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FAPI-PET in Cardiovascular Disease
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PET probes targeting fibroblasts are frequently used for varying applications in oncology. In
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recent years, the clinical spectrum has been expanded towards cardiovascular medicine,
e.g., after myocardial infarction, in aortic stenosis or as a non-invasive read-out of athero-
sclerosis. We herein provide a brief overview of the current status of this PET radiotracer in
the context of cardiovascular disease, including translational and clinical evidence. In addi-
tion, we will also briefly discuss future applications, e.g., the use of fibroblast-targeting PET
to investigate bilateral organ function along the cardiorenal axis.
Semin Nucl Med 00:1-6 © 2024 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Introduction

While the concept of disturbed coronary artery flow in
patients with atherosclerosis and after acute myocar-

dial infarction (AMI) is well understood, myocardial ische-
mia is accompanied by a complex interaction of (sub)
cellular processes.1 Recent efforts turned towards inflam-
matory pathways in an acute setting and major clinical trials
testing anti-inflammatory medication have led to varying
effects on structural parameters and clinical outcome1-3 or
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even increased rates of fatal infection.3 Such inconsistent
benefits highlight the urgent need to determine the optimal
time-point to initiate anti-inflammatory therapies. In this
regard, positron emission tomography (PET) probes deci-
phering the current inflammatory status in the myocardium
may serve as a surrogate marker to determine patients at
risk even to identify the optimal time window for therapy
on-set (Fig. 1).4,5 After acute inflammation, however, car-
diac repair is characterized by activated fibroblasts, along
with aggregation of structural proteins shaping the extracel-
lular matrix (ECM).6 While this phenomenon can be cardi-
oprotective, overzealous activation triggers an excessive
accumulation of those proteins, ultimately leading to fibro-
sis, stiffness and finally, heart failure.6,7 Of note, such a
remodeling of the ECM matrix is a shared feature not only
in individuals suffering from AMI, but also in other cardio-
vascular diseases, including, but not limited to aortic steno-
sis (AS), arrhythmogenesis or atherosclerosis.8-10 Currently
emerging fibroblast activation protein (FAPI) molecular
imaging probes (Fig. 2), however, can monitor respective
fibrotic reprogramming in the injured myocardium,11

thereby allowing to image late stages of fibrosis.12 In the
present review, a brief overview on the current status of
such profibrotic activity-targeting PET radiotracers in car-
diovascular disease is provided. We will focus on three
selected scenarios, including MI, AS following transcatheter
aortic valve replacement (TAVR) and atherosclerosis. In
addition, we will discuss the potential of fibroblast-target-
ing PET biomarkers for image-piloted reparative strategies
after primary cardiac damage or even improved bilateral
heart-kidney outcome.
1
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Figure 1 PET probes that can be applied after myocardial infarction. Those radiotracers provide a read-out of the entire
pathophysiological cascade after the acute event, including early inflammation, fibrotic healing or remodeling. Created
with biorender.com.

Figure 2 Chemical structure of the PET agent (68Ga)-labeled fibro-
blast activation protein inhibitor 4 (FAPI-04).
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Myocardial Infarction -
Translational Evaluation
Varasteh and coworkers were among the first to investigate
the 68Gallium-labeled FAP inhibitor 04 ([68Ga]Ga-FAPI04)
in rats after MI using a dedicated micro PET/CT. In a longitu-
dinal scan setting, the FAPI-based PET signal peaked in the
injured area at day 6 after the acute event (Fig. 3). To confirm
specificity, the authors also reported on successful blocking
of the signal by co-injecting non-labeled FAPI-04. In an ex-
vivo analysis using immunofluorescence staining, Varasteh et
al also demonstrated presence of FAP-avid myofibroblasts in
the infarcted myocardium. A drawback of this preclinical
investigation included open thoracotomy to conduct left cor-
onary artery ligation, which also caused increased radiotracer
accumulation due to wound healing.11 Diekmann et al then
also investigated [68Ga]Ga-FAPI04 6 to 11 days after coro-
nary intervention in MI patients and reported on an exceed-
ing fibrotic PET signal relative to the reference perfusion
radiotracer. On concomitant cardiac magnetic resonance
imaging (cMRI), 50% of segments without late gadolinium
enhancement also had increased [68Ga]Ga-FAPI04 uptake,
indicated that activation of myofibroblasts also occur in non-
infarcted myocardium.13 This is in line with a (non-PET) pig
study, which also reported on interstitial fibrosis in adjacent
myocardium after MI.14 The observed increase on [68Ga]Ga-
FAPI04 uptake on later stages in rats (day 6) and humans
(day 6 to 11)11,13 is in line with previous reports on inflamma-
tory-targeted molecular imaging investigating the C-X-C motif
chemokine receptor 4 (CXCR4)-directed PET agent [68Ga]Ga-
PentixaFor after AMI.4,15 For the latter imaging probe, Thack-
eray et al had already demonstrated a peak in the infarcted area
3 days after coronary ligation,15 while in humans, such an
increased CXCR4 PET signal was demonstrated after a median
of 4 days following reperfusion therapy.4 As such, those reports
provide translational evidence that dedicated PET probes may
allow for a non-invasive read-out of the inflammation-fibrosis
cascade post-MI in a longitudinal setting. Of note, both
CXCR4- and FAPI-targeted imaging probes at baseline have
also provided predictive value for later functional decline or
major cardiovascular events.4,16 Diekmann and coworkers
applied [68Ga]Ga-FAPI04 11 days post-MI and determined the
value of imaging activated fibroblasts in the injured myocar-
dium for later functional outcome by using cMRI at baseline
and during follow-up. While [68Ga]Ga-FAPI04 did not match
with cMRI-derived myocardial tissue-specific parameters, it
showed a negative correlation with later obtained left ventricu-
lar ejection fraction (Fig. 4). The authors concluded that profi-
brotic activity-targeting PET has an incremental value in
addition to morphological information obtained by cMRI, in
particular on ventricular remodeling after MI.16



Figure 3 [68Ga]Ga-FAPI-04 uptake in a longitudinal setting in rats after myocardial infarction (MI) using a micro-PET/
CT scanner. (A) Transaxial [68Ga]Ga-FAPI-04 PET/CT (upper rows) revealed an increased radiotracer signal 6 days
after the acute event. [18F]FDG (3 d after MI) is also displayed as reference (lower row). Dashed lines are used to differ-
entiate between radiotracer accumulation in the infarcted myocardium vs. wounds initiated due to thoracotomy (to ini-
tiate coronary ligation; asterisk). At day 6 post-MI, regions of interest (circles) are placed over the infarct border zone
and remote myocardium. (B) Time�activity curve for infarcted myocardium (red) also shows an increased uptake
6 days post-MI relative to other dates of imaging. This research was originally published in JNM. Modified from11,
copyright by the Society of Nuclear Medicine and Molecular Imaging, Inc.

Figure 4 Perfusion SPECT (upper rows) shows a perfusion defect
and increased late gadolinium enhancement (LGE) on magnetic res-
onance imaging in a patient after myocardial infarction. Profibrotic
activity-targeting [68Ga]Ga-FAPI-04 exceeds the infarcted area and
the LGE signal. This research was originally published in JNM.
Modified from16, copyright by the Society of Nuclear Medicine and
Molecular Imaging, Inc.
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Aortic Stenosis
Beyond MI, [68Ga]Ga-FAPI04 has been applied to other
myocardial diseases, including AS. As an underlying patho-
physiological rationale, cardiac fibrosis has been advocated
to play an eminent significance in AS patients scheduled for
TAVR. For instance, based on biopsy specimen, increased
fibrotic load was tightly linked to less favorable cardiac func-
tional outcome and higher rates of heart failure.8 Increased
fibrotic burden in the heart was also an independent predic-
tor of cardiovascular death even during long-term follow-
up,17 thereby rendering myocardial fibroblasts as a target of
interest in AS. As such, a recent multimodal imaging study
applied [68Ga]Ga-FAPI04 PET along with cMRI and echocar-
diography in 23 AS patients prior to valve replacement. The
PET-based FAP-avid volume prior to intervention provided
large variation, indicating that the imaging signal reflects dif-
ferent stages of fibroblast activation. Of note, relative to other
imaging parameters, profibrotic activity derived from PET
exhibited significant correlation with improved left ventricu-
lar ejection fraction after TAVR, suggesting that this image
biomarker may also identify high-risks prone to later cardiac
functional decline.18
Atherosclerosis
Fibrosis is also involved in atherosclerosis, mainly by balanc-
ing the inflammatory response (triggering plaque rupture)
and profibrotic activity in a chronic setting (mainly mediating
stability).19,20 Relative to other imaging modalities, PET pro-
vides a whole-body functional read-out, which allows to
decipher plaque activity in virtually every arterial segment in
the body.12,21 As such, recent efforts turned towards leverag-
ing the advantages of hybrid imaging, with PET providing
information on fibroblast activity in the vessels, while the CT
component can assist in identifying plaque burden. For
instance, a recent study investigated correlations between



Figure 5 Different coronal maximum intensity projections for PET and PET/CT of the same cancer patient, which was
imaged with C-X-C motif chemokine receptor 4 (CXCR4)-directed [68Ga]Ga-PentixaFor (left) and profibrotic activity-
directed [68Ga]Ga-FAPI-04 (right) for oncological purposes. Focal arterial wall uptake in seen on CXCR4-directed PET
as indicated by the arrows (upper rows, thoracic aorta segments; lower rows, abdominal aorta segments). On fibroblast
activation PET, however, there was no relevant uptake in those arterial wall portions, suggesting that such a dual-tracer
approach targeting inflammation and fibrosis may provide information on functional heterogeneity in the arterial tree.
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arterial FAP uptake on PET with cardiovascular risk factors
and calcified plaque burden (derived from CT). For the latter
assessment, the number of plaques, thickness and circumfer-
ence of calcification was investigated, thereby providing an
elaborate assessment of the actual plaque load. Focal uptake
in arterial segments was observed in 800 sites, while only
377 also had concomitant calcification on CT. Visual and
quantitative evaluation of FAPI-avid vessel sites provided sig-
nificant associations with all parameters of plaque load, but
on univariate analysis, only body-mass index as a cardiovas-
cular risk factor was associated with the number of FAPI-
avid sites in the vasculature. The authors concluded that
[68Ga]Ga-FAPI04 can identify focal vessel wall lesions and is
also linked to calcification, but not rigorously linked to car-
diac risk.11 Gallium labeling may explain this phenomenon,
as fluorine radiochemistry has improved physiochemical
properties leading to improved sensitivity,22 in particular in
small focal lesions such as in the vessels. Nonetheless, similar
to MI,4,15 PET radiotracers targeting CXCR4 (as a read-out of
acute inflammation) and profibrotic activity (in a chronic set-
ting) may provide further insights into the functional hetero-
geneity of plaque burden in patients beyond morphological
(CT-based) information (Fig. 5).
Future Perspectives �
Cardiorenal Crosstalk and
Image-Guided Prevention
Beyond cardiovascular diseases, a recent report showed that
[68Ga]Ga-FAPI04 can also be applied to nephrology. For
instance, in chronic kidney disease (CKD), renal fibrosis has
been evaluated by this radiotracer in a translational setting.
In a preclinical environment using a micro-PET, the molecu-
lar imaging signal in the kidneys was elevated in CKD ani-
mals relative to a control group and was also associated with
fibrotic renal remodeling.23 Those findings have been
recently confirmed in 13 patients with suspicion for renal
fibrosis. With biopsy serving as reference, [68Ga]Ga-FAPI04
displayed a large variety of the PET signal (maximum stan-
dardized uptake values), which increased with worsening of
renal fibrosis. Of note, PET/CT assessing profibrotic activity
can then provide information on both kidneys,24 thereby
addressing potential sampling biases after renal puncture. Of
note, CXCR4-targeting [68Ga]Ga-PentixaFor has also been
applied to determine inflammation in the kidneys, including
in mice and patients after MI to investigate cardiorenal cross-
talk. In patients, the renal imaging signal was linked to
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worsening kidney outcome25 and thus, inflammatory-
directed and fibrosis-targeting molecular imaging may also
be applicable to decipher pathophysiological interactions
along the cardiorenal or renocardiac axis (depending on the
primum movens).26 For instance, the myocardium post-MI
can initiate grave consequences for the kidneys, including
acute overshooting inflammation or elevated pro-fibrotic
signaling.26 As PET probes are applied systemically, heart-
kidney crosstalk can then be investigated by whole-body
PET using the afore-mentioned target-specific radiotracers.
This may also open avenues to implement PET-guided
molecular preventive strategies to improve outcome,5 e.g.,
to initiate on-peak anti-fibrotic treatment at the maximum of
cardiac or renal target expression derived from imaging.27,28
Conclusions
Profibrotic activity-directed PET probes can monitor fibrotic
reprogramming at later stages after cardiac injury. After acute
MI, the [68Ga]Ga-FAPI04 PET signal exceeded the under-
perfused area in the myocardium and was also linked to car-
diac functional deterioration during follow-up. In AS patients
scheduled for TAVR, a broad variation of the baseline FAP-
avid volume indicates that the PET signal reflects different
stages of fibroblast activation. In atherosclerosis, a tight link
between focal arterial wall uptake and calcified plaque load
was recorded and the fibrotic status provided by [68Ga]Ga-
FAPI04 may be of relevance to identify calcified plaques
prone to rupture. As radiotracers are administered systemi-
cally, future studies may also focus on applications beyond
cardiovascular disease to investigate bilateral organ function,
e.g., fibrotic changes along the cardiorenal axis in patients
after MI.
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