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REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

In their exciting study, Yiling Yang and colleagues examine population responses in monkey visual 

cortex. They find that responses can be ordered sequentially and that these sequences across variants of 

the task in which the latency and absolute intensities are parametrically manipulated. The fact that the 

dilation factor of the sequences did not change linearly with ramp duration is used to support the model 

that sequences may be the result of ‘priors’ or existent cortical wiring. Consistent with the involvement 

of recurrent cortical networks shaped by experience, the authors also found that normal stimuli resulted 

in faster and more robust responses than morphed or scrambled images. They also perform a simple 

‘proof of concept’ recurrent network model and find that STDP leads to stimulus-specific response 

sequences. 

Overall, I really liked this paper, and I can only suggest a few minor tweaks that can help to improve 

upon this work. It is well-written, broadly important, and timely – and I think it should be published in 

Nature Communications without much further modification. 

SUGGESTIONS: 

It would be helpful to have more information concerning the data sets used for each figure. How many 

neurons were analyzed? How many sessions? Where were these neurons recorded? On this last point, I 

had assumed that Figures 1 & 2 were performed in V1, but the statement on Ln. 312 (‘because these 

results were obtained in a higher visual area’) suggests otherwise. 

I would appreciate if population data from multiple single trials (maybe 10?) were presented to better 

appreciate the stability of the rank order of neurons across trials. I was envisioning something like an 

experimental version of Figure 4B. 

The result about the persistence of the responses seems only peripherally related to the rest of the 

narrative. The authors should either try to integrate this section into the abstract and the discussion or 

drop it altogether. More broadly, it seems fitting that the story ends with the model (as is the case in the 

abstract). 

The affiliation numbers for the authors do not appear to be correct. 

A few relevant papers should be cited here: Rajan et al., Neuron, 2016 (a highly influential review on 

recurrent models and sequences); Kim et al., PNAS, 2016 (a demonstration that sequences can be 

experimentally established with experience); Elmaleh et al., Neuron, 2021 (a dissection of local and long-

range influences on sequence generation in the songbird). 

Ln. 184 – is Figure 1f the correct one to reference here? 

Figure 1 – the gray tones for low and high intensity are very difficult to distinguish. 

Ln. 234 – should be ‘led’ not ‘lead’ 



Ln. 304 – why is the decoding accuracy higher for the fast ramp than the slow ramp condition? 

Ln. 310 – authors should measure (if possible) whether the unnatural stimuli result in a less precisely 

timed sequence 

The PCA plots in Figure 6A are difficult to parse. Can the three conditions be plotted separately? 

Reviewer #2 (Remarks to the Author): 

The basic ideas behind this paper are important and timely. They are right to point out that the vast 

majority of work in artificial neural networks uses models that have no interesting dynamics – 

processing is typically limited to feedforward propagation of floating-point numbers that are supposed 

to correspond to the firing rates of neurons. A seven-layer network such as AlexNet will process an 

image in exactly 7 (massively parallel) steps. And there is nothing of interest to learn from the dynamics. 

Some labs, including DiCarlo’s lab at MIT have reported that, unlike artificial networks, real networks 

show interesting dynamics that would not be explained by purely feedforward mechanisms. And they 

have argued that this is because of recurrent connectivity. 

In the current paper, the authors make a similar claim. They describe interesting and reliable sequences 

of activation to both flashed images and images that are progressively ramped on either relatively 

quickly (over 500 ms) or more slowly (over 1 second). The data is certainly very interesting, and it is true 

that very few researchers have bothered to look for such phenomena. 

My main problem with the paper as it stands is that they use these reliable sequences to argue that this 

can only be explained by recurrent connectivity within the cortex – much as DiCarlo has done. 

But the problem is that even a simple feedforward spiking circuit will show reliable latency differences 

depending on physical characteristics of the stimulus. Remarkably, such latency variations were visible in 

the very first recordings of spiking activity from the optic nerve by Lord Adrian in 1927, but ignored by 

the vast majority of neurophysiologists for decades. However, a paper by Gollisch and Meister (Science, 

2008) showed that the relative timing of spikes in retinal ganglion cells can be reliably used to transmit 

information. Contrast sensitive variations in latency are accepted as the explanation of the well-known 

Pulfrich Pendulum phenomenon – lowering contrast increases latency. Unless the authors think that this 

requires recurrent connections in the retina, I presume that they would have to agree that their claim in 

the discussion that there is “no experimental evidence for feedforward mechanisms capable of 

generating reliable sequence-based information” is simply not true. 



For me, is seems clear that, even without any learning, and without any recurrent connections, you 

would expect that there would be reliable information in the relative order of firing across neurons. The 

authors admit that in the auditory system, temporal information is used (for sound localization), so it 

would be surprising if such phenomena were not also true for vision. And they cite a large number of 

studies in several sensory modalities that demonstrate temporal information. 

The authors belief that temporal sequences imply recurrent processing is made clear in the final 

conclusion where they argue that “the cerebral cortex complements the feedforward processing of rate-

coded information by exploiting the dynamics of recurrent networks to generate a temporal code…”. Do 

they really believe that a feedforward spiking network has no dynamics? 

So, while the authors have done a great service to the community by looking in detail at the information 

that is contained in temporal dynamics, they overstep the mark by arguing that their findings can only 

be explained by recurrent processing. 

To be clear, recurrent connections may indeed be very important and interesting to study, and those 

connections could indeed reflect learned information about stimuli. But even feedforward networks can 

learn. For example, Masquelier and Thorpe (PLoS 2007) showed that neurons equipped with STDP can 

become selective to faces and motorcycles even in purely feedforward networks. Furthermore, STDP 

leads to neurons responding faster and more reliably with repeated stimulation – exactly as they 

present authors note. But, again, no need for recurrent architectures. 

The analysis based on the differences in the precise sequence with the three different types of stimulus 

was weak. Yes, they can rule out a simple model where a feedforward network of neurons with 

thresholds for firing that are fixed at a particular value of physical contrast. That is clearly not a good 

model. But the time to reach threshold for a leaky integrate and fire neuron depends on many factors. 

Changing the leakage will increase the time taken to reach threshold and produce all sorts of non-

linearities that could also be consistent with those changes. 

Overall, I found the conclusion that the “temporal sequences observed in the experiments resulted from 

interactions in a recurrent network in which the strengths of the coupling connections had been shaped 

by experience” too strong. The fact is that reliable temporal sequences to flashed or ramped stimuli 

would be obtained even in a feedforward neural network model with no recurrent connections. The 

main reason that such effects are not observed in the vast majority of current neural network models is 

that those models typically do not have spikes – they send floating point numbers that supposedly 

represent the neuron’s firing rate instantaneously, totally removing the dynamics that immediately 

become interesting as soon as you start to take spiking seriously. Interesting dynamics, like the ones 

shown here, are not only limited to recurrent networks. 



All this is rather regrettable, because as I stated, I think that this is a really interesting and original study. 

If the authors were to accept that feedforward networks can also have interesting dynamics, then I 

would be much happier to recommend publication. 

I have a number of other comments. 

Firstly, it was very unclear whether any of the channels corresponded to single neurons, or whether all 

the recordings were multiunit. If they can distinguish between these options, it would be interesting to 

see whether a small number of single units (rather than multiunit channels) could allow even more 

precise decoding. Indeed, to make the point, if you were to record from just 4 individual cells and looked 

at the ordering of firing, you would have 4! (24) different orders. In principle, those four cells could 

classify up to 24 different images. 

Given the power of rank order coding, it is really unfortunate that the data set was collected with just 3 

images – well below the number that could be decoded with just four neurons. 

Using a small number of repeated images also makes it highly likely that the visual system could have 

learned about the statistics of those particular images, and this makes it harder to make conclusions 

about how the system would respond to unpredictable images. It would have been useful to have a 

condition where random images (selected from the ImageNet database for example) were shown. 

Would such images produce more (or perhaps less) neural activity than the highly predictable images 

used in the study? Would the authors predict that only the familiar stimuli would show interesting 

sequences? If they authors have any such data, it would greatly enhance the value of the data. My bet is 

that even a totally novel natural image would show clear and reliable sequences of activation. It might 

even show better reliability than scrambled images (as demonstrated here) but with no need for 

learning at all. 

The use of just 3 stimuli also markedly reduces the power of the analysis. The decoder never has to 

choose between more than 3 stimuli and makes judgment in favor of one of the stimuli even when 

nothing is present. I would have preferred an analysis where the system had to initiate a three-choice 

response when there was enough information to conclude that a stimulus had been presented, and not 

simply choose which of the three stimuli is the most likely at every instant. 

In the modelling study, I was puzzled by the statement that “Already at the beginning of training the 

networks produced sequences but that they were highly variable”. What would cause that variability? 

Was noise added to the activity? I would have thought that even the simplest neural model of center-



surround receptive fields in the retina would have latencies that would vary depending on the stimulus 

because higher local contrast lead to shorter latencies. 

I was also surprised that the modelling was done with a relatively boring image of a digit. Why not use 

the natural images used for the study? And was the modelling done with a spiking neural network 

simulator? Or a conventional network that represents firing rates with floating point numbers? These 

are important issues that are currently unclear from the presentation. 

The paper refers to values for thetotal spikes per second that are several thousands. This is a strange 

way to talk about the data, and is almost meaningless, because it is presumably calculated for an 

undefined and large number of channels and where is it unclear whether the channels refer to individual 

neurons or multiunit activity. 

The authors also spend a lot of time discussing the information about peak latency for different 

channels. Indeed, much of the data in support of reliable sequences is built on the assumption that 

information about the peak latency in different channels could be used in the brain. It may be trivial for 

the experimenter to measure the latency of the peak. But firstly, this makes the basic assumption that 

rates are critical, whereas the whole point of rank order coding is to get away from rates. Secondly, I 

know of no plausible neurophysiological mechanism that could respond selectively to a peak at a 

particular latency. In my opinion, all that section could be dropped with no real loss. Onset latency 

variations across populations of neurons are by contrast intrinsically much more interesting, as well as 

being much faster to compute – as the authors point out. 

So, in conclusion, I must admit that while interesting, the paper reaches conclusions that are not 

supported by the data. 



AUTHOR REMARK 1 

We wish to thank our reviewers for their sacrifice of time, their scrutiny and the many constructive 2 
suggestions that we now tried to incorporate into the revised version of our manuscript. Below we 3 
address the reviewers’ comments (in black) point by point, mark our responses in green, and 4 
copy/paste here the corresponding revisions from the updated manuscript in blue. The revisions are 5 
also highlighted in the updated manuscript. 6 

REVIEWER COMMENTS 7 
 8 
Reviewer #1 (Remarks to the Author): 9 
 10 
In their exciting study, Yiling Yang and colleagues examine population responses in monkey visual 11 
cortex. They find that responses can be ordered sequentially and that these sequences across 12 
variants of the task in which the latency and absolute intensities are parametrically manipulated. 13 
The fact that the dilation factor of the sequences did not change linearly with ramp duration is used 14 
to support the model that sequences may be the result of ‘priors’ or existent cortical wiring. 15 
Consistent with the involvement of recurrent cortical networks shaped by experience, the authors 16 
also found that normal stimuli resulted in faster and more robust responses than morphed or 17 
scrambled images. They also perform a simple ‘proof of concept’ recurrent network model and find 18 
that STDP leads to stimulus-specific response sequences. 19 
Overall, I really liked this paper, and I can only suggest a few minor tweaks that can help to improve 20 
upon this work. It is well-written, broadly important, and timely – and I think it should be published 21 
in Nature Communications without much further modification. 22 

We thank the reviewer for examining our manuscript and for his/her encouraging comments. 23 

 24 
SUGGESTIONS: 25 
It would be helpful to have more information concerning the data sets used for each figure. How 26 
many neurons were analyzed? How many sessions? Where were these neurons recorded? On this 27 
last point, I had assumed that Figures 1 & 2 were performed in V1, but the statement on Ln. 312 28 
(‘because these results were obtained in a higher visual area’) suggests otherwise. 29 

We thank the reviewer for drawing our attention to this omission of important information. Indeed, 30 
we have forgotten to mention that all the results presented in the main text were obtained from 31 
area V4, and that all V1 results, which were very similar, are shown in the supplementary materials. 32 
Initially, the experiment was planned for area V4 but later we had the opportunity to extend and 33 
confirm the findings with experiments in V1 of two additional monkeys. V4 and V1 data were 34 
collected with chronically implanted 64- and 32-channel devices, respectively. We analysed all the 35 
channels (multi-unit activity) without sorting single neurons due to signal-to-noise constraints. V4 36 
experiments comprised in total 12 sessions (6 sessions per animal), and V1 experiments comprised 6 37 
sessions (3 per animal). This information and more essential details of the dataset have now been 38 
added in the appropriate paragraphs of the Results and Methods sections, and are also pasted 39 
below. 40 

L128 (line number 128 in the revised manuscript, same convention below): Four awake macaque 41 
monkeys were presented with these stimuli in a passive viewing task and multi-unit activity (MUA) 42 
was recorded from visual area V4 in two monkeys with a 64-channel Utah array (Blackrock 43 
Microsystem, Salt Lake City, Utah, USA. Supplementary Figure 1) and from area V1 in another two 44 



monkeys with a 32-channel Microdrive (Gray Matter Research, Bozeman, Montana, USA). We did 45 
not sort for single units and analyzed only MUA in this study. We present the findings obtained from 46 
area V4 in the main text and refer readers to the Supplementary Information for the results from 47 
area V1. 48 

L766: In total, monkey H performed 2955 trials in 6 sessions (492.5 ± 113.3 (s.d.) trials per session, or 49 
159.8 ± 25.1 trials per condition); monkey K performed 4679 trials in 6 sessions (779.8 ± 209.9 trials 50 
per session, or 253.3 ± 48.4 trials per condition). 51 

L778: In total, monkey A performed 3133 trials in 3 sessions (1044.3 ± 52.7 trials per session, or 52 
1044.3 ± 1.1 trials per condition); monkey I performed 2418 trials in 3 sessions (806.0 ± 391.6 trials 53 
per session, or 806.0 ± 2.0 trials per condition). 54 

L810: Only MUA was analysed in this study. 55 

 56 

I would appreciate if population data from multiple single trials (maybe 10?) were presented to 57 
better appreciate the stability of the rank order of neurons across trials. I was envisioning something 58 
like an experimental version of Figure 4B. 59 

We agree with the reviewer and are generally in favour of presenting raw single-trial data. We had 60 
inspected our raster plots and single-trial histograms prior to averaging but realized that the single-61 
trial spike data did not appear visually as striking and intuitive as the averaged data (Figure 1c&d) or 62 
simulated data (Figure 4b) because of the inherent variability of responses in awake animals 63 
(fluctuations of baseline activity, different response profiles and signal-to-noise levels across 64 
channels). We therefore decided to show averaged firing rate heat maps, as is commonly done in 65 
the literature to visualize sequences, and to complement these qualitative representations with 66 
extensive statistical quantification of the characteristic features of sequences. 67 

 68 

The result about the persistence of the responses seems only peripherally related to the rest of the 69 
narrative. The authors should either try to integrate this section into the abstract and the discussion 70 
or drop it altogether. More broadly, it seems fitting that the story ends with the model (as is the case 71 
in the abstract). 72 

We agree and could consider separating the results on persistence (V1 and V4) into a shorter paper 73 
or moving them into the supplement if the reviewers and the editor suggest doing so.  However, 74 
these results provide additional support for the complementarity of rate and temporal codes, for the 75 
Bayesian matching operations and the dynamics of intracortical processing. Moreover, we needed to 76 
analyse rate codes during the initial transient for comparison with the rank code and would have to 77 
find a good reason why we limited these analyses to the phasic response components and did not 78 
include the sustained phase as well. We added sentences to the abstract and to the results to 79 
strengthen the conceptual link between the two sets of results. 80 

L33: Support for such a matching process comes from the additional finding that stimulus-specific 81 
information persists longer in responses to natural than manipulated stimuli. 82 

L285: Therefore, we expected that both the sequences and the rate vectors (see sections below) 83 
might reflect not only the structure of the stimuli but also the extent to which sensory evidence 84 
matched the priors stored in the architecture of the cortical networks. 85 



 86 

The affiliation numbers for the authors do not appear to be correct. 87 

Corrected. 88 

Yang Yiling1,2,6, Katharine Shapcott1,3, Alina Peter1,2,6, Huang Xuhui4, Andreea Lazar1, Wolf Singer1,3,5* 89 
1Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 90 
Deutschordenstraße 46, 60528 Frankfurt am Main, Germany 91 
2Faculty of Biological Sciences, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 92 
Frankfurt am Main, Germany 93 
3Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany 94 
4Institute of Automation, Chinese Academy of Sciences, Zhongguancun East Road 95, 100190 Beijing, 95 
China 96 
5Max Planck Institute for Brain Research, and 6International Max Planck Research School (IMPRS) for 97 
Neural Circuits, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany 98 

 99 

A few relevant papers should be cited here: Rajan et al., Neuron, 2016 (a highly influential review on 100 
recurrent models and sequences); Kim et al., PNAS, 2016 (a demonstration that sequences can be 101 
experimentally established with experience); Elmaleh et al., Neuron, 2021 (a dissection of local and 102 
long-range influences on sequence generation in the songbird). 103 

The suggested citations have now been inserted in appropriate places. 104 

L66: The dynamics of recurrent neural networks (RNNs) are exploited for computations in artificial 105 
RNNs (Buonomano and Maass, 2009; Jaeger and Haas, 2004; Lazar et al., 2021; Lazar et al., 2009; 106 
Maass et al., 2002; Rajan et al., 2016; Romera et al., 2018) but it is less clear to which extent 107 
biological RNNs capitalize on their dynamics to achieve specific functions (for review see Muller et al. 108 
(2018); Singer (2021)). 109 

L646: As detailed above, the reciprocal connections between columns responding to features which 110 
have a high probability of being correlated in natural environments get strengthened through a 111 
Hebbian mechanism (Bosking et al., 1997; Galuske et al., 2019; Gilbert and Wiesel, 1989; Iacaruso et 112 
al., 2017; Kim et al., 2016; Löwel and Singer, 1992). 113 

L564: Evidence that the timing of discharges matters in neuronal processing is available from studies 114 
in various systems: vision (Bruno and Sakmann, 2006; Burr and Ross, 1979; Delorme, 2003; Gawne et 115 
al., 1996; Gollisch and Meister, 2008; Gray et al., 1989; Havenith et al., 2011; Warzecha and 116 
Egelhaaf, 2000), audition (Carr and Konishi, 1990; Overholt et al., 1992), olfaction (Chong et al., 117 
2020; Haddad et al., 2013; Junek et al., 2010; Smear et al., 2011; Spors and Grinvald, 2002; Spors et 118 
al., 2006; Wehr and Laurent, 1996; Wilson et al., 2017) , somatosensation (Johansson and Birznieks, 119 
2004; Montemurro et al., 2007; Panzeri et al., 2001; Petersen et al., 2002), spatial navigation 120 
(O'Keefe and Recce, 1993; Pastalkova et al., 2008; Skaggs et al., 1996; Wilson and McNaughton, 121 
1994), and motor control (Daou and Margoliash, 2020; Egger et al., 2020; Elmaleh et al., 2021; 122 
Hahnloser et al., 2002; Yu and Margoliash, 1996). 123 

 124 

Ln. 184 – is Figure 1f the correct one to reference here? 125 



It was indeed not correct and is now corrected to Figure 1g. 126 

 127 

Figure 1 – the gray tones for low and high intensity are very difficult to distinguish. 128 

Indeed. We have now highlighted the contrast between the two intensity conditions in Figure 1e: 129 

 130 

And Supplementary Figure 5: 131 

 132 

 133 

Ln. 234 – should be ‘led’ not ‘lead’ 134 

Corrected. 135 

L242: It should be emphasized that even the no ramp condition led to decodable response 136 
sequences. 137 

 138 

Ln. 304 – why is the decoding accuracy higher for the fast ramp than the slow ramp condition? 139 

We had also expected that the decoding accuracy should improve with ramp duration. However, 140 
although the ramping dilated the tightly packed latencies of responses to sudden stimulus onset, 141 
there is apparently a limit to the benefits of ramping. This can have two reasons. First, the very 142 
gradual increase of stimulus intensity in the slow ramp condition may have limited the number of 143 
active neurons able to contribute to decoding. Despite increasing the ramp duration, most neurons 144 
still responded very early (c.f. Figure 1f&g, which underlines the nonlinear relationship between 145 
ramp duration and the temporal span of sequences). By the time the sequences were complete and 146 
recognized by the decoder, stimulus intensity was still low and this likely enhanced the variability 147 
and latency scatter of responses and may even have reduced the number of effectively contributing 148 
neurons. Second, in the slow ramp condition, the slowly rising firing rates are bound to impede the 149 



ability of our algorithm to precisely determine the timing of responses. This increased variability 150 
likely also accounts for reduced decodability of slow ramp responses. Thus, there seems to be a 151 
trade-off between speed and accuracy. Had time and animal resources permitted, we would have 152 
liked to vary the ramp duration more systematically, in order to get a better estimation of the 153 
nonlinearity between ramp duration and neuronal responses. 154 

We think this important question highlights the nonlinearity of neuronal responses and may also be 155 
of interest to other reader. Therefore we inserted our explanation into the Discussion section (L530). 156 

 157 

Ln. 310 – authors should measure (if possible) whether the unnatural stimuli result in a less precisely 158 
timed sequence  159 

We agree. We have tried to measure the variance of response timing of individual channels/neurons, 160 
pooled the variance across channels and compared the pooled variances of responses to the 161 
different stimulus categories. However, this measure, which is a rather insensitive metric as the 162 
reviewer has probably suspected, did not yield statistically significant differences. One probably has 163 
to develop more dedicated and elaborate measurements to evaluate the precision of response 164 
sequences, rather than the precision of single neuron response latencies.  165 

 166 

The PCA plots in Figure 6A are difficult to parse. Can the three conditions be plotted separately? 167 

We have added vertical offsets between trajectories of the three conditions. 168 

Figure 6a: 169 

 170 



L465 (caption of Figure 6): Within each panel, trajectories of the three stimulus categories have been 171 
displaced vertically to reduce visual cluttering; otherwise the three baseline covariance meshes 172 
(black) should overlap. 173 

Supplementary Figure 18a: 174 

 175 

 176 
 177 

 178 

 179 

 180 

 181 

Reviewer #2 (Remarks to the Author): 182 
 183 
The basic ideas behind this paper are important and timely. They are right to point out that the vast 184 
majority of work in artificial neural networks uses models that have no interesting dynamics – 185 
processing is typically limited to feedforward propagation of floating-point numbers that are 186 
supposed to correspond to the firing rates of neurons. A seven-layer network such as AlexNet will 187 
process an image in exactly 7 (massively parallel) steps. And there is nothing of interest to learn from 188 
the dynamics.  189 



 190 
Some labs, including DiCarlo’s lab at MIT have reported that, unlike artificial networks, real networks 191 
show interesting dynamics that would not be explained by purely feedforward mechanisms. And 192 
they have argued that this is because of recurrent connectivity.  193 
 194 
In the current paper, the authors make a similar claim. They describe interesting and reliable 195 
sequences of activation to both flashed images and images that are progressively ramped on either 196 
relatively quickly (over 500 ms) or more slowly (over 1 second). The data is certainly very interesting, 197 
and it is true that very few researchers have bothered to look for such phenomena.  198 

My main problem with the paper as it stands is that they use these reliable sequences to argue that 199 
this can only be explained by recurrent connectivity within the cortex – much as DiCarlo has done.  200 

We thank the reviewer for examining our manuscript and for sharing his/her comments on and 201 
interpretations of our findings. We would like to make a few general remarks before responding to 202 
the reviewer’s comments point by point. 203 

After we had carefully studied the reviewer’s comments, we feel that there is more agreement than 204 
dissent between the reviewer’s and our interpretations with respect to the significance of our main 205 
findings: the stimulus specificity of response sequences, the option for fast read out of these 206 
sequences and their dependence on natural image statistics. However, we have certainly failed to 207 
consider in sufficient depth other mechanisms than recurrent processing for the generation of 208 
response sequences. In revising the manuscript we attempted to give more space to alternative 209 
hypotheses. Therefore, our responses to the reviewer’s comments should not be seen as a rebuttal 210 
but rather as an attempt to discuss the pro and cons of different interpretations. 211 

One of the reviewer’s major concerns is that feedforward rather than recurrent networks could 212 
account for our findings. We have considered the possibility that the sequences were actually the 213 
consequence of feedforward mechanisms and have designed a number of control experiments to 214 
test this hypothesis but the result was, that simple versions of feedforward mechanisms fell short of 215 
explaining some features of the observed sequences. These features were the following. First, the 216 
preservation of sequence order despite changes in absolute latencies and despite changes in relative 217 
latencies that occurred with the compression and dilation of sequences. Second, the stability of 218 
sequences despite unavoidable changes in afferent drive caused by microsaccades. The fixation 219 
window allowed the monkey to make small eye movements and this likely had the effect that the 220 
correspondence between the contours of the stimuli and the neurons’ receptive fields changed 221 
within a trial and between trials, likely causing variations of response latencies all along the 222 
feedforward transmission chain from the retina to V4. Third, the dependence of the persistence of 223 
the decodable rate responses on natural image statistics. We felt that these observations were 224 
better explained by reverberation in a recurrent network than by serial forward propagation of 225 
activity. Finally, a very simple and generic recurrent network model endowed with Hebbian synapses 226 
reproduced at least qualitatively most of our experimental findings without much parameter 227 
tweaking. Our control experiments do of course not exclude that a feedforward network endowed 228 
with a combination of complex nonlinear and hitherto unidentified transfer functions would be able 229 
to reproduce the highly adaptive dynamics revealed by our results. However, applying Occam’s razor 230 
we opted for the most straight forward interpretation. We did not intend to rule out that specifically 231 
crafted feedforward models could reproduce some of our findings. This possibility is definitely worth 232 
further systematic investigation and confirmation.  233 



We are well aware of the fact that concepts on visual processing emphasize serial feedforward 234 
processing in hierarchical architectures and that this notion is further supported by the success of 235 
deep neural networks that share this strategy. However, anatomical evidence indicates that in 236 
biological neural systems recurrent connections within and between the different areas of the 237 
processing hierarchy outnumber by far the feedforward connections. Furthermore, biological 238 
systems exhibit exceedingly complex dynamics that are absent in feedforward networks and can 239 
only be accounted for by recurrent processing. Accordingly, concepts emphasizing the importance of 240 
recurrence and dynamics are readily accepted in other fields of neuroscience. They serve as 241 
framework for studies on other systems of the vertebrate brain (e.g., other sensory systems, 242 
hippocampus and motor cortex) and for investigations of nervous systems of other species (e.g., 243 
insects, worms and crustaceans). Because of the striking similarities between cortical areas, it seems 244 
plausible to assume that the visual system also relies on a combination of feedforward and recurrent 245 
processing. 246 

 247 

But the problem is that even a simple feedforward spiking circuit will show reliable latency 248 
differences depending on physical characteristics of the stimulus. Remarkably, such latency 249 
variations were visible in the very first recordings of spiking activity from the optic nerve by Lord 250 
Adrian in 1927, but ignored by the vast majority of neurophysiologists for decades. However, a 251 
paper by Gollisch and Meister (Science, 2008) showed that the relative timing of spikes in retinal 252 
ganglion cells can be reliably used to transmit information. Contrast sensitive variations in latency 253 
are accepted as the explanation of the well-known Pulfrich Pendulum phenomenon – lowering 254 
contrast increases latency. Unless the authors think that this requires recurrent connections in the 255 
retina, I presume that they would have to agree that their claim in the discussion that there is “no 256 
experimental evidence for feedforward mechanisms capable of generating reliable sequence-based 257 
information” is simply not true.  258 

We are very much in agreement with the reviewer that spike latencies can transmit information, and 259 
have indeed cited the work of Gollisch and Meister (Science, 2008) to support this notion. We also 260 
agree with the reviewer that physical characteristics of a stimulus like contrast can change spike 261 
latencies. Besides the original work by Lord Edgar Adrian, we would like to mention that a few years 262 
later Haldan Hartline also reported variations in optic nerve discharge latency in response to varying 263 
stimulus intensities (e.g., Hartline & Graham, 1932; Hartline 1938). In later related studies in the 264 
Limulus eye Hartline and Ratliff actually stated that an image stimulus could be reconstructed 265 
perfectly well from transforming absolute response latencies into luminance values. The authors 266 
mentioned that there were later response components (after-discharges) whose amplitude also 267 
signalled stimulus intensity and allowed image reconstruction. Interestingly, since then, the field has 268 
concentrated mainly on these "after-discharges". The stability of the retinal sequences, that are 269 
defined by absolute response latencies, does of course require that the contours of the stimulus 270 
always fall on exactly the same retinal loci - which was likely not the case in our experiments. 271 

In our experiments, the texture of the stimuli contains high spatial frequencies and hence the 272 
luminance of the stimuli changes substantially over short distances. Because the animals perform 273 
microsaccades while they fixate, the luminance of the contours in the receptive fields is constantly 274 
changing. Therefore it is surprising that the sequences maintained the same rank order. 275 
Furthermore, the contrast differences between the same stimuli presented with different ramp 276 
conditions were much larger than the contrast differences between the different stimuli due to the 277 
low-contrast regime of our paradigm. Thus, if contrast played a major role, the correlation between 278 
onset latencies would be large between ramp conditions and small between stimuli, which is not the 279 



case (c.f. Figure 1, Supplementary Figure 2 and Supplementary Figure 3). Variations in stimulus 280 
contrast also cannot explain the differences in stimulus specificity of response sequences between 281 
different types of stimuli (natural, morphed and scrambled), because stimulus onset kinetics were 282 
identical for all stimulus types. We have obviously failed to make clear that contrast dependent 283 
variations in latencies can alone not account for all the features of our response sequences 284 
(invariance to temporal compression and dilation, stability despite changing retinal correspondence, 285 
dependence on priors about natural image statistics). 286 

We must have been imprecise in our writing because the reviewer assumes that we said "there is no 287 
experimental evidence for feedforward mechanisms capable of generating reliable sequence-based 288 
information" (last sentence of the reviewer’s comments above). However, we stated in our 289 
discussion that “there are yet no experimental data in support of feedforward mechanism capable of 290 
generating response sequences, whose sequence order is invariant to temporal compression and 291 
dilation”. We apologize for not having conveyed our position with the required clarity. 292 

 293 

For me, is seems clear that, even without any learning, and without any recurrent connections, you 294 
would expect that there would be reliable information in the relative order of firing across neurons. 295 
The authors admit that in the auditory system, temporal information is used (for sound localization), 296 
so it would be surprising if such phenomena were not also true for vision. And they cite a large 297 
number of studies in several sensory modalities that demonstrate temporal information.  298 

We agree with the reviewer that temporal information is used in many neural systems, as we have 299 
cited extensively. To the best of our knowledge, in other systems such as hippocampus, motor 300 
cortex, and auditory systems, it is usually assumed and even accepted that such temporal dynamics 301 
in neuronal responses emerged from recurrent networks. We cannot think of a good argument why 302 
such mechanisms should not hold in visual systems. 303 

 304 

The authors belief that temporal sequences imply recurrent processing is made clear in the final 305 
conclusion where they argue that “the cerebral cortex complements the feedforward processing of 306 
rate-coded information by exploiting the dynamics of recurrent networks to generate a temporal 307 
code…”. Do they really believe that a feedforward spiking network has no dynamics?  308 

Again, we apologize for having been unclear in our writing. We do of course not deny that 309 
feedforward networks can produce sequences. As demonstrated very early on by Abeles in his work 310 
on synfire chains, strictly feedforward networks do generate informative sequences but to the best 311 
of our knowledge these sequences are not compressible and also lack the rich self-organizing 312 
dynamics observed in natural neuronal networks that are required to generate temporal codes.  313 

 314 

So, while the authors have done a great service to the community by looking in detail at the 315 
information that is contained in temporal dynamics, they overstep the mark by arguing that their 316 
findings can only be explained by recurrent processing.  317 

We have revised the manuscript to leave more room for alternative interpretations and emphasize 318 
the feedforward option at the very end of our concluding remarks. 319 

L718: We have proposed recurrent processing as the most parsimonious explanation for the 320 
generation of response sequences and rank order codes. However, this does not exclude that 321 



feedforward processing could have produced the same result. Any recurrent network can be 322 
unrolled in a multilayer feedforward network and with appropriate implementation of 323 
nonlinearities, such feed forward networks can in principle simulate recurrent processes (Kubilius et 324 
al., 2018; Liao and Poggio, 2016; Nayebi et al., 2018; Zamir et al., 2017). Our data do not allow us to 325 
distinguish between these possibilities but emphasize the putative importance of coding strategies 326 
exploiting temporal relations among neuronal responses. 327 

L503: It is of course conceivable that feedforward networks can also reproduce our findings if 328 
endowed with the required mix of nonlinearities. However, to the best of our knowledge, there are 329 
yet no experimental data in support of feedforward mechanisms capable of generating response 330 
sequences, whose sequence order is invariant to temporal compression and dilation. Sequence 331 
generation is an intrinsic property of recurrent networks, and a very simple recurrent spiking 332 
network model could already reproduce many of our findings without extensive parameter tuning or 333 
handcrafting of nonlinearities. Therefore, we consider recurrent processing as the most 334 
parsimonious explanation of our results. 335 

L148: This revealed that the stimulus-specific rank orders of response latencies were by and large 336 
preserved for the fast ramp condition although the absolute latencies had decreased, leading to a 337 
temporal compression of the sequences (diagonal panels in Figure 1d and Supplementary Figure 2b). 338 

L197: This disproportional scaling of sequence span and of the latency distributions of the nodes’ 339 
responses suggests that the two variables are not solely determined by stimulus parameters but 340 
depend also on network interactions. Further control analyses (Supplementary Information, 341 
Supplementary Figure 7 and Supplementary Figure 8) and simulation experiments (see below) 342 
support the notion that the sequences do not simply reflect the temporal structure of afferent 343 
signals nor their energy nor different sensitivities of the nodes to stimulus energy. Rather, the 344 
sequences seem to be shaped by or emerge from complex interactions within cortical networks. 345 
 346 
 347 

To be clear, recurrent connections may indeed be very important and interesting to study, and those 348 
connections could indeed reflect learned information about stimuli. But even feedforward networks 349 
can learn. For example, Masquelier and Thorpe (PLoS 2007) showed that neurons equipped with 350 
STDP can become selective to faces and motorcycles even in purely feedforward networks. 351 
Furthermore, STDP leads to neurons responding faster and more reliably with repeated stimulation 352 
– exactly as they present authors note. But, again, no need for recurrent architectures.  353 

We agree with the reviewer that feedforward networks can learn. Our experiments were also very 354 
much inspired by Simon Thorpe’s work, including the paper the reviewer referred to. As we read it, 355 
Masquelier and Thorpe (PLoS, 2007) demonstrated that spike latency can be used to represent visual 356 
features and to perform unsupervised learning via STDP. To train this small proof-of-concept 357 
network, the authors had to implement a winner-take-all strategy in certain layers (specifically, 358 
layers S1 and C1) and k-winner-take-all strategy in another layer (i.e., layer S2), by introducing local 359 
lateral inhibition. Although only required in the learning phase and thus not explicitly illustrated in 360 
the model structure, such lateral inhibition mimics already some recurrent interactions. Moreover, 361 
even this small “feedforward” model required dedicated handcrafting of structures and parameters, 362 
i.e., when to turn on lateral inhibition, which connections should undergo STDP (i.e., layers C1 to S2), 363 
whether to drop the leakage term, where to apply 1-winner-take-all and where to apply a k-winner-364 
take-all mechanism. The resulting network was highly specialized and dedicated to a specific task. By 365 
contrast, recurrent networks can reproduce similar functions without much parameter tuning, and 366 



remain adaptable for other tasks. Model simplicity and flexibility “biased” us to favour recurrent 367 
mechanisms. We agree that we should have acknowledged that feedforward network structures 368 
could also account for our results if they exploited the universe of nonlinearities and the virtually 369 
inexhaustible combinatorics of diverging and converging connections. Theoretically, any recurrent 370 
network can be unrolled into a feedforward network in which each time step of the reciprocal 371 
interactions is represented by a layer. We mention this now at the end of our discussion. However, if 372 
the recurrent network of a cortical area would have to be unrolled to capture the numerous virtually 373 
simultaneous interactions among the nodes this would require extremely deep networks. Given the 374 
time constants of neuronal processes, the conversion of the parallel computations of recurrent 375 
networks into serial computations in feedforward networks would be hard to reconcile with 376 
processing speed and hardware constraints. Even if we assume that the brain operates digitally at 377 
discrete time steps, it is not trivial to determine how many steps back in time a recurrent network 378 
should be unrolled. Biological neural networks need to perform computations flexibly across a wide 379 
range of timescales, from milliseconds to hours and beyond. One would have to convert a recurrent 380 
network into many, if not infinite, feedforward networks of different depths in order to cope with 381 
tasks of different time spans, significantly sacrificing flexibility. 382 

 383 

The analysis based on the differences in the precise sequence with the three different types of 384 
stimulus was weak. Yes, they can rule out a simple model where a feedforward network of neurons 385 
with thresholds for firing that are fixed at a particular value of physical contrast. That is clearly not a 386 
good model. But the time to reach threshold for a leaky integrate and fire neuron depends on many 387 
factors. Changing the leakage will increase the time taken to reach threshold and produce all sorts of 388 
non-linearities that could also be consistent with those changes.  389 

As we have acknowledged, we agree with the reviewer that feedforward networks with carefully 390 
designed nonlinearities could explain our data. More systematic investigations focused on this issue 391 
would be required but our methods do not allow us to perform such analyses. We could only show 392 
that it is not trivial to produce scalable sequences. We agree with the reviewer that leakage 393 
introduces time as coding space. However, in this case the predictions derived from comparisons of 394 
threshold passing with slow vs. fast ramps and low vs. high contrast stimuli would deviate even 395 
further from our measurements. 396 

 397 

Overall, I found the conclusion that the “temporal sequences observed in the experiments resulted 398 
from interactions in a recurrent network in which the strengths of the coupling connections had 399 
been shaped by experience” too strong. The fact is that reliable temporal sequences to flashed or 400 
ramped stimuli would be obtained even in a feedforward neural network model with no recurrent 401 
connections. The main reason that such effects are not observed in the vast majority of current 402 
neural network models is that those models typically do not have spikes – they send floating point 403 
numbers that supposedly represent the neuron’s firing rate instantaneously, totally removing the 404 
dynamics that immediately become interesting as soon as you start to take spiking seriously. 405 
Interesting dynamics, like the ones shown here, are not only limited to recurrent networks.  406 
All this is rather regrettable, because as I stated, I think that this is a really interesting and original 407 
study. If the authors were to accept that feedforward networks can also have interesting dynamics, 408 
then I would be much happier to recommend publication.  409 



In the original manuscript, we have acknowledged the possibility of feedforward mechanisms. As the 410 
reviewer suggested, we have now modified the manuscript to further strengthen this alternative 411 
explanation. 412 

L718: We have proposed recurrent processing as the most parsimonious explanation for the 413 
generation of response sequences and rank order codes. However, this does not exclude that 414 
feedforward processing could have produced the same result. Any recurrent network can be 415 
unrolled in a multilayer feedforward network and with appropriate implementation of 416 
nonlinearities, such feed forward networks can in principle simulate recurrent processes (Kubilius et 417 
al., 2018; Liao and Poggio, 2016; Nayebi et al., 2018; Zamir et al., 2017). Our data do not allow us to 418 
distinguish between these possibilities but emphasize the putative importance of coding strategies 419 
exploiting temporal relations among neuronal responses. 420 

L503: It is of course conceivable that feedforward networks can also reproduce our findings if 421 
endowed with the required mix of nonlinearities. However, to the best of our knowledge, there are 422 
yet no experimental data in support of feedforward mechanisms capable of generating response 423 
sequences, whose sequence order is invariant to temporal compression and dilation. Sequence 424 
generation is an intrinsic property of recurrent networks, and a very simple recurrent spiking 425 
network model could already reproduce many of our findings without extensive parameter tuning or 426 
handcrafting of nonlinearities. Therefore, we consider recurrent processing as the most 427 
parsimonious explanation of our results. 428 

 429 

I have a number of other comments.  430 
 431 
Firstly, it was very unclear whether any of the channels corresponded to single neurons, or whether 432 
all the recordings were multiunit. If they can distinguish between these options, it would be 433 
interesting to see whether a small number of single units (rather than multiunit channels) could 434 
allow even more precise decoding. Indeed, to make the point, if you were to record from just 4 435 
individual cells and looked at the ordering of firing, you would have 4! (24) different orders. In 436 
principle, those four cells could classify up to 24 different images.  437 

We had mentioned that we recorded multi-unit activity (L129 and L806), and now also added 438 
explicitly that we did not sort for single units (L128, L810), mainly because of signal-to-noise 439 
considerations. As the reviewer pointed out, and we fully agree, one of the advantages of rank order 440 
coding is flexible permutation of network nodes, thus providing a virtually infinite coding space. 441 
Although we did not sort single units, we performed an extrapolation by examining to which extent 442 
the subset of earliest responding channels conveyed sufficient information for decoding stimulus 443 
identity (c.f. Figure 2). As predicted, only a handful of channels were needed to decode stimuli, and 444 
the decoding performance increased with more channels. We would predict in agreement with the 445 
reviewer that sorting single units would allow for more precise decoding. 446 

L128: Four awake macaque monkeys were presented with these stimuli in a passive viewing task and 447 
multi-unit activity (MUA) was recorded from visual area V4 in two monkeys with a 64-channel Utah 448 
array (Blackrock Microsystem, Salt Lake City, Utah, USA. Supplementary Figure 1) and from area V1 449 
in another two monkeys with a 32-channel Microdrive (Gray Matter Research, Bozeman, Montana, 450 
USA). We did not sort for single units and analyzed only MUA in this study. We present the findings 451 
obtained from area V4 in the main text and refer readers to the Supplementary Information for the 452 
results from area V1. 453 



L810: Only MUA was analysed in this study. 454 

L245: We then determined how early, on average, each channel (node) started to respond, and 455 
systematically included more and more of the fastest responding channels (Methods). The decoding 456 
accuracy exceeded chance level as soon as more than 4 to 5 channels were included. 457 

 458 

Given the power of rank order coding, it is really unfortunate that the data set was collected with 459 
just 3 images – well below the number that could be decoded with just four neurons. 460 

We fully agree and would have loved to collect more data with more stimulus images. For this study, 461 
we required a large number of trials. First, we needed to test numerous conditions (no. images x 462 
intensity levels x ramp durations x stimulus categories). Second, we needed sufficient trials for the 463 
same condition to have enough training and independent test trials for the classifiers. Given the 464 
limited number of trials the monkeys can perform in a session and the constraint to maintain stable 465 
signal quality over days, we unfortunately had to prioritize repetitions over stimulus set size. 466 

 467 

Using a small number of repeated images also makes it highly likely that the visual system could 468 
have learned about the statistics of those particular images, and this makes it harder to make 469 
conclusions about how the system would respond to unpredictable images. It would have been 470 
useful to have a condition where random images (selected from the ImageNet database for 471 
example) were shown. Would such images produce more (or perhaps less) neural activity than the 472 
highly predictable images used in the study? Would the authors predict that only the familiar stimuli 473 
would show interesting sequences? If they authors have any such data, it would greatly enhance the 474 
value of the data. My bet is that even a totally novel natural image would show clear and reliable 475 
sequences of activation. It might even show better reliability than scrambled images (as 476 
demonstrated here) but with no need for learning at all.  477 

Previous work from our lab (Lazar et al., PNAS 2021; Peter et al., eLife 2021) examined the effect of 478 
learning through repetition or exposure. However, in the present study we did not require the 479 
animals to learn about specific images at short time scales (minutes to hours). The priors of natural 480 
scene statistics (e.g. Gestalt principles) should have already been embedded in the cortical networks 481 
through evolution and postnatal experience. Thus, unfamiliar stimuli (e.g. random novel images 482 
from ImageNet), as long as they comprise natural scenes and objects, should exhibit these 483 
fundamental statistics. Thus, in full agreement with the reviewer’s prediction, familiar but also novel 484 
stimuli that match internal priors of natural scene statistics should produce more reliable and better 485 
decodable sequences than their scrambled versions. We also agree with the reviewer that any image 486 
can trivially produce sequential responses; it is the relationship between sequence decodability (or 487 
the “quality” of sequences) and the goodness of match between stimuli and internal priors that is 488 
particularly interesting for us. We should have emphasized this point. 489 

Indeed over the course of the experiment the visual system may well have learned new statistics and 490 
installed additional priors about the repeated images, but such learning should also occur for 491 
morphed and scrambled images, and has hopefully been factored out when we compared between 492 
different groups of stimuli. However, it is of great interest to investigate more systematically how 493 
learning new visual priors depends on existing priors (Tse et al., Science, 2011 & 2007). We have in 494 
another very comprehensive simulation study (Effenberger et al, in prep) examined the effect of 495 



initially installing very general Gestalt priors on later learning about specific images. We found that 496 
later learning profited substantially from being able to build on basic Gestalt priors. 497 

 498 

The use of just 3 stimuli also markedly reduces the power of the analysis. The decoder never has to 499 
choose between more than 3 stimuli and makes judgment in favor of one of the stimuli even when 500 
nothing is present. I would have preferred an analysis where the system had to initiate a three-501 
choice response when there was enough information to conclude that a stimulus had been 502 
presented, and not simply choose which of the three stimuli is the most likely at every instant.  503 

It is unfortunately beyond our capacity to develop novel decoding algorithms that would yield 504 
quantitative comparisons between several stimuli.  Therefore we decided to apply well established 505 
machine learning classifiers that are also widely used in neuroscience and that served our basic 506 
purpose of discriminating among stimuli. Using more stimuli would probably still run into similar 507 
issues since the classification algorithm is independent of the number of classes to be classified, as 508 
long as sufficient data are collected for training. 509 

 510 

In the modelling study, I was puzzled by the statement that “Already at the beginning of training the 511 
networks produced sequences but that they were highly variable”. What would cause that 512 
variability? Was noise added to the activity? I would have thought that even the simplest neural 513 
model of center-surround receptive fields in the retina would have latencies that would vary 514 
depending on the stimulus because higher local contrast lead to shorter latencies.  515 

Yes, background noise was added to the network (L868). Here we wanted to make two points: (1) 516 
learning reduces sequence variability, which might explain better decodability; (2) the network can 517 
reproduce temporally scalable sequences in response to linearly ramping input.  518 

 519 

I was also surprised that the modelling was done with a relatively boring image of a digit. Why not 520 
use the natural images used for the study? And was the modelling done with a spiking neural 521 
network simulator? Or a conventional network that represents firing rates with floating point 522 
numbers? These are important issues that are currently unclear from the presentation. 523 

We decided to describe technical details of the network in the Method section to avoid too much 524 
distraction on reading the main text. The spiking network model (L340 in Results, L859 in Methods) 525 
used Izhikevich neurons (L861 in Methods, all parameters included) and was simulated in custom-526 
written MATLAB codes (L860, now also stated more explicitly). The network is not a firing rate 527 
model; otherwise, it would have been difficult to show raw spiking activity in Figure 4. 528 

Indeed the modelling could have been more elaborate, but it was intended as a proof of concept so 529 
we took one of the most well-known stimulus sets (MNIST) as input. 530 

L340: To explore the possibility that learning stabilizes temporal sequences in a stimulus-specific 531 
way, we trained a spiking neural network in a non-supervised way to acquire information about the 532 
shape of a digit (Figure 4. Methods). 533 

L859: We simulated a recurrent spiking neural network of N = 250 neurons where the ratio between 534 
excitatory and inhibitory neurons was 4:1 (Ne = 200, Ni = 50, custom-written simulation in MATLAB). 535 
We used the Izhikevich model to simulate single neurons, whose parameters were the same as in 536 



(Izhikevich, 2003). The excitatory cells were modelled as regular spiking cells (RS. (a, b) = (0.02, 0.2). 537 
(c, d) = (-65, 8) + (15, -6)*r2 where r is random variable of standard uniform distribution) and 538 
inhibitory neurons as fast spiking cells (FS. (a, b) = (0.02, 0.25) + (0.08, -0.05)*r2. (c, d) = (-65, 2)), 539 
each with random heterogeneity. All neurons were randomly connected with a connection 540 
probability of 40%. The connection strength was initialized to be uniformly distributed between [0, 541 
1]. To simulate external input current, we used MNIST digit images scaled to the size of 7-by-7, and 542 
mapped to a subset of 49 excitatory neurons. In addition, all neurons received random background 543 
noise as external input. 544 

 545 

The paper refers to values for the total spikes per second that are several thousands. This is a 546 
strange way to talk about the data, and is almost meaningless, because it is presumably calculated 547 
for an undefined and large number of channels and where is it unclear whether the channels refer to 548 
individual neurons or multiunit activity. 549 

We used “total spikes per second” to measure population firing rate, i.e., summed firing rate 550 
amplitudes across all channels, in the context of referring to the level of overall activity. Following 551 
the reviewer’s suggestion, we have averaged total spike counts across channels as is usual in 552 
neurophysiological studies and converted the values to “spikes per second”. All associated 553 
quantifications have also been re-calculated. 554 

Figure 1b: 555 

 556 

L209 (caption of Figure 1): Average firing rates for different ramp conditions. Raster plots of single-557 
trial MUA responses to one of the three stimuli in the no ramp (left), fast ramp (middle), and slow 558 
ramp (right) condition. The colored traces show the average firing rate per channel for each ramp 559 
condition. Shaded areas denote 95% confidence level. 560 

L135: The ramping stimuli reduced the peak amplitudes of the transient response components (no 561 
ramp 51.57 ± 0.44 spikes/s, s.e.m.; fast ramp 48.59 ± 0.45 spikes/s; slow ramp 45.11 ± 0.45 spikes/s, 562 
corresponding to reductions of 5.8% and 12.5%, respectively; all stimulus and intensity conditions 563 
combined, F2,927 = 52.79, p < 0.01, one-way ANOVA; all pair-wise comparisons p < 0.01). 564 

Figure 5 a&b: 565 



 566 

L415 (caption of Figure 5): Lower panels: corresponding average firing rates per channel. 567 

L390: Stimulus-specific information reached its maximum at the same time as the firing rate 568 
(average per channel, Figure 5 a & b). 569 

Supplementary Figure 15: 570 



 571 

 572 

The authors also spend a lot of time discussing the information about peak latency for different 573 
channels. Indeed, much of the data in support of reliable sequences is built on the assumption that 574 
information about the peak latency in different channels could be used in the brain. It may be trivial 575 
for the experimenter to measure the latency of the peak. But firstly, this makes the basic assumption 576 
that rates are critical, whereas the whole point of rank order coding is to get away from rates. 577 
Secondly, I know of no plausible neurophysiological mechanism that could respond selectively to a 578 
peak at a particular latency. In my opinion, all that section could be dropped with no real loss. Onset 579 
latency variations across populations of neurons are by contrast intrinsically much more interesting, 580 
as well as being much faster to compute – as the authors point out. 581 

We agree with the reviewer that onset latency is much more interesting and physiologically relevant. 582 
We initially used peak latency as the measure of response timing to not deviate too radically from 583 
conventions in the field, where neuronal response sequences are usually presented in heat maps of 584 
firing rates sorted by peak amplitude positions. We fully agree with the reviewer and are aware of 585 
the ambiguities inherent in decoding peak latencies. This is the reason why we designed a method 586 
that allowed us to determine precise onset latencies. We would like to also present peak latencies, 587 



even if this is redundant, because we anticipate readers familiar with conventional representations 588 
wold ask for it. 589 

 590 

So, in conclusion, I must admit that while interesting, the paper reaches conclusions that are not 591 
supported by the data.  592 

We hope that we were able to demonstrate with our replies to the reviewer’s concerns and with our 593 
revisions of the manuscript that the conclusions as they are formulated now are supported by the 594 
data and we wish to thank again the reviewer for helping us to identify ambiguities and to improve 595 
our writing. 596 



REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

The authors have addressed my concerns satisfactorily. This work should be published and shared with 

the community. 

Reviewer #2 (Remarks to the Author): 

The authors have worked hard to deal with the various points I raised in my review and I think that the 

paper is very much improved as a result. 

Most of the points were dealt with well, and many of the questions have been answered in both the 

rebutall and the modified manuscript. 

That said, I still feel that the authors are overselling the strength of their evidence for recurrent 

mechanisms, although they have added many caveats which make their statements safer. 

In the new version, they state that "to the best of our knowledge, there are yet no experimental data in 

support of feedforward mechanisms capable of generating response sequences, whose sequence order 

is invariant to temporal compression and dilation." 

That may be the case, but only because almost no experimentalists have looked at the question! The 

fact is that even the simplest feedforward models would have to make that prediction. If you have a set 

of retinal ganglion cells responding to a flashed image, you would expect them to fire in a particular 

order that depended on how well the local image matched the receptive field – as shown by Gollisch 

and Meister, for example. True, those studies didn’t look at what would happen if you changed the 

contrast, or ramped the image on slowly. But I would expect that the ordering information would be 

preserved, even in the face of such variations. Indeed, in 1998, Thorpe and Gautrais's proposals on Rank 

Order Coding took advantage of this by pointing out that the order in which the cells fired would remain 

the same despite wide variations in contrast and overall luminance. This is very close to the situation 

described here. 



But we are talking about models - not experimental data. 

So, no, I don’t accept the authors' view that “recurrent processing as the most parsimonious explanation 

of response sequences and rank order codes”. They argue that “Any recurrent network can be unrolled 

into a multilayer feedforward network and with appropriate implementation of nonlinearities, such 

feedforward networks can in principle simulate recurrent processes.” This is one way of making 

feedforward models sound excessively complicated and hence tipping the balance in favour of recurrent 

mechanisms. 

But I don’t accept that you need multilayer networks with non-linearities to get sequences. Even a single 

layer of retinal ganglion cells will generate sequences in response to the onset of an image. You need 

integrate and fire, but nothing fancy. There is no need for anything else. And you would have to expect 

that the ordering in those sequences would remain stable even if you shifted contrast and luminance up 

and down. 

All this is rather sad. The authors are to be commended on the fact that, at long last, there are 

experiments that have looked at these fascinating phenomena. And I really think that the data needs to 

be published. But I think that they really need to tone down even more their claims that sequences 

mean recurrent processing. 

On the other points I made, I was happy to see that the authors accepted that there were a lot of 

limitations with the way the experiments were done. I think they know very well that the dataset would 

be far more interesting if they had included 

- Single unit data rather than multiunit data 

- Lots more images to avoid the criticism that 3 stimuli are not enough 

- Track learning of a totally new image to see whether learning is needed for sequences (I don’t believe 

it is). 

I can’t wait for the next dataset that deals with these limitations! 

For the time being, I will just say that I would vote for publication of the current data with more caveats 

and the acceptation that sequences can be generated in a single layer network with no recurrent 

connections and nothing fancy in terms of non-linearities. 



REVIEWER COMMENTS (black colour) 1 

Reviewer #2 (Remarks to the Author): 2 

The authors have worked hard to deal with the various points I raised in my review and I think that 3 

the paper is very much improved as a result.  4 

Most of the points were dealt with well, and many of the questions have been answered in both the 5 

rebutall and the modified manuscript.  6 

That said, I still feel that the authors are overselling the strength of their evidence for recurrent 7 

mechanisms, although they have added many caveats which make their statements safer.  8 

AUTHOR RESPONSES (green colour) 9 

We thank the reviewer very much for the re-review of our paper. Following the reviewer’s 10 

suggestion, we have further tuned down our interpretations, stating explicitly, that we do not wish 11 

to exclude that sequences could also be generated in feedforward networks. In addition, we added a 12 

reference to a recently published very extensive simulation study (Effenberger et al., 2022) of a 13 

cortical network that might be of interest for our readers. Deleted sentences are marked in 14 

magenta. Added or modified sentences are marked in yellow. 15 

As the reviewer had no further criticism of the results of our paper and voted for publication, we 16 

hope, that our revisions are now to the satisfaction of the reviewer. 17 

In the new version, they state that "to the best of our knowledge, there are yet no experimental 18 

data in support of feedforward mechanisms capable of generating response sequences, whose 19 

sequence order is invariant to temporal compression and dilation." 20 

We have deleted this sentence. 21 

That may be the case, but only because almost no experimentalists have looked at the question! The 22 

fact is that even the simplest feedforward models would have to make that prediction. If you have a 23 

set of retinal ganglion cells responding to a flashed image, you would expect them to fire in a 24 

particular order that depended on how well the local image matched the receptive field – as shown 25 

by Gollisch and Meister, for example. True, those studies didn’t look at what would happen if you 26 

changed the contrast, or ramped the image on slowly. But I would expect that the ordering 27 

information would be preserved, even in the face of such variations. Indeed, in 1998, Thorpe and 28 

Gautrais's proposals on Rank Order Coding took advantage of this by pointing out that the order in 29 

which the cells fired would remain the same despite wide variations in contrast and overall 30 

luminance. This is very close to the situation described here.  31 

We added a paragraph in the discussion under "Methodological considerations" where we indicated 32 

the shortcomings of our approach to distinguish between feedforward and recurrent processing and 33 

propose experiments to accomplish this distinction. Here we now also mention as a methodological 34 

limitation that we used only few stimuli and recorded only multi-unit activity. 35 

But we are talking about models - not experimental data.  36 

So, no, I don’t accept the authors' view that “recurrent processing as the most parsimonious 37 

explanation of response sequences and rank order codes”. They argue that “Any recurrent network 38 

can be unrolled into a multilayer feedforward network and with appropriate implementation of 39 

nonlinearities, such feedforward networks can in principle simulate recurrent processes.” This is one 40 



way of making feedforward models sound excessively complicated and hence tipping the balance in 41 

favour of recurrent mechanisms.  42 

But I don’t accept that you need multilayer networks with non-linearities to get sequences. Even a 43 

single layer of retinal ganglion cells will generate sequences in response to the onset of an image. 44 

You need integrate and fire, but nothing fancy. There is no need for anything else. And you would 45 

have to expect that the ordering in those sequences would remain stable even if you shifted contrast 46 

and luminance up and down.  47 

All this is rather sad. The authors are to be commended on the fact that, at long last, there are 48 

experiments that have looked at these fascinating phenomena. And I really think that the data needs 49 

to be published. But I think that they really need to tone down even more their claims that 50 

sequences mean recurrent processing.  51 

We have now tuned down our claims at numerous places throughout the manuscript and 52 

emphasize, that we cannot distinguish between feedforward and recurrent mechanisms (These 53 

passages are marked in yellow). However, since the main motivation for the study was our previous 54 

work on recurrent processing, we had to formulate our working hypothesis in the introduction. This 55 

hypothesis was based on predictions derived from recurrent processing. Therefore, it was 56 

unavoidable to discuss, whether our results are or are not compatible with our initial hypothesis. 57 

Otherwise we would have betrayed our motivation to initiate this study. 58 

On the other points I made, I was happy to see that the authors accepted that there were a lot of 59 

limitations with the way the experiments were done. I think they know very well that the dataset 60 

would be far more interesting if they had included 61 

- Single unit data rather than multiunit data 62 

- Lots more images to avoid the criticism that 3 stimuli are not enough 63 

These two limitations have now been mentioned (see above). 64 

- Track learning of a totally new image to see whether learning is needed for sequences (I don’t 65 

believe it is). 66 

This is correct. Recurrent networks always produce sequences. We now emphasize that our 67 

simulated network already generated sequences in the naive state, and that these sequences 68 

became refined by learning, which improved their decodability.  69 

For the time being, I will just say that I would vote for publication of the current data with more 70 

caveats and the acceptation that sequences can be generated in a single layer network with no 71 

recurrent connections and nothing fancy in terms of non-linearities. 72 

We deleted the reference to nonlinearities and hope to have now added sufficient caveats. 73 



REVIEWERS' COMMENTS 

Reviewer #2 (Remarks to the Author): 

I think that the additional caveats mean that the authors are no longer making unsubstantiated claims, 

and I am therefore happy to recommend publication. 

I very much look forward to seeing further work on this important topic using protocols that go beyond 

the limitations of the current experiments. 


