally, learning was 576 

improved by an increase in accuracy and a reduction in reaction time (i.e., faster responses). Further, 577 

children’s switching behavior improved by an increase in win-stay and a decrease in lose-shift behavior. 578 
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Computationally, learning was enhanced by an increase in learning rate and inverse temperature, which 579 

together constituted more optimal value-based learning. Further, feedback timing modulated specifically 580 

the inverse temperature. In terms of brain structures, we found that longitudinal changes in hippocampal 581 

volume were larger compared to striatal volume, which suggests more protracted hippocampal 582 

maturation. The brain-cognition links were longitudinally stable and partially confirmed our hypotheses. 583 

In line with previous adult literature and our assumption, hippocampal volume was more strongly 584 

associated with delayed feedback learning, and there was weak evidence of enhanced episodic memory 585 

performance under delayed feedback compared to immediate feedback. Contrary to our expectations, 586 

striatal volume was associated with not just immediate but also delayed feedback learning, suggesting 587 

a common involvement of the striatum during value-based learning in middle childhood across 588 

timescales.  589 

 590 

Children’s learning improvement between waves was described behaviorally by increased win-stay and 591 

decreased lose-shift behavior. Our finding is in line with cross-sectional studies in the developmental 592 

literature that reported increased learning accuracy and win-stay behavior58,59. Our longitudinal dataset 593 

with younger children further suggests that learning change is not only accompanied by increased win-594 

stay, but also decreased lose-shift behavior. We found lower learning performance and less optimal 595 

switching behavior in girls compared to boys, which could point to sex differences for reinforcement 596 

learning during middle childhood (Supplementary Material 2). Previous studies have found both male 597 

and female advantages depending on their age and the type of learning task38,60,61. Alternatively, sex 598 

differences may have been driven by confounding variables not included in the analysis. 599 

Computationally, we found longitudinally increased and more optimal learning rate and inverse 600 

temperature, as shown by simulation data, that add to the growing literature of developmental 601 

reinforcement learning16. Our study underscores the importance of relating empirical values to 602 

simulation-based optimal values, as task characteristics such as reward probability and learning 603 

environment stability determine the range of optimal parameter values27. 604 

 605 

Despite a relatively immature hippocampal structure in middle childhood, our results confirmed a 606 

longitudinally stable association between hippocampal volume and delayed feedback learning. However, 607 

episodic memory in this learning condition was not enhanced. This suggests a developmentally early 608 

hippocampal contribution to value-based learning during delayed feedback, which does not modulate 609 

episodic memory as much as compared to adults. Therefore, our study partially extends the findings 610 

from the adult literature to middle childhood5,12–14. The reduced effect of delayed feedback on episodic 611 

memory may be due to the protracted development of hippocampal maturation. In an aging study with 612 

a similar task, older adults failed to exhibit enhanced episodic memory for objects presented during 613 

delayed feedback trials, and they showed no enhanced hippocampal activation during delayed feedback 614 

and14. Therefore, the findings converge nicely at both childhood and older adulthood, during which the 615 
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structural and functional integrity of hippocampus are known to be less optimal than at younger 616 

adulthood62–64. 617 

Our brain-cognition links were only partially confirmed, as striatal volumes exhibited associations with 618 

not just immediate learning scores, as we predicted, but also with delayed learning scores. This result 619 

suggests that the striatum may be important for value-based learning in general rather than exhibiting a 620 

selective association with immediate feedback learning. This is also what we found in an explorative 621 

analysis that related the striatum to learning rate in general and further predicted longitudinal change in 622 

learning rate (Supplemental Material 4). This overall reduced brain-behavior specificity could reflect 623 

less differentiated memory systems during development, similar to findings from aging research. Here, 624 

older adults exhibited stronger striatal and hippocampal co-activation during both implicit and explicit 625 

learning, compared to more dissociable brain-behavior relationships in younger adults65. Interestingly, 626 

even in young adults, clear dissociations between memory systems such as in non-human lesion studies 627 

are uncommon, and factors like stress modulate their cooperative interaction6,10,11,66,67. Further, there are 628 

methodological differences to previous studies that could explain why striatal volumes were not 629 

uniquely associated with immediate learning in our study. For example, previous studies related reward 630 

prediction errors to striatal and hippocampal activation5,13,14, whereas we examined individual 631 

differences in brain structure and the model-derived learning scores. Future functional neuroimaging 632 

studies with children could further clarify whether children’s memory systems are indeed less 633 

differentiated and explain the attenuated modulation by feedback timing. Taken together, compared to 634 

the adult literature, our results with children showed that the hippocampal structure was associated with 635 

delayed feedback learning, but did not enhance episodic memory encoding, while the striatum generally 636 

supported value-based learning. These findings point towards a developmental effect of less 637 

differentiated and more cooperative memory systems in middle childhood. 638 

 639 

Our computational modeling results revealed a separable effect of feedback timing on inverse 640 

temperature, which suggests that the memory systems modulated learning during decision-making. The 641 

reported behavioral differences in reaction time and their correlation to the inverse temperature further 642 

support the idea of a decision-related mechanism, as we found children to respond faster during delayed 643 

feedback trials and faster responding children also exhibited more value-guided choice behavior (i.e. 644 

higher inverse temperature) during delayed compared to immediate feedback. The hippocampus may 645 

contribute to a decision-related effect in the delayed feedback condition by facilitating the encoding and 646 

retrieval of learned values68. This is in contrast to previous event-related fMRI and EEG studies 647 

reporting feedback timing modulations at value update5,13,14, which may be due to at least two reasons. 648 

First, we did not include a functional brain measure to examine its differential engagement during the 649 

choice and feedback phases. Second, in such a reinforcement learning task, disentangling model 650 

parameters from the choice and feedback phases can be challenging, such as for the inverse temperature 651 

and outcome sensitivity69. Hippocampal engagement at delayed feedback may enhance outcome 652 
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sensitivity, as well as facilitate cue-choice associations and improve retrieval and choice behavior. A 653 

mechanism facilitating retrieval seems especially relevant in our paradigm, where multiple cues were 654 

learned and presented in a mixed order, thus creating a high memory load. To summarize, our study 655 

results suggest that feedback timing can modulate decision-making. However, disentangling the effects 656 

of inverse temperature and outcome sensitivity is challenging and warrants careful interpretation. Future 657 

studies might shed new light by examining neural activations at both task phases, and by choosing a 658 

task design that allows independent manipulations on these phases and associated model parameters, 659 

e.g., by using different reward magnitudes during reinforcement learning, or by studying outcome 660 

sensitivity without decision-making. 661 

 662 

One aim of developmental investigations is to identify the emergence of brain and cognition dynamics, 663 

such as the hippocampal-dependent and striatal-dependent memory systems, which have been shown to 664 

engage during reinforcement learning depending on the delay in feedback delivery. Our longitudinal 665 

study partially confirmed these brain-cognition links in middle childhood but with less specificity as 666 

previously found in adults.  667 

An early existing memory system dynamic, similar to that of adults, is relevant for applying 668 

reinforcement learning principles at different timescales. For example, in a school context, learning 669 

processes can be better structured according to their development. Furthermore, probabilistic learning 670 

from delayed feedback may be a potential diagnostic tool to examine the hippocampal-dependent 671 

memory system during learning in children at risk. Environmental factors such as stress11 and 672 

socioeconomic status39,70 have been shown to affect hippocampal structure and function and may 673 

contribute to a heightened risk for psychopathology in the long term71–73. Deficits in hippocampal-674 

dependent learning may be particularly relevant to psychopathology since dysfunctional behavior may 675 

arise from a tendency to prioritize short-term consequences over long-term ones74,75 and from the 676 

maladaptive application of previously learned behavior in inappropriate contexts76. 677 

Another key question is whether developmental trajectories observed cross-sectionally are also 678 

confirmed by longitudinal results, such as for the learning rate and inverse temperature. Our results show 679 

developmental improvements in these learning parameters in only two years. This suggests that the 680 

initial two years of schooling constitute a dynamic period for feedback-based learning, in which 681 

contingent feedback is important in shaping behavior and development.  682 

 683 

 684 

 685 

 686 

 687 

 688 
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