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Abstract: LFA-1 (Lymphocyte function-associated antigen-1) is a heterodimeric integrin (CD11a/CD18)
present on the surface of all leukocytes; it is essential for leukocyte recruitment to the site of tissue
inflammation, but also for other immunological processes such as T cell activation and formation
of the immunological synapse. Absent or dysfunctional expression of LFA-1, caused by mutations
in the ITGB2 (integrin subunit beta 2) gene, results in a rare immunodeficiency syndrome known
as Leukocyte adhesion deficiency type I (LAD I). Patients suffering from severe LAD I present with
recurrent infections of the skin and mucosa, as well as inflammatory symptoms complicating the
clinical course of the disease before and after allogeneic hematopoietic stem cell transplantation
(alloHSCT); alloHSCT is currently the only established curative treatment option. With this review,
we aim to provide an overview of the intrinsic role of inflammation in LAD I.

Keywords: inborn errors of immunity; inflammation; hematopoietic stem cell transplantation

1. LFA-1 and Primary Immunodeficiency Syndromes

Leukocyte adhesion and migration to the site of inflammation involve a well-defined
interplay between different selectins, chemokines, and integrins [1]. Up to now, four
primary immunodeficiency syndromes affecting the leukocyte adhesion cascade, Leukocyte
adhesion deficiency (LAD) types I-IV, have been described [2]. In this review, we focus on
LAD I (OMIM #116029).

LAD I is caused by mutations in the ITGB2 gene (21q22.3) encoding CD18, a β2
integrin, which builds heterodimeric cell surface receptors with the four α subunits CD11a,
CD11b, CD11c, and CD11d [3]. One heterodimer is LFA-1 (αLβ2, CD11a/CD18). αLβ2 is
expressed on all leukocytes, while αMβ2 (Mac-1, macrophage-1 antigen, CD11b/CD18),
αXβ2 (P150,95, CD11c/CD18), and αDβ2 (CD11d/CD18) are mainly expressed on myeloid
cells [4]. Since the β and α subunits pair intracellularly, a decreased or mutated β subunit
also leads to a decreased expression of the α subunit at the cell surface. All of the mentioned
dimers that share the β2 subunit were found to be affected in LAD I [5].

The complex CD11a/CD18 is called LFA-1, which is able to bind six ligands to mediate
leukocyte arrest and adhesion to the endothelium: ICAM-1, ICAM-2, ICAM-3, ICAM-4,
ICAM-5 (intercellular adhesion molecules 1–5), and JAM-A (junctional adhesion molecule
A) [6–9] (Figure 1). β1 integrins such as α4β1 (VLA-4, very late antigen 4) also participate
in leukocyte rolling and firm adhesion. Since VLA-4 is mainly expressed on monocytes
and T cells, but not on neutrophils, it is not able to compensate for the loss of β2 integrins
in LAD I [10,11].
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Figure 1. The leukocyte adhesion cascade. Inflammation leads to an activation of the endothelium 
by endogenous and exogenous stimuli. Selectins, expressed on the surface of activated endothelial 
cells, mediate rolling of the leukocytes on the luminal surface of the blood vessel. Interactions of the 
β2-integrin LFA-1 (lymphocyte function-associated antigen 1) and ICAM-1 and ICAM-2 (intercel-
lular adhesion molecule 1 and 2) enable leukocytes to adhere to the inflamed endothelium. Paracel-
lular and transcellular migration of the leukocytes through the vessel walls is then triggered by 
ligation of JAM-A (junctional adhesion molecule A), ICAM-1, and ICAM-2. In LAD I, absent or de-
fective expression of β2-integrins results in an impaired transmigration of leukocytes. 

Patients suffering from LAD I, often characterized by less than 2% CD18 expression 
on the neutrophils due to bi-allelic mutations in ITGB2, present with granulocytosis, de-
layed detachment of the umbilical cord, inflammatory complications, and recurrent infec-
tions of the skin and mucosa without pus formation [12] (Figure 2). Patients with a less 
severe course of the disease might survive to adulthood and develop periodontitis and 
bone loss as primarily inflammatory complications of the disease, rather than infections 
per se [13]. Moutsopoulos et al. [14] found an elevated IL-23 (interleukin-23) and IL-17 
(interleukin-17) signature at inflamed sites and treated one adult LAD I patient with the 
monoclonal anti-IL12/IL-23 antibody ustekinumab, successfully ameliorating his inflam-
matory symptoms without exacerbating his infections. For severely affected patients, 
alloHSCT remains the only available curative treatment option. If untreated, survival to 
the age of two years for patients with severe LAD I was reported to be about 39%, sum-
marized in a review of all published LAD I cases between 1975 and 2017 [15]. A recently 
introduced lentiviral-mediated gene therapy for patients with severe LAD I by Rocket 
Pharmaceuticals demonstrated safety and efficacy in phase 1 clinical trials and, thus, may 
be able to provide an alternative to alloHSCT in the future [16]. 

Figure 1. The leukocyte adhesion cascade. Inflammation leads to an activation of the endothelium
by endogenous and exogenous stimuli. Selectins, expressed on the surface of activated endothelial
cells, mediate rolling of the leukocytes on the luminal surface of the blood vessel. Interactions of the
β2-integrin LFA-1 (lymphocyte function-associated antigen 1) and ICAM-1 and ICAM-2 (intercellular
adhesion molecule 1 and 2) enable leukocytes to adhere to the inflamed endothelium. Paracellular
and transcellular migration of the leukocytes through the vessel walls is then triggered by ligation
of JAM-A (junctional adhesion molecule A), ICAM-1, and ICAM-2. In LAD I, absent or defective
expression of β2-integrins results in an impaired transmigration of leukocytes.

Patients suffering from LAD I, often characterized by less than 2% CD18 expression on
the neutrophils due to bi-allelic mutations in ITGB2, present with granulocytosis, delayed
detachment of the umbilical cord, inflammatory complications, and recurrent infections
of the skin and mucosa without pus formation [12] (Figure 2). Patients with a less severe
course of the disease might survive to adulthood and develop periodontitis and bone loss
as primarily inflammatory complications of the disease, rather than infections per se [13].
Moutsopoulos et al. [14] found an elevated IL-23 (interleukin-23) and IL-17 (interleukin-17)
signature at inflamed sites and treated one adult LAD I patient with the monoclonal anti-
IL12/IL-23 antibody ustekinumab, successfully ameliorating his inflammatory symptoms
without exacerbating his infections. For severely affected patients, alloHSCT remains
the only available curative treatment option. If untreated, survival to the age of two
years for patients with severe LAD I was reported to be about 39%, summarized in a
review of all published LAD I cases between 1975 and 2017 [15]. A recently introduced
lentiviral-mediated gene therapy for patients with severe LAD I by Rocket Pharmaceuticals
demonstrated safety and efficacy in phase 1 clinical trials and, thus, may be able to provide
an alternative to alloHSCT in the future [16].

LAD II results from mutations in the SLC35C1 gene encoding a specific GDP-fucose
transporter in the Golgi apparatus. Fucosylated oligosaccharides play an essential role in
selectin ligand recognition, whereas β2 integrin expression and function are not impaired
in LAD II. Neutrophils of affected patients are unable to roll on activated endothelial
cells [17,18]. Patients show syndromic features, severe growth retardation, recurrent
bacterial infections, and the Bombay blood group [19].
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Figure 2. Clinical signs. Lesions of the skin and mucosa without pus formation in a patient with 
severe LAD I. 

LAD II results from mutations in the SLC35C1 gene encoding a specific GDP-fucose 
transporter in the Golgi apparatus. Fucosylated oligosaccharides play an essential role in 
selectin ligand recognition, whereas β2 integrin expression and function are not impaired 
in LAD II. Neutrophils of affected patients are unable to roll on activated endothelial cells 
[17,18]. Patients show syndromic features, severe growth retardation, recurrent bacterial 
infections, and the Bombay blood group [19]. 

The underlying defects in LAD III are mutations in the FERMT3 gene encoding 
Kindlin-3 that regulates the activation of all integrins on immune cells and thrombocytes. 
By binding the kindlins to the β integrin tails, platelets shift to a high-affinity state [20]. It 
has been shown that the conformational activation and adhesiveness of LFA-1 on Kindlin-
3-null T and B cells is impaired [21]. LAD III is characterized by a Glanzmann-type bleed-
ing syndrome and in some reported cases involved malignant infantile osteopetrosis 
[22,23].  

In addition to that, Sorio et al. [24] found a specific monocyte adhesion deficiency 
caused by gene mutations in the CFTR gene of patients with cystic fibrosis (CF) and called 
it LAD IV. In CF monocytes, the activation of RhoA (Ras homolog gene family member 
A) and CDC42 (cell division control protein 42) are defective, resulting in an impaired 
integrin activation [25]. Therapeutic strategies include supportive antimicrobial treat-
ment, local wound management, enzyme replacement for LAD II, CFTR-correcting drugs 
for LAD IV, and alloHSCT, HSCT being the only available curative treatment option at 
the moment for LAD I and III.  

In a joint effort with the European Society for Blood and Bone Marrow Transplanta-
tion (EBMT), we analyzed data of 84 LAD I and LAD III patients from 33 centers who 
underwent alloHSCT in the years 2007 to 2017. The 3-year overall survival was 83% for 
the entire cohort, being superior in patients having a matched sibling donor or a 10/10 
matched unrelated donor and being younger than 1 year. Nevertheless, the event-free 
survival rate in this cohort, i.e., being a survivor without graft failure or graft-versus-host 
disease (GVHD), was only 58% for LAD I patients and 56% for LAD III patients. Despite 
high transplant standards, a significant percentage of patients suffered from graft failure 
or GVHD as well as inflammatory complications during the course of alloHSCT. The cu-
mulative incidence for primary and secondary graft failure at 36 months after HSCT was 
17%, while the cumulative incidence for severe acute GVHD grade II-IV was 24% after 
100 days. While most of the patients with graft failure could be rescued with a second 
transplant, acute GVHD was a significant cause of death [26]. 

Figure 2. Clinical signs. Lesions of the skin and mucosa without pus formation in a patient with
severe LAD I.

The underlying defects in LAD III are mutations in the FERMT3 gene encoding
Kindlin-3 that regulates the activation of all integrins on immune cells and thrombocytes.
By binding the kindlins to the β integrin tails, platelets shift to a high-affinity state [20]. It
has been shown that the conformational activation and adhesiveness of LFA-1 on Kindlin-3-
null T and B cells is impaired [21]. LAD III is characterized by a Glanzmann-type bleeding
syndrome and in some reported cases involved malignant infantile osteopetrosis [22,23].

In addition to that, Sorio et al. [24] found a specific monocyte adhesion deficiency
caused by gene mutations in the CFTR gene of patients with cystic fibrosis (CF) and called
it LAD IV. In CF monocytes, the activation of RhoA (Ras homolog gene family member A)
and CDC42 (cell division control protein 42) are defective, resulting in an impaired integrin
activation [25]. Therapeutic strategies include supportive antimicrobial treatment, local
wound management, enzyme replacement for LAD II, CFTR-correcting drugs for LAD IV,
and alloHSCT, HSCT being the only available curative treatment option at the moment for
LAD I and III.

In a joint effort with the European Society for Blood and Bone Marrow Transplantation
(EBMT), we analyzed data of 84 LAD I and LAD III patients from 33 centers who underwent
alloHSCT in the years 2007 to 2017. The 3-year overall survival was 83% for the entire
cohort, being superior in patients having a matched sibling donor or a 10/10 matched
unrelated donor and being younger than 1 year. Nevertheless, the event-free survival rate in
this cohort, i.e., being a survivor without graft failure or graft-versus-host disease (GVHD),
was only 58% for LAD I patients and 56% for LAD III patients. Despite high transplant
standards, a significant percentage of patients suffered from graft failure or GVHD as well
as inflammatory complications during the course of alloHSCT. The cumulative incidence
for primary and secondary graft failure at 36 months after HSCT was 17%, while the
cumulative incidence for severe acute GVHD grade II-IV was 24% after 100 days. While
most of the patients with graft failure could be rescued with a second transplant, acute
GVHD was a significant cause of death [26].

Based on our data and findings by Moutsopoulos et al. [14], we postulated that
the inflammatory microenvironment caused by LAD may be responsible for the distinct
inflammatory complications during alloHSCT. The question of an anti-inflammatory pre-
treatment remains to be investigated further. With this review, we aim to provide an
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overview of the intrinsic role of inflammation in LAD I based on the available literature via
PubMed searches.

2. Structure of LFA-1 and Important Mutations in LAD I

Integrins are the major receptors for mediating cell–cell interactions, adhesion to the
extracellular matrix, and activation of many intracellular signaling pathways. In humans,
eight β subunits can associate with eighteen α subunits to form a total of twenty-four
distinct heterodimeric integrins [27]. Each integrin subunit consists of a long glycosylated
extracellular domain, a transmembrane domain, and a short intracellular domain, localized
in the cytoplasm [28]. The adhesiveness and signaling function of integrins can be regulated
by processes called inside-out and outside-in signaling. Inside-out signaling leads to
conformational changes in integrins by the activation of intracellular signaling pathways
subsequent to the binding of chemokines and cytokines to their receptors. In this way, the
integrin is converted from a folded, inactive, low-affinity or resting state to an extended,
high-affinity form [29]. Outside-in signaling refers to integrin activation induced by the
binding of extracellular ligands [30].

LFA-1 has three alternative conformational states. The bent, low-affinity state has
the headpiece close to the plasma membrane, while the intermediate state, with straight-
ened extracellular leg domains, has a closed headpiece. The high-affinity state has an
extended extracellular domain and an opened headpiece allowing interaction with its
ligands [31,32] (Figure 3).
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As mentioned earlier, LAD I is caused by mutations in the ITGB2 gene, which en-
codes the β2 integrin. The ITGB2 gene is located at 21q22.3 and spans a region of 40 kb 
which can be divided into 16 exons. Van de Vijver et al. [34] summarized a total of 86 
allelic mutations in 123 patients; most of the point mutations were found in the β1-do-

Figure 3. Conformational states of LFA-1 (adapted from Walling et al. [33]). LFA-1 exists in three
different conformational states: The low-affinity state (bent-closed) with the headpiece close to
the plasma membrane, the intermediate affinity state (extended-closed) with straightened legs,
and a closed headpiece and the high-affinity state (extended-open) with extended legs and an
open headpiece.

As mentioned earlier, LAD I is caused by mutations in the ITGB2 gene, which encodes
the β2 integrin. The ITGB2 gene is located at 21q22.3 and spans a region of 40 kb which
can be divided into 16 exons. Van de Vijver et al. [34] summarized a total of 86 allelic
mutations in 123 patients; most of the point mutations were found in the β1-domain, coded
for by exons 5–9 of the ITGB2 gene, which builds the ligand-binding site together with the
α-subunit. Other regions for missense mutations in the β2 subunit comprise the last two
cysteine-rich repeats, which provide structural stability and are encoded by exon 13 [35].
In a large Indian cohort of LAD I patients, Sanger sequencing of the ITGB2 gene identified
57 mutations in 105 patients; 54% of these mutations were located in exons 5–9, with most
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of them being clustered in exons 6 and 7, followed by 32% of mutations in the cysteine-rich
repeat region. Most of the mutations were missense (40%) [36] (Figure 4).
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Most point mutations are located in the β1 domain (orange) and the cysteine-rich
domain (yellow-green) of CD18.

3. LFA-1 and Its Interacting Partners

Leukocyte rolling and adhesion on the endothelial layers are mediated by the binding
of LFA-1 to its ligands of the immunoglobulin superfamily, ICAM-1, ICAM-2, ICAM-3,
ICAM-4, and ICAM-5, as well as JAM-A, which are expressed on the luminal surface of
activated endothelial cells during inflammation [6,7,9] (Figure 1). ICAM-1 is normally
expressed at low levels and can be upregulated by several proinflammatory cytokines such
as TNF-α (tumor necrosis factor alpha) or IL-1β (interleukin 1 beta), whereas ICAM-2 is
expressed at stable levels on endothelial cells and does not show induction upon stim-
ulation [39,40]. ICAM-3 is highly expressed in all leukocytes and has been shown to be
expressed on the surface of apoptotic leukocytes, which can then be identified and phago-
cytosed by macrophages [41,42]. ICAM-4, formerly known as the LW (Landsteiner–Wiener)
blood group antigen, is a glycoprotein exclusively expressed on red blood cells and ery-
throid precursor cells, while ICAM-5, also called Telencephalin, is expressed in the central
nervous system [43,44]. JAM-A has also been identified to contribute to the transendothelial
migration of neutrophils and T cells by binding to LFA-1 [9].

LFA-1 is strongly expressed by T-lymphocytes and is essential for T cell recruitment to
inflammatory sites and T cell activation by binding to ICAM-1 on endothelial or antigen-
presenting cells to form an immunological synapse [45]. Numerous positive regulators
of LFA-1 activation such as Talin, RapL (regulator of adhesion and cell polarity enriched
in lymphoid tissues/Nore 1B, Rassf5), ADAP (adhesion and degranulation-promoting
adapter protein), SKAP55 (Src kinase-associated phosphoprotein of 55kDa), and MST1
(macrophage stimulating 1) have been reported [46]. Another important effector for integrin
activation is Kindlin-3, which is mutated in LAD III and leads to life-threatening infections
and bleeding complications [21,47]. LFA-1 on regulatory T cells (Tregs) is essential for
their suppressor function. Similar to Tregs from LFA-1-deficient patients, the blocking of
LFA-1 on Tregs with anti-CD18 or anti-CD11a antibodies leads to an impaired suppression
of mouse T cell activation and proliferation [48]. LFA-1 expressed on cytotoxic T cells
mediates the induction of apoptosis of target cells [49]. Aside from VLA-4 and PSGL1
(P-selectin glycoprotein ligand 1), LFA-1 is strongly expressed on memory T cells, and
the combination of several adhesion molecules on the surface allows T cells to migrate
to different peripheral sites [50]. On NK cells, LFA-1 is involved in activation and lytic
synapse formation [51].

During B cell synapse formation, it has been shown that the interaction of LFA-1 with
its ligand ICAM-1 is able to increase the adhesion capacity of B cells; thus, lower antigen
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amounts are needed for B cell activation [52]. In an autoimmune mouse model, the highest
expression of LFA-1 was found on memory B cells. The use of blocking antibodies against
LFA-1 and VLA-4 led to a release of memory B cells from the spleen to the peripheral blood,
suggesting a role for integrins in B cell trafficking [53]. Myeloid cells such as monocytes
and neutrophils use Mac-1 and LFA-1 for crawling in activated venules. While neutrophils
mainly use Mac-1, monocytes switch between LFA-1 and Mac-1 [54].

4. LFA-I and Neutrophil Function beyond the Antimicrobial Defense

For many years, neutrophils were only recognized as the main anti-microbial effector
cells of the innate immune system, but in the last decade, several immunomodulatory
functions have been attributed to them.

As neutrophils are relatively short-lived cells that are generated and released from the
bone marrow at a rate of 1011 per day, fine regulatory mechanisms are needed to maintain
neutrophil homeostasis in the human body [55]. One major promoter of neutrophil produc-
tion, differentiation, and their release from the bone marrow into the circulation is G-CSF
(granulocyte colony-stimulating factor) [56]. In response to several stimuli and cytokines,
including LPS (lipopolysaccharide), TNF-α, IFN-γ (interferon-γ), IL-3 (interleukin 3), and
GM-CSF (granulocyte-macrophage colony-stimulating factor), G-CSF is produced by mono-
cytes, macrophages, and fibroblasts [57]. Upstream, the cytokine IL-17 (interleukin 17)
regulates granulopoiesis by inducing G-CSF and suppressing inhibitors of the leukocyte
adhesion cascade such as Del-1 (developmental endothelial locus-1) [58]. When fibroblasts
are cultured in the presence of IL-17, the proliferation of CD34+ progenitors and their
maturation into neutrophils are maintained [59]. Furthermore, IL-17 is known to induce
a series of proinflammatory cytokines and the expression of ICAM-1 [60]. IL-17 itself is
regulated by IL-23, which is mainly produced by dendritic cells and macrophages [61].

Similar to patients with LAD I, mice deficient in leukocyte adhesion molecules display
neutrophilia [62]. The first explanation to be derived for this condition was the passive
accumulation theory, which was based on impaired neutrophil migration out of the blood
vessel to peripheral tissues and enhanced neutrophil survival.

Forlow et al. [63] investigated the underlying mechanisms of high neutrophil counts
in leukocyte adhesion-deficient mice and generated chimeric mice with different ratios
of CD18+/+ and CD18−/− circulating neutrophils. The presence of only 10% CD18+/+
neutrophils was sufficient to prevent neutrophilia in CD18−/− mice, indicating that the
intravascular accumulation of poorly adherent neutrophils is not the only cause of the
high neutrophil levels. They also found significantly elevated serum and plasma levels
of G-CSF and IL-17 in CD18−/− mice corresponding to the levels of neutrophilia in
these mice. Another study showed that the lifespan of CD18-deficient neutrophils in
the blood circulation and in the bone marrow was not increased compared to wild-type
neutrophils [64].

From observations in LFA-1-deficient mice, the concept of a feedback loop called the
“neurostat”, which measures and regulates neutrophil numbers, was introduced. According
to this model, phagocytosis of apoptotic neutrophils in peripheral tissues downregulates
IL-23 secretion from macrophages and dendritic cells, which results in reduced IL-17 and G-
CSF expression of Th17 cells. In adhesion molecule-deficient mice, the impaired migration
of neutrophils out of the blood and the reduced neutrophil uptake by macrophages leads
to high levels of IL-23 and, subsequently, elevated IL-17 and G-CSF [65]. The incubation of
CD18−/− splenocytes with rIL-23 was observed to stimulate IL-17 production in a dose-
dependent manner. In contrast, when CD18−/− splenocytes were co-cultured with LPS-
stimulated dendritic cells and an antibody against IL-23 was added, IL-17 production was
inhibited. In addition, the transfer of wild-type bone marrow neutrophils into CD18−/−
mice significantly decreased IL-23 expression and the serum IL-17 levels were reduced
by 52% [66].
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5. LFA-I and the IL-12/IL-23 Pathway

The intrinsic role of inflammation in LAD I has been discussed in several human and
animal models of the disease.

As mentioned earlier, LAD I is associated with periodontitis and inflammatory bone
loss. Whilst oral infections have been linked to impaired neutrophil surveillance in the
periodontal tissue for many years, Moutsopoulos et al. [13] recognized the involvement of
the IL-23/IL-17 axis in LAD I. They found an excessive production of mainly T cell-derived
IL-17 and an elevated expression of cytokines associated with the induction of IL-17, such
as IL-1β, IL-6, and IL-23, in the inflammatory lesions of the gingival tissue of LAD I patients
and LFA-1 knockout mice. Furthermore, chemokines or cytokines that are involved in
granulopoiesis and neutrophil recruitment, such as G-CSF, CXCL2 (C-X-C motif chemokine
ligand 2), and CXCL5 (C-X-C motif chemokine ligand 5), were also upregulated.

PCR-based quantification of the bacterial load in the gingival tissue showed no dif-
ferences between LAD I patients and healthy controls, whereas LFA-1 knockout mice
displayed higher periodontal bacterial counts than wild-type controls. In LFA-1 knockout
mice being treated with anti-IL17A antibody or anti-IL23p19 antibody, the expression of
IL-17 was diminished, and the mice were protected from inflammatory bone loss. They also
exhibited a lower bacterial burden, suggesting not only an anti-inflammatory but also an
anti-microbial effect of the antibodies. Further exploration of the subgingival microbiome
has revealed differences between healthy and LAD I patients. The subgingival LAD I
plaques and their products, such as lipopolysaccharide (LPS), are able to trigger IL-23 re-
sponses in vitro and in vivo [67]. The authors reported a 19-year-old male with LAD I who
suffered from severe periodontitis as well as large sacral lesions and recurrent infections.
Staining and flow cytometric analysis of the inflamed sites revealed dense infiltrates of
IL-17-producing cells within the lesions. Targeting IL-17 via a blockade of the IL-23/IL-17
axis with the IL-12/IL-23 antibody ustekinumab led to the dramatic improvement of the
oral inflammation and the sacral wound [14].

Chronic colitis, resembling Crohn’s disease, with extensive inflammation and ulcer-
ation of the terminal ileum due to impaired neutrophil function, has been reported to be
another inflammatory complication in LAD I patients [68,69]. In an observational study,
the use of ustekinumab was found to be efficacious and safe in children with inflammatory
bowel disease [70].

6. Druggable Targets in LAD I

Moutsopoulos et al. [14] could show that the overexpression of the proinflammatory
cytokines IL-23 and IL-17 in LAD I-associated periodontitis and blocking of the p40 sub-
unit of IL-23/IL-12 via ustekinumab led to a resolution of the inflammatory lesions and
diminished IL-17 levels. In a recent study, the group treated CD18−/− mice with agonists
of the transcription factors LXRα/LXRβ (liver X receptors α/β) and PPAR β/δ (peroxi-
some proliferator-activated receptors β/δ) which are known to promote the resolution of
inflammation by the regulation of efferocytosis and neutrophil homeostasis [71,72]. Indeed,
pharmacological induction of these receptors resulted in decreased expression of IL-23 and
IL-17 and improved bone levels in CD18−/− mice [73].

Marsili et al. [74] report the case of a twelve-year-old girl with LAD I and Crohn’s-like
colitis and arthritis who was treated with the monoclonal anti-TNF-α antibody infliximab
due to a poor response to conventional therapy with prednisolone and mesalamine. After
30 months of treatment, the inflammatory symptoms improved and no relevant side effects
occurred (Table 1), (Figure 5).
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Table 1. Druggable targets in LAD-1.

Drug Target Mechanism Results

Ustekinumab IL-23/IL-12 Binds p40 subunit and blocks
IL12/IL23 receptor interaction

Decreased IL-17 levels, resolution of
inflammatory lesions in an adult patient

LXRα/LXRβ agonist LXRα/LXRβ Activation of LXR promotes clearance
of apoptotic cells in macrophages

Decreased IL-23 and IL-17, improved
bone levels in CD18−/− mice (71)

PPARβ/δ agonist PPARβ/δ Activation of PPAR leads to
regulation of efferocytosis

Decreased IL-23 and IL-17, improved
bone levels in CD18−/− mice (72)

Infliximab TNF-α Binds and neutralizes TNF-α Improvement of Crohn’s-like colitis and
arthritis in LAD 1 patient (74)
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Figure 5. Inflammatory aspects of LAD I (adapted from Hajishengallis et al. [75]) Impaired migration
of CD18-deficient neutrophils to the tissue leads to a disruption of neutrophil homeostasis in LAD I.
This triggers the overproduction of IL-23 by macrophages and dendritic cells and downstream IL-17
produced by Th17-cells. IL-17 induces the production of G-CSF by fibroblasts, which results in
excessive production and release of neutrophils from the bone marrow to the peripheral blood. The
use of pharmacological inducers of neutrophil homeostasis regulators (LXRα/LXRβ and PPAR β/δ)
and IL12/IL23 via Ustekinumab succeeded to cut off this inflammatory cascade.

Putting aside the inflammatory aspects of LAD I, the therapeutic targeting of integrins,
due to their involvement in leukocyte recruitment in inflammatory diseases, has been
subject to several studies. Efalizumab, a monoclonal antibody against CD11a which
blocks the interaction of LFA-1 and its ligand, ICAM-1, has been shown to ameliorate
psoriatic skin lesions, but it was not effective in the treatment of psoriatic arthritis [76]. In
2009, the antibody was withdrawn from the market because of an increased risk of John
Cunningham (JC) polyomavirus reactivation and the development of progressive multifocal
leukoencephalopathy (PML) [77]. Natalizumab, an antibody that targets the α4-integrin
subunit, has been approved for the treatment of relapsing multiple sclerosis and Crohn’s
disease; however, this has also shown adverse events such as JC (human polyomavirus 2)
virus reactivation, indicating a multifaceted role for integrins in the immune system [78,79].
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7. Conclusions and Perspectives

LFA-1 is critical for mediating leukocyte adhesion, trafficking, and forming a synapse
between different immune cells. Patients suffering from LAD I have dysfunctional or
absent integrins, which not only lead to infectious problems caused by impaired neutrophil
recruitment but also trigger inflammatory complications, even during the procedure of an
alloHSCT. With a better understanding of the underlying cellular mechanisms, the identifi-
cation of new therapeutic targets may be possible. Detailed bioinformatic analyses such as
proteomics and deep RNA sequencing data are not yet available for LAD I; nevertheless,
their advent should help identify new and better targets.
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