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Deutschsprachige Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Konstruktion dissipativer relativistischer Hydrodynamik
insbesondere für solche Fluide, deren Konstituenten einen nicht verschwindenden Spin aufweisen.
In diesem Kapitel soll eine Zusammenfassung der Motivation, der Methoden sowie der Ergebnisse
vorgenommen werden.

Einleitung und Motivation

Die an Beschleunigern wie dem Large Hadron Collider (LHC) oder dem Relativistic Heavy Ion Collider
(RHIC) durchgeführten Schwerionenkollisionen erlauben einen einzigartigen Einblick in Zustände der
Materie, wie sie sonst nur im frühen Universum vorhanden waren. Die dort erreichten hohen Dichten
und Temperaturen sind nach aktuellem Kenntnisstand hinreichend, um das sog. „Quark-Gluon Plasma“
(QGP) zu erzeugen, einen Zustand, in dem Quarks und Gluonen die relevanten Freiheitsgrade darstellen.
Diese Teilchen, welche im Rahmen der Quantenchromodynamik (QCD) stark wechselwirken, sind
unter normalen Umständen durch das sog. „confinement“ in Hadronen gebunden. Es hat sich in den
vergangenen Jahren und Jahrzehnten herausgestellt, dass dieses QGP eine hohe Kollektivität aufweist
und sich somit mittels hydrodynamischer Methoden beschreiben lässt [1–3].

Eine interessante Unterklasse der in diesen Schwerionenkollisionen möglichen Messungen besteht in
der Betrachtung der Polarisation der emittierten Teilchen. Die Intuition hinter einer solchen Messung
liegt darin, dass die Kollisionen nicht immer zentral ablaufen, sodass das entstehende QGP mit einer
signifikanten Winkelgeschwindigkeit rotiert. Analog zur Magnetisierung von Materie unter Rotation,
dem sog. Barnett-Effekt [4], ist es dann zu erwarten, dass die emittierten Teilchen eine nicht
verschwindende Polarisation entwickeln. In der Tat wurde an mehreren Experimenten nachgewiesen,
dass die Λ-Hyperonen, welche Baryonen mit dem Spin 1/2 darstellen, einen Polarisationsgrad aufweisen,
der insbesondere bei niedrigen Energien von Null verschieden ist [5–8]. Diese Art der sog. globalen (d.h.
über die Impulse der beteiligten Teilchen integrierten) Polarisation kann recht gut mit hydrodynamischen
Modellen in Einklang gebracht werden, welche annehmen, dass die Polarisation der Teilchen nur von
der Vortizität des Mediums abhängt [9]. Im Gegensatz dazu ist dies für die lokale (impulsabhängige)
Polarisation [10] nicht möglich, wobei hier mit der Berücksichtigung der Effekte des sog. „thermalen
Schertensors“ in den letzten Jahren deutliche Fortschritte erzielt wurden [11–14].

Eine weitere vielversprechende Observable besteht im sog. „alignment“ der ϕ- und K⋆0-Mesonen,
welche einen Spin von 1 aufweisen. Diese Größe ist Teil der Tensorpolarisation von Teilchen und
muss somit von der oben beschriebenen (Vektor-) Polarisation unterschieden werden. Während die
Vektorpolarisation der Λ-Hyperonen durch den Erwartungswert des Pauli-Lubanski-Vektors gegeben
ist und potentiell für alle Teilchen mit nicht verschwindendem Spin vorhanden sein kann, beschreibt die
Tensorpolarisation Elemente der Spin-Dichtematrix, die für Teilchen mit Spin kleiner 1 nicht existieren.
Als Beispiel für den masselosen Fall sei hier das Photon genannt, welches sowohl zirkular als auch linear
polarisiert sein kann: erstere Größe gibt die Vektorpolarisation an, letztere die Tensorpolarisation [15].
Das (globale) alignment der oben genannten ϕ-Mesonen hat sich als signifikant herausgestellt [16–18],
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was in einer Reihe von theoretischen Erklärungsversuchen resultierte, wobei eine eindeutige Lösung
noch aussteht [19–28].

Die Verbindung dieser Arbeit zu den oben genannten theoretischen Erklärungen für Vektor- und
Tensorpolarisation von Teilchen besteht darin, dass vielen dieser Ansätze hydrodynamische Modelle
zugrunde liegen. Ausgehend von fundamentalen Quantenfeldtheorien, wird über den Weg der kineti-
schen Theorie eine hydrodynamische Beschreibung von hinreichend stark wechselwirkenden Systemen
formuliert, deren fundamentale Freiheitsgrade einen Spin von 0, 1/2 oder 1 aufweisen. Innerhalb dieses
Rahmens können dann Ausdrücke für die relevanten Observablen hergeleitet werden, welche sowohl
Gleichgewichts- als auch dissipative Effekte mit einbeziehen.

Relativistische Hydrodynamik

Das Anwendungsgebiet der Hydrodynamik, deren Einführung sich Kapitel 2 widmet, sind solche
Systeme, die eine hinreichend große Separation zwischen mikro- und makroskopischen Skalen aufweisen
und somit durch ihre erhaltenen Ströme beschrieben werden können. In der Thermodynamik, welche
die Existenz eines globalen Gleichgewichts voraussetzt und somit als statischer Spezialfall der Hydro-
dynamik betrachtet werden kann, sind diese Größen beispielsweise durch die (im nicht beschleunigten
Fall konstante) Temperatur, den Druck, und das chemische Potential gegeben. In relativistischen Theo-
rien, welche den Fokus dieser Arbeit darstellen, umfassen diese den Energie-Impuls-Tensor Tµν , den
Gesamtdrehimpulstensor Jλµν , sowie weitere erhaltene Ströme wie z.B. den elektrischen Ladungsstrom.
Um die Diskussion möglichst einfach zu halten, beschränkt sich diese Arbeit auf ein Fluid, das aus
einer Teilchensorte besteht, sodass der erhaltene Strom Nµ als Teilchenstrom aufgefasst werden kann.
Die Erhaltung des Gesamtdrehimpulses folgt in der konventionellen Hydrodynamik trivial aus der
Energie-Impuls-Erhaltung. Demgegenüber muss diese in der Spin-Hydrodynamik aufgrund der Existenz
eines Spin-Beitrags zum Gesamtdrehimpuls explizit mit einbezogen werden. Die zeitliche Entwicklung
der oben eingeführten Ströme ist durch die entsprechenden Erhaltungsgleichungen gegeben,

∂µN
µ = 0 , ∂µT

µν = 0 , ∂λJ
λµν = 0 . (1)

Hier zeichnet sich bereits das Hauptproblem der dissipativen Hydrodynamik ab: die Anzahl der Erhal-
tungsgleichungen reicht nicht aus, um die Evolution aller Komponenten der erhaltenen Ströme eindeutig
festzulegen! In der idealen Hydrodynamik, welche auf dem Konzept eines lokalen thermodynamischen
Gleichgewichtes basiert, kann die Anzahl an unabhängigen Freiheitsgraden jedoch hinreichend stark
reduziert werden, sodass die Erhaltungsgleichungen genügen, um die Dynamik des Systems zu be-
stimmen. Im Speziellen bestimmt die Erhaltungsgleichung für den Energie-Impuls-Tensor die zeitliche
Entwicklung der Temperatur T (x) sowie der Vierergeschwindigkeit uµ(x), während die Erhaltung des
Teilchenstromes das Verhältnis von chemischem Potential zu Temperatur α(x) := µ(x)/T (x) festlegt.
Die Erhaltungsgleichung für den Gesamtdrehimpulstensor schließlich führt auf die Zeitentwicklung des
sog. Spin-Potentials Ωµν , welches nur unter Berücksichtigung eines Spintensors auftritt.

Da in der dissipativen Hydrodynamik, welche einen allgemeineren Fall darstellt, die oben angesprochenen
Argumente zur Reduktion der unabhängigen Komponenten aufgrund des Fehlens eines Gleichgewichtes
nicht verwendet werden können, bleibt hier das Problem der Unbestimmtheit der erhaltenen Ströme
bestehen. Es ist somit nötig, für die dissipativen Größen, welche durch die Erhaltungsgleichungen
nicht eindeutig bestimmt werden, Bewegungsgleichungen abzuleiten. Eine Methode, dies zu tun,
ist die sog. Gradientenentwicklung, deren Beitrag erster Ordnung die im nichtrelativistischen Fall
äußerst erfolgreichen Navier-Stokes-Gleichungen sind. Im relativistischen Fall jedoch stoßen diese
Gleichungen an ihre Grenzen, da sie zur Klasse parabolischer Differentialgleichungen gehören und somit
die Forderung der speziellen Relativitätstheorie nach Kausalität verletzen. Infolgedessen entwickeln sich
im linearen Regime Instabilitäten, welche die relativistische Version der Navier-Stokes-Gleichungen
in der Praxis nicht einsetzbar machen [29–32]. Eine weitere Möglichkeit, Bewegungsgleichungen für
die dissipativen Größen herzuleiten, besteht darin, eine mikroskopische Theorie zugrunde zu legen,
und durch zweckmäßige Näherungen das interessierende makroskopische Verhalten zu extrahieren.
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Diese Herangehensweise ist Gegenstand der vorliegenden Arbeit, und die fundamentale mikroskopische
Theorie ist durch die Quantenfeldtheorie gegeben.

Feldtheorie, Erhaltungsgrößen, und kinetische Theorie

Die erste Frage, die beantwortet werden muss, um das im letzten Abschnitt beschriebene Programm
durchzuführen, besteht darin, wie die makroskopischen erhaltenen Ströme mit den fundamentalen
Freiheitsgraden der mikroskopischen Theorie in Verbindung gesetzt werden können, was in Kapitel 3
in Angriff genommen wird.

Teilchen mit Spins 0, 1/2 und 1 werden durch Quantenfelder repräsentiert, welche sich unter Lorentz-
Transformationen jeweils wie Skalare, Spinoren und Vierervektoren verhalten. Aus den Symmetrien der
entsprechenden Wirkungen unter Poincaré-Transformationen lassen sich dann die erhaltenen Ströme
mittels des Noetherschen Theorems [33] bestimmen: so folgt aus der Invarianz der Wirkung unter
Raumzeit-Translationen die Divergenzfreiheit des Energie-Impuls-Tensors, während die Erhaltung des
Gesamtdrehimpulses aus der Invarianz unter Lorentz-Transformationen resultiert. Die Erhaltung des
Ladungs- bzw. Teilchenstroms schließlich folgt aus einer globalen U(1)-Symmetrie.

Obwohl sich mit dieser Methode die erhaltenen Ströme als Funktionen der mikroskopischen Felder
darstellen lassen, ist die eingangs erwähnte Fragestellung noch nicht vollständig beantwortet: es
stellt sich nämlich heraus, dass die Erhaltungsgleichungen invariant unter einer Klasse von sog.
„Pseudoeichtransformationen“ sind [34]. Im Kontext einer Feldtheorie, welche Teilchen mit nicht
verschwindendem Spin beschreibt, folgt aus jeder Wahl einer solchen Pseudoeichung eine bestimmte
Aufspaltung des Gesamtdrehimpulses in einen Bahn- und einen Spinanteil [35]. Wenngleich vom
Standpunkt der vollen mikroskopischen Theorie alle Pseudoeichungen äquivalent sind, können sie
dennoch die Trunkierungen beeinflussen, welche beim Übergang zu einer makroskopischen Theorie
zwangsläufig vorgenommen werden müssen. Die Pseudoeichungen, welche in dieser Arbeit Anwendung
finden, erfüllen die Anforderung, dass der Spintensor im Fall freier Felder sowie im Gleichgewicht
erhalten bleibt und der Energie-Impuls-Tensor somit symmetrisch ist. Die Anschauung, welche hinter
diesen Bedingungen steht, besteht darin, dass die Teilchen Bahn- und Spindrehimpuls nur in Kollisionen
austauschen können, und dass im Gleichgewicht im Mittel kein Austausch mehr stattfinden sollte.

Eine in Herleitungen der konventionellen Hydrodynamik oft verwendete mikroskopische Formulierung
ist durch die kinetische Theorie gegeben, welche Systeme von Teilchen beschreibt, die mittels zeit- und
räumlich lokalisierter Stöße wechselwirken. Unter Berücksichtigung von Zweierstößen sowie Verwendung
des Boltzmannschen Stoßzahlansatzes lässt sich eine Bewegungsgleichung für die Ein-Teilchen-
Verteilungsfunktion f(x, k) angeben, welche die Wahrscheinlichkeit beschreibt, ein Teilchen mit Impuls
k am Raumzeitpunkt x zu finden [36].

Diese Formulierung ist zunächst der klassischen Physik zuzurechnen, da sie davon ausgeht, Ort
und Impuls gleichzeitig beliebig genau bestimmen zu können, was im Rahmen von Quantentheorien
aufgrund der Heisenbergschen Unschärferelation nicht möglich ist. Die analoge Formulierung im
Kontext der Quantenmechanik und Quantenfeldtheorie besteht im Wigner-Funktions-Formalismus,
bei dem die Rolle der Verteilungsfunktion von der Wigner-Funktion W (x, k) übernommen wird,
welche eine Fourier-Transformation der Relativkoordinate der Zweipunktfunktion darstellt und somit
im Allgemeinen matrixwertig ist.1 Im Fall von massiven Spin-1/2 Teilchen weist die Wigner-Funktion
vier unabhängige Komponenten auf, welche sich in einem Skalar F(x, k) und einem Axialvektor
Aµ(x, k) mit k · A = 0 zusammenfassen lassen. Im Spin-1-Fall dagegen beinhaltet die Wigner-
Funktion neun unabhängige Komponenten, welche neben einem Skalar fK(x, k) und einem zum
Impuls orthogonalen Axialvektor Gµ(x, k) auch einen symmetrischen, zum Impuls orthogonalen,
spurlosen Tensor FµνK umfassen. Diese zusätzlichen Freiheitsgrade stehen in direkter Beziehung zum

1Eine Ausnahme bildet der Fall von Teilchen mit Spin 0, in dem die Wigner-Funktion ein Skalar ist und somit nur
eine unabhängige Komponente aufweist.
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Vorhandensein der Tensorpolarisation bei Teilchen von Spin 1 und höher. In diesem Formalismus geht
zwar die Interpretation als Wahrscheinlichkeitsdichte verloren, da die Wigner-Funktion über Gebiete
∆x∆k ∼ ℏ negativ werden kann [37], jedoch lassen sich zumindest im Fall freier Felder alle erhaltenen
Ströme mittels dieser Funktion als gewichtete Impulsintegrale ausdrücken. Weiterhin beschreibt die
Bewegungsgleichung der Wigner-Funktion

k · ∂W (x, k) = C(x, k) (2)

das Verhalten des Systems zunächst exakt. Die rechte Seite dieses Ausdrucks stellt eine Art Kollisions-
integral dar, welches in einer sinnigen Art und Weise genähert werden muss.

Vor dieser Rechnung, welche Gegenstand der beiden folgenden Kapitel ist, wird ein in Refs. [38–42]
angewandtes Hilfsmittel eingeführt: Um eine kompakte Beschreibung aller Freiheitsgrade der Wigner-
Funktion zu erhalten, ist es möglich, eine sog. „Spin“-Variable sµ einzuführen, und die unabhängigen
Komponenten der Wigner-Funktion als Multipolmomente einer skalaren Funktion f(x, k, s) bezüglich
dieser Variable zu definieren. Der Teil dieser Funktion, welcher auf der Massenschale liegt, d.h. für den
k2 = m2 gilt, erfüllt dann gemäß Gl. (2) eine Bewegungsgleichung der Form

k · ∂f(x, k, s) = C(x, k, s) , (3)

was eine einheitliche Beschreibung von Teilchen mit beliebigem Spin erlaubt. Die physikalisch relevanten
Observablen sind immer durch bestimmte Komponenten der Wigner-Funktion gegeben und beinhalten
somit eine Integration über die Variable s.

Die kinetische Gleichung in der GLW- und KB-Methode

Eine zentrale Frage der kinetischen Theorie besteht darin, den Kollisionsterm in Gl. (3) aufzustellen.
Im Zuge dessen wird sich in dieser Arbeit auf die Effekte binärer elastischer Kollisionen beschränkt.
Desweiteren wird die Annahme des „molekularen Chaos“ getroffen, welche besagt, dass Teilchen vor
einem Stoß unkorreliert sind, und die auch dem Boltzmannschen Stoßzahlansatz zugrunde liegt.

Die konkrete Berechnung wird auf zwei Weisen demonstriert: In Kapitel 4 wird die GLW-Methode
(nach de Groot, van Leeuwen und van Weert) verwendet, welche in Ref. [43] dargelegt ist und
in einer direkten Entwicklung der Interaktionsterme nach asymptotischen „in“- und „out“-Zuständen
besteht. Kapitel 5 dagegen verwendet die KB-Methode (nach Kadanoff und Baym), die auf der
Dyson-Schwinger-Gleichung für die Zweipunktfunktion basiert. Während die GLW-Methode direkt
mit den Interaktionstermen arbeitet, drückt die KB-Methode den Kollisionsterm zunächst durch
die Selbstenergien der beteiligten Felder aus, welche dann mittels einer diagrammatischen Methode
entwickelt werden. Trotz der formalen Unterschiede liefern beide Methoden schließlich die gleichen
Ergebnisse, mit dem Unterschied, dass es der KB-Methode auch mit handhabbarem Aufwand gelingt,
Effekte der Quantenstatistik zu berücksichtigen.

In beiden Methoden werden neben der oben vorgestellten Annahme des molekularen Chaos, welche
die Ursache einer irreversiblen Zeitentwicklung ist, sowie der Restriktion auf binäre Kollisionen zwei
essentielle Näherungen vorgenommen. Zunächst werden die Kopplungen als hinreichend schwach an-
genommen, um die Wechselwirkungsenergien als klein im Vergleich zu den Ruheenergien anzusehen.
Dies wird benötigt, um beispielsweise Korrekturen der Ruhemasse der Teilchen perturbativ zu be-
trachten. Desweiteren wird eine sog. Gradientenentwicklung bis zur ersten Ordnung vorgenommen,
welche aus der Matrixwertigkeit der Wigner-Funktion herrührt und nichtlokale Effekte beschreibt, die
darauf zurückzuführen sind, dass die fundamentalen Quantenfelder im Gegensatz zu punktförmigen
Teilchen eine endliche Ausdehnung besitzen. Während in der GLW-Methode die Ordnung in beiden
Näherungen durch Faktoren von ℏ gezählt werden, ist die KB-Methode hier differenzierter, da sie
die Kopplungskonstanten der ersten Näherung aufgrund der anschaulichen Diagrammtechnik klar
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ersichtlich macht, während die Gradientenentwicklung ebenfalls durch das Auftauchen von ℏ signalisiert
wird. Das Hauptresultat der Kapitel 4 und 5 lautet

k · ∂f(x, k, s) = 1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)W(σ)

×
[
f(x+∆1 −∆, k1, s1)f(x+∆2 −∆, k2, s2)f̃(x+∆′ −∆, k′, s′)f̃(x, k, s̄)

− f̃(x+∆1 −∆, k1, s1)f̃(x+∆2 −∆, k2, s2)f(x+∆′ −∆, k′, s′)f(x, k, s̄)
]
, (4)

wobei σ ∈ {0, 1/2, 1} den Spin der Teilchen darstellt und dS(k) bzw. dΓ bedeuten, dass über die Pha-
senraumvariablen s bzw. k und s integriert wird. Der obige Ausdruck berücksichtigt quantenstatistische
Effekte, was durch die Funktionen f̃ := 1±f ausgedrückt wird, wobei das positive (negative) Vorzeichen
für Bosonen (Fermionen) zu verwenden ist. Ein wichtiges Resultat der beiden Methoden, ersichtlich aus
Gl. (4), besteht darin, dass in der ersten Ordnung der Gradientenentwicklung sowohl lokale als auch
nichtlokale Kollisionen auftreten, wobei letztere Gradientenbeiträge im Kollisionsintegral beschreiben.
Die Anschauung hinter diesen Termen besteht darin, dass zwei Teilchen nicht am selben Raumzeitpunkt
kollidieren, sondern um eine bestimmte Distanz gegeneinander verschoben sind, welche durch die
Vektoren ∆1, ∆2, ∆′ und ∆ bestimmt wird. Auf diese Art besteht zum Zeitpunkt der Kollision ein
nicht verschwindender Bahndrehimpuls, welcher unter Beachtung der Gesamtdrehimpulserhaltung in
Spin umgewandelt werden kann. Diese nichtlokalen Kollisionen stellen somit einen mikroskopischen
Mechanismus zur Polarisation von Teilchen dar, da nur durch sie der Spin geändert werden kann.
Wichtig ist zu erwähnen, dass diese Beiträge zwar bereits in Refs. [44, 45] beschrieben, jedoch erst in
Refs. [46, 47] und in der vorliegenden Arbeit in Lorentz-kovarianter Form aufgestellt wurden. Dies
ist essentiell, da eine solche Form die Frage, ob es möglich ist, ein Inertialsystem zu finden, in dem die
Kollisionen lokal ablaufen, eindeutig negativ beantwortet.

Auch auf das Gleichgewicht haben diese nichtlokalen Kollisionen tiefgreifende Auswirkungen. Üblicher-
weise wird das lokale Gleichgewicht, welches den Ausgangspunkt für den Übergang zur Hydrodynamik
darstellt, durch die Bedingung definiert, dass der Kollisionsterm für die Gleichgewichtsverteilungsfunk-
tion feq verschwindet. Aufgrund quantenstatistischer Effekte muss diese Funktion (zur ersten Ordnung
in der Gradientenentwicklung) die Form

feq(x, k, s) :=

{
exp

[
α0(x)− β0(x) · k −

σℏ
2m

Ω0,µν(x)ϵ
µναβkαsβ

]
± 1

}−1

(5)

annehmen, wobei die Größen α0, β
µ
0 ≡ uµ/T0, und Ωµν0 Lagrange-Multiplikatoren darstellen, welche

im Fall des lokalen Gleichgewichtes mit den bekannten Größen aus der idealen Spin-Hydrodynamik
übereinstimmen. Die nichtlokalen Beiträge des Kollisionsterms sorgen nun aber dafür, dass zusätzliche
Bedingungen an diese Größen gestellt werden müssen,

∂(µβ0,ν) = 0 , ∂µα0 = 0 , Ω0,µν = ϖµν ≡ −
1

2
∂[µβ0,ν] , (6)

die charakteristisch für den Zustand des globalen Gleichgewichts sind. Um nun im folgenden Kapitel
auf die Formulierung dissipativer Hydrodynamik eingehen zu können, ist es nötig, die Definition des
lokalen Gleichgewichts derart anzupassen, dass nur der lokale Teil des Kollisionsintegrals von feq zum
Verschwinden gebracht wird, sodass die Lagrange-Multiplikatoren in Gl. (5) beliebige Funktionen
von x sein können.

Dissipative Spin-Hydrodynamik

Ein Verfahren, um konventionelle Hydrodynamik aus kinetischer Theorie herzuleiten, besteht in der sog.
Momentenmethode. Hierbei wird die Verteilungsfunktion zunächst als Summe der Gleichgewichtsfunk-
tion feq sowie einer Abweichung δf dargestellt, und letztere in einer orthogonalen und vollständigen
Basis im Impulsraum entwickelt. Die Koeffizienten dieser Entwicklung, die sog. irreduziblen Momente

ρµ1···µℓ
r :=

∫
dΓErkk

⟨µ1 · · · kµℓ⟩δf , (7a)
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beschreiben immer noch die komplette Dynamik des Systems, ermöglichen aber eine systematische
Trunkierung. In Kapitel 6 der vorliegenden Arbeit wird diese Methode in einer verallgemeinerten
Form angewandt, welche auch die Abhängigkeit der Verteilungsfunktion von der Spinvariablen s
berücksichtigt. Konkret werden zusätzlich zu Gl. (7a) die irreduziblen Momente vom Spin-Rang 1 und
2 eingeführt,

τµ,µ1···µℓ
r :=

∫
dΓErks

µk⟨µ1 · · · kµℓ⟩δf , (7b)

ψµν,µ1···µℓ
r :=

∫
dΓErkK

µν
αβs

αsβk⟨µ1 · · · kµℓ⟩δf , (7c)

mit deren Hilfe die Verteilungsfunktion für alle hier betrachteten Teilchen beschrieben werden kann. Es
sei angemerkt, dass eine Teilmenge der Momente ρµ1···µℓ

r den dissipativen Anteil des Energie-Impuls-
Tensors und des Teilchenstromes beschreibt, während der Spintensor von den Momenten τµ,µ1···µℓ

r

bestimmt wird. Die Momente ψµν,µ1···µℓ
r schließlich tauchen in keinem erhaltenen Strom auf, stehen

aber mit der Tensorpolarisation in Verbindung.

Für die Zeitentwicklung der in den Gl.en (7) definierten irreduziblen Momente lassen sich unter
Verwendung der kinetischen Gleichung exakte Ausdrücke herleiten, welche ein gekoppeltes System
(abzählbar) unendlich vieler partieller Differentialgleichungen bilden, was eine Umformulierung der
ursprünglichen partiellen Integro-Differentialgleichung (4) darstellt. Die sich nun stellende Frage
besteht darin, wie dieses System in einer sinnvollen Weise geschlossen werden kann. Die in dieser
Arbeit verwendete Methode basiert auf Refs. [48–50] und verwendet eine Trunkierung in zwei als
klein angenommenen Größen: die Knudsen-Zahl Kn := λmfp/L beschreibt das Verhältnis aus der
mittleren freien Weglänge der Teilchen λmfp und einer hydrodynamischen Längenskala L, welche
invers zu den Gradienten makroskopischer Variablen ist. Diese Zahl gibt an, wie groß die Separation
zwischen mikro- und makroskopischen Skalen ist, und bildet somit ein Maß für die Anwendbarkeit der
Hydrodynamik. Die zweite Größe, welche eigentlich einen ganzen Satz von Verhältnissen beschreibt,
sind die inversen Reynolds-Zahlen Re−1 ∼ δf/feq, welche den Betrag von dissipativen Größen im
Vergleich zu ihrem Gleichgewichtswert angeben. Diese Zahlen, von denen es so viele wie dissipative
Größen gibt, beschreiben die Nähe des Systems zum lokalen Gleichgewicht.

Unter der Annahme, dass die oben genannten Größen klein und von derselben Größenordnung sind, ist
es möglich, die Gleichungen für die irreduziblen Momente perturbativ zu behandeln. Dazu wird zunächst
die Lösung erster Ordnung gebildet, welche das kinetische Analogon zur Navier-Stokes-Theorie
bildet. Um die Gleichungen zur zweiten Ordnung in Kn und Re−1 zu trunkieren, werden diese Lösungen
dann in die Terme zweiter Ordnung eingesetzt und höhere Beiträge vernachlässigt. Es sollte erwähnt
werden, dass sich diese Methode, in Ref. [50] „Inverse-Reynolds Dominance“ (IReD) genannt, von dem
in Ref. [51] eingeführten und vielfach verwendeten sog. Denicol-Niemi-Molnár-Rischke (DNMR)-
Ansatz unterscheidet, welcher auf der Extraktion der Eigenmoden des linearisierten Kollisionsterms
basiert. Zwar resultieren beide Methoden in formal ähnlichen und, wie in Ref. [50] gezeigt, perturbativ
äquivalenten Gleichungen, jedoch sind die auftretenden Koeffizienten unterschiedlich. Ein Vorteil des
IReD-Ansatzes besteht darin, dass eine Klasse von in der DNMR-Methode auftretenden Termen,
welche die Bewegungsgleichungen parabolisch und somit akausal und instabil werden lassen, nicht
auftritt, und ihre Effekte in anderen Transportkoeffizienten absorbiert werden. Da diese parabolischen
Beiträge in praktischen Anwendungen immer vernachlässigt werden müssen, ist es zu erwarten, dass die
IReD-Methode bessere Ergebnisse im Vergleich mit der unterliegenden kinetischen Theorie bringt. Ein
weiterer Vorteil, welcher in Ref. [49] demonstriert wurde, besteht in der Anwendbarkeit auf Systeme
mit mehreren erhaltenen Ladungsströmen.

Unter Verwendung dieser Methode werden die Momentengleichungen so trunkiert, dass nur noch
diejenigen Momente übrig bleiben, deren Navier-Stokes-Beiträge von erster Ordnung in Kn oder
Re−1 und die somit hydrodynamisch „wichtig“ sind. Dies kommt einer Trunkierung im Tensorrang ℓ
der irreduziblen Momente (7) gleich. Der letzte Schritt besteht dann in der Wahl derjenigen Momente,
welche als dynamische Freiheitsgrade gewählt werden sollen. Um das Ziel einer hydrodynamischen
Theorie zu erfüllen, die erhaltenen Ströme zu beschreiben, ist es hier sinnvoll, diejenigen irreduziblen
Momente zu wählen, welche in diesen Größen auftreten. Da die Momente ψµν,µ1···µℓ

r in keinem erhaltenen
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Strom enthalten sind, ist diese Prozedur dort nicht möglich; stattdessen werden diese Momente mit
den konventionellen dissipativen Größen aus dem Energie-Impuls-Tensor und dem Teilchenstrom in
Verbindung gesetzt.

Hiernach, beschrieben in Abschnitt 6.4, ist das Hauptziel erreicht: Zusätzlich zu den Gleichungen, welche
die ideale Spin-Hydrodynamik charakterisieren, existiert ein Satz von Gleichungen zur Beschreibung
der dissipativen Komponenten aller erhaltenen Ströme. Diese sind alle vom Typ einer Relaxations-
gleichung, wobei die asymptotischen Werte jenen aus der Navier-Stokes-Theorie entsprechen und
die charakteristischen Relaxationszeiten von der mikroskopischen Interaktion der Teilchen bestimmt
werden. Interessant ist, an welchen Punkten die nichtlokalen Beiträge der Kollisionsterme auftreten:
während die oben genannten Relaxationszeiten allein von lokalen Kollisionen bestimmt werden, sind
die nichtlokalen Beiträge für die Navier-Stokes-Werte der dissipativen Beiträge des Spintensors
verantwortlich. Ebenso bestimmen sie die charakteristische Zeitspanne, welche das Spin-Potential Ωµν0
benötigt, um zu seinem Gleichgewichtswert, der thermalen Vortizität ϖµν , zu relaxieren.

Zum Abschluss kann eine Verbindung zu den eingangs beschriebenen, im Experiment zugänglichen
Observablen hergestellt werden. Innerhalb des aufgestellten Rahmens lassen sich diese Größen, d.h. der
Pauli-Lubanski-Vektor sowie die Tensorpolarisation, als Funktionen der hydrodynamischen Variablen
schreiben, und, was besonders anschaulich ist, im Navier-Stokes-Limes betrachten. Dabei stellt
sich heraus, dass die Vektorpolarisation der Teilchen dissipative Korrekturen erhält, welche auf den
nichtlokalen Anteilen des Kollisionsterms basieren, und sowohl durch die Vortizität als auch durch den
Schertensor des Mediums erzeugt wird. Die Tensorpolarisation hingegen, welche eine rein dissipative
Größe ist, wird allein von den lokalen Kollisionen bestimmt. Zum Abschluss der Arbeit wird eine
einfache Trunkierung des vollen Modells gewählt, sodass nur ein einziger Koeffizient übrig bleibt,
welcher sensitiv für die mikroskopischen Details ist. Auf diese Weise wird ein simpler Zusammenhang
zwischen der Tensorpolarisation der Teilchen und dem Scherspannungstensor des Mediums hergestellt.

Ausblick

In dieser Arbeit wurde eine in sich geschlossene Herleitung der dissipativen relativistischen Spin-
Hydrodynamik präsentiert. Ausgehend von mikroskopischen Quantenfeldtheorien, welche Teilchen der
Spins 0, 1/2 und 1 beschreiben, wurde unter Verwendung des Wigner-Funktions-Formalismus eine
kinetische Theorie entwickelt, welche quantenmechanische nichtlokale Effekte in führender Ordnung
berücksichtigt. Aus dieser kinetischen Theorie wurden wiederum mittels einer verallgemeinerten
Momentenmethode die Gleichungen hergeleitet, welche die Zeitentwicklung der dissipativen Anteile
der erhaltenen Ströme beschreiben. Zusammen mit den makroskopischen Erhaltungsgleichungen ist
damit die Dynamik des Energie-Impuls-Tensors, des Teilchenstroms und des Gesamtdrehimpulstensors
eindeutig festgelegt.

Die so konstruierte Theorie kann auf verschiedene Arten erweitert werden: neben Verbesserungen
in der Herleitung, wie z.B. der Berücksichtigung nichtlinearer Beiträge aus den Kollisionsintegralen,
sollte im Vordergrund stehen, die hergeleiteten Ausdrücke für Vektor- und Tensorpolarisation mit
den entsprechenden experimentellen Daten zu vergleichen. Weiterhin ist geboten, die Gleichungen
darauf zu untersuchen, ob sie im linearisierten Fall ein symmetrisch-hyperbolisches System bilden
[52]. Eine Wiederholung der hier präsentierten Rechnung für masselose Teilchen, insbesondere für
nicht-abelsche Eichfelder, wäre zu begrüßen, um weitere Einsicht in das hydrodynamische Verhalten des
QGPs zu gewinnen. Schließlich können die in der Anfangsphase einer Schwerionenkollision entstehenden
Magnetfelder sehr stark sein, weswegen es sinnvoll wäre, Effekte elektromagnetischer Felder, welche
in Refs. [53–55] für den kollisionsfreien Fall untersucht wurden, auch in die volle Beschreibung mit
einzubeziehen, um eine Theorie der Spin-Magnetohydrodynamik zu entwickeln.
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Notation

Although most of the notation employed in this thesis will be introduced again before its first usage,
here we will provide a comprehensive overview of the basic rules and conventions for reference purposes.

In this work, we choose natural units, i.e., we set c = ϵ0 = µ0 = kB = 1. The (reduced) Planck
constant ℏ is not set to unity, since we will use it as a formal indicator for an expansion in gradients as
well as coupling constants.

We employ the “mostly minus” convention for the metric tensor in flat spacetime, i.e.,

gµν :=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


µν

,

The totally antisymmetric Levi-Civita pseudotensor density ϵµναβ is defined via ϵ0123 = −ϵ0123 := 1.
The scalar product of two four-vectors a and b is denoted with a dot, a · b ≡ aµbµ := aµgµνb

ν , and the
square of a four-vector is defined as a2 := a · a. Indices on Lorentz vectors or tensors as well as the
components of spinors in Dirac space are denoted by greek letters. To avoid confusion, the latter are
represented predominantly by the letters from the beginning (α, β, · · · ) of the greek alphabet. Other
lists use latin letters (i, j, · · · ), and three-vectors are printed in bold.
The symmetrization of a rank-two tensor Aµν is given by round brackets, A(µν) := Aµν+Aνµ. Similarly,
its antisymmetrization is denoted via square brackets, A[µν] := Aµν −Aνµ.

An operator Ô in Fock space is represented by a wide hat, and its normal-ordered ensemble average is
given by the same symbol without a hat, O := ⟨: Ô :⟩. The commutator between two operators Ô1 and
Ô2 is denoted by square brackets, [Ô1, Ô2] := Ô1Ô2 − Ô2Ô1, and the anticommutator is represented
by curly brackets {Ô1, Ô2} := Ô1Ô2 + Ô2Ô1.
A quantum field in a general representation is given the letter φ̂. Relativistic scalar fields are
represented as ϕ̂, while spinor fields get the letter ψ̂. Vector fields are denoted as V̂ . The Dirac
matrices {γµ , µ = 0, 1, 2, 3} are defined via their anticommutator, {γµ, γν} = 2gµν . Here, the unit
matrix in Dirac space has been omitted for brevity, as will often be done in the main text. For
the contraction of a four-vector a with these matrices, we employ the Feynman slash notation,
/a := a · γ = aµγµ. Expressed in arbitrary units of energy, which we choose as MeV, the scalar and
vector fields have a dimension of [ϕ̂] = [V̂ ] = MeV, whereas the spinor fields fulfill [ψ̂] = MeV3/2.

The spacetime and momentum coordinates will be denoted most of the time by variants of the letters
x and k. If not indicated otherwise, the four-gradient ∂µ is taken to act with respect to the spacetime
coordinates, ∂µ ≡ ∂µx . The projectors onto the spaces parallel and orthogonal to the momentum k are
given by Eµν := kµkν/k2 and Kµν := gµν − Eµν , respectively, and they manifestly fulfill Eµνkν = kµ

and Kµνkν = 0. The traceless symmetric projector orthogonal to the four-momentum is denoted by
Kµν
αβ := 1

2K
(µ
α K

ν)
β − 1

3K
µνKαβ , and it has the property that KµνK

µν
αβ = KαβKµν

αβ = 0.
The measure in momentum space for particles on the mass shell (i.e., where k2 = m2) is defined as
dK := d3k/[(2πℏ)3k0], and the measure in spin space reads dS(k) := [S0m/(ςπ)]d

4sδ(s2 + ς2)δ(k · s),
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where S0 and ς depend on the particle spin. The combined measure is denoted as dΓ := dKdS(k).
Finally, the microscopic dipole tensor is defined as Σµνs := −(1/m)ϵµναβkαsβ .

The four-velocity is denoted by uµ and is normalized to unity, u2 = 1. The projector onto the
three-space orthogonal to it is defined as ∆µν := gµν − uµuν . The comoving derivative will be written
as d

dτ
:= u · ∂, and the spacelike gradient is given by ∇µ := ∆µν∂ν . Considering an ℓ-th rank tensor

Aµ1···µℓ , we furthermore define A⟨µ1···µℓ⟩ := ∆µ1···µℓ
ν1···νℓ A

ν1···νℓ , where ∆µ1···µℓ
ν1···νℓ denotes a projector of

tensor-rank 2ℓ that is orthogonal to the four-velocity as well as symmetric and traceless in any pair of
upper or lower indices. In the special case ℓ = 2, this projector reads ∆µν

αβ := 1
2∆

(µ
α ∆

ν)
β − 1

3∆
µν∆αβ .

The irreducible components of the derivative of the fluid four-velocity are given by the shear tensor
σµν := ∇⟨µuν⟩, the expansion scalar θ := ∇ · u, and the vorticity ωµν := 1

2∇[µuν]. Furthermore, we
define the vorticity vector as ωµ := 1

2ϵ
µναβuνωαβ .
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Chapter 1

Introduction

The aim of this thesis is to provide a mostly self-contained derivation of relativistic dissipative spin
hydrodynamics. Starting from a microscopic quantum field theory, the tools of quantum kinetic theory
are used to construct an effective description of the system in terms of quasiparticles, while keeping the
leading-order quantum effects that are related to spin. Then, the macroscopic fluid-dynamical behavior
is extracted through a systematic truncation of the kinetic equation, providing a set of equations for
the components of the conserved currents present in the system. In this chapter, we will shortly present
the status quo of fluid dynamics with spin, and show the connection to the field of ultrarelativistic
heavy-ion collisions.

1.1 Fluids with spin: a theoretical challenge

Fluid dynamics has been a tremendously successful field for centuries. Already the nonrelativistic
Euler equations [56] are applicable to a variety of problems concerning flows with low viscosities, and
their viscous generalization, the set of Navier-Stokes equations [57, 58], is widely used in practical
applications today. When asking how the universal behavior of fluids emerges from a microscopic
theory, one possible route to take is given by kinetic theory, where the fluid constituents are treated as
particles whose distribution obeys an evolution equation of Boltzmann type. Upon taking the limit
of this microscopic theory for systems that are close to equilibrium and feature a sufficient separation
of microscopic and macroscopic scales, the equations of dissipative hydrodynamics can be derived. In
such a derivation, the fact that an explicit microscopic model is assumed is both a blessing and a
curse. On the one hand, it allows for the explicit calculation of all coefficients related to dissipative
behavior of the fluid, as they are determined by the microscopic details of the system. On the other
hand, certain assumptions have to be made for the fluid to be describable by kinetic theory. These do
not necessarily have to overlap with the necessary conditions for fluid dynamics to be valid; there are
regimes where kinetic theory does not provide a good description of the system, but fluid dynamics
does, and vice versa. Thus, deriving hydrodynamics from a microscopic theory allows for the explicit
computation of all terms that appear, but limits the applicability of the resulting equations, at least
when using the coefficients as they arise from the microscopic theory.

In the case of nonrelativistic hydrodynamics, a generalization to fluids whose constituents do not
behave as pointlike spinless particles has been undertaken and is relevant to the fields of e.g. spintronics
[59–62] and micropolar fluids [63]. When deriving these types of theories from a microscopic kinetic
approach, the internal degrees of freedom of the particles have to be considered as well. As shown in,
e.g., Refs. [64–68], these quantities manifest themselves in the appearance of a microscopic tensor of
inertia that determines the rotational energy of the fluid constituent in question. The application to a
fluid that consists of particles with nonvanishing spin has been treated extensively in Refs. [69–73],
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which constitute pioneering works in this direction and introduced many ideas that were further
developed in subsequent years.

In the relativistic domain, while the equations of ideal fluid dynamics, the relativistic Euler equations,
are uncontroversial, the dissipative case is not as clear cut. The reason for this lies in the fact that the
relativistic generalization of the Navier-Stokes equations is acausal and unstable [30], such that an
alternative theory has to be provided. One way to derive such a formulation, as in the nonrelativistic
case, consists in providing a microscopic foundation in terms of relativistic kinetic theory. Upon
considering the near-equilibrium behavior of the system, whose microscopic and macroscopic scales
are assumed to be sufficiently well separated, one can derive a set of fluid-dynamical equations which
can be causal and stable [74]. It has to be remarked that the issue of finding a viable theory of
relativistic dissipative fluid dynamics is not merely an academic issue: at present, this type of theory
is (successfully) used in the modeling of relativistic heavy-ion collisions, which we will treat in the next
section.

Upon extending these relativistic theories of fluid dynamics to the case where the fluid constituents
are particles of nonzero spin, several challenges emerge. First, since spin is fundamentally a quantum-
mechanical property, an appropriate version of kinetic theory that includes such effects has to be used.
As an even stronger demand, a quantum-field theoretical foundation of kinetic theory is mandatory
to incorporate both quantum-mechanical and relativistic effects. These requirements can be fulfilled
by considering the covariant Wigner function, which serves as a matrix-valued generalization of the
classical phase-space distribution function [75]. Second, in a relativistic setting, the set of conserved
quantities on which fluid dynamics is based is not unique. Rather, the conservation laws for energy,
momentum, and total angular momentum are invariant under so-called pseudogauge transformations,
which essentially redistribute those components of the total angular momentum which are labeled as
“orbital” and “spin”-angular momenta, respectively [35, 76, 77].

Besides these difficulties, a number of works in the past years have taken on the challenge of formulating
relativistic spin hydrodynamics [38, 78–81]. Regarding the task of deriving relativistic dissipative
fluid dynamics with spin from kinetic theory via the method of moments, pioneering work has been
done in Refs. [82, 83] for massive particles of spin 1/2. What is missing up to now is a formulation of
spin hydrodynamics for particles of higher spin, although investigations into an appropriate kinetic
formulation have been undertaken [84–89]. In particular, in light of the experimentally measurable
quantities that we will discuss in Subsec. 1.2.1, a hydrodynamic theory for massive vector mesons that
have spin 1 is desirable, and will be derived in this work.

1.2 Relativistic heavy-ion collisions and hydrodynamics

One aim of today’s collider experiments is to explore the phase diagram of Quantum Chromodynamics
(QCD), which constitutes the theory of strong interactions, one of the four fundamental forces of Nature.
While the basic equations of QCD are well known, it is notoriously hard to treat analytically due to its
negative β-function which lets the energy-dependent coupling of the theory decrease (increase) at higher
(lower) energies. This property, called asymptotic freedom [90, 91], is responsible for the fact that
the fundamental fields given by quarks and gluons are not observed directly, but rather form hadrons
that constitute the effective low-energy degrees of freedom. Thus, in order to construct the phase
diagram of QCD, which is depicted in Fig. 1.1, a variety of methods are used (for reviews, see, e.g.,
Refs. [93–95]). While at zero baryon chemical potential, µB = 0, it is possible to study the behavior
of QCD from first principles via lattice simulations, this method does not apply at higher µB due to
the infamous sign problem [96]. In this region, different tools are applied, such as functional methods
[97]. One particularly interesting feature of the QCD phase diagram is the crossover from a hadron
gas, in which the quarks and gluons are confined, to the so-called quark-gluon plasma (QGP), where
they constitute the primary degrees of freedom. At µB = 0, this transition happens at a crossover
temperature of TC ≃ 155MeV, and might end in a critical point at higher µB , cf. Fig. 1.1.
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Figure 1.1: The phase diagram of QCD [92].

Since the nuclei in ultrarelativistic heavy-ion collisions are accelerated to almost the speed of light,
the QGP can be probed in these experiments. Interestingly, it has been found in the past decades
that the QGP exhibits collective traits, implying that it behaves as a fluid rather than a gas of free
particles [1, 2]. Using hybrid simulations that combine kinetic and hydrodynamic frameworks to model
the different stages of a heavy-ion collision, data such as particle multiplicities and flow coefficients can
be reproduced rather well (for a review, see, e.g., Ref. [3]).

1.2.1 Polarization observables

An interesting class of potentially measurable quantities is given by the observables related to the
polarization of the particles. These constitute exciting probes of the hydrodynamic nature of the
QGP, since the fluid-dynamical gradients of the medium, such as vorticity and shear, can induce a
nonvanishing polarization. In the following, we will shortly discuss two observables of this type, namely
the polarization of Λ hyperons, and the alignment of ϕ and K⋆0 mesons.1

Polarization of Λ hyperons

The Λ baryon can decay via the weak interaction into a proton and a pion, Λ→ p+ π−. Since the
weak interaction violates parity, the distribution of the decay products over the solid angle depends on
the polarization of the Λ baryon. More specifically, denoting all quantities evaluated in the rest frame
of the Λ hyperon with a star, we have [9]

dN

dΩ⋆
=

1

4π

(
1 + αΛP⋆

Λ · k̂⋆p
)
=

1

4π
(1 + αΛ|P⋆

Λ| cos ξ⋆) , (1.1)

where P⋆
Λ and k̂⋆p are the polarization vector of the Λ particle and the direction of the momentum of

the emitted proton, respectively. Furthermore, ξ⋆ denotes the angle between the polarization vector
and the momentum of the emitted particle, and αΛ is the so-called decay parameter of the hyperon,
which is estimated to be αΛ ≃ 0.75 [98]. Equation (1.1) allows to relate the average of the proton

1We remark that research is ongoing considering the polarization of other particles, such as, e.g., Ω or Ξ hyperons, cf.
Ref. [7].
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Figure 1.2: Left: The global polarization of Λ hyperons measured by the ALICE and STAR collabora-
tions as a function of center-of-mass energy, compared to various models. Right: Expectation value of
cos θ⋆p [9].

momenta along some direction n, an experimentally measurable quantity, to the polarization of the Λ
hyperon, 〈

k̂⋆p · n
〉
=
αΛ

3
P⋆

Λ · n . (1.2)

Choosing the vector n to point in the direction of the total angular momentum of the system, we find
the so-called global polarization [9]

P⋆Λ = − 8

παΛ

〈
sin
(
ϕ⋆p −ΨRP

)〉
, (1.3)

where ϕ⋆p denotes the angle between k̂⋆p and the impact parameter, and ΨRP is the reaction-plane
angle.2 The global polarization of Λ hyperons [5–8], shown in Fig. 1.2, can be explained rather well
by hydrodynamic models that assume local equilibrium [9]. In these approaches, the particles are
polarized through the vorticity of the medium, akin to the famous Barnett effect [4].

On the other hand, one may set n in Eq. (1.2) to point in the direction of the beam, which we choose
to be the z-axis. The longitudinal polarization [10] is then given by

PzΛ =
1

αΛ

〈
cos θ⋆p

〉〈
cos2 θ⋆p

〉 . (1.4)

This observable is called local polarization, since it is a function of the angle ϕΛ, cf. Fig. 1.2. In
contrast to the global polarization, there has been a disagreement between theory and experiment,
sometimes referred to as the polarization sign puzzle, a name that originates from the fact that the
theoretical predictions were of the right magnitude, but opposite sign compared to the data. Recently,
models based on local equilibrium have been able to reproduce the data by including previously omitted
terms proportional to the so-called thermal shear of the medium [11–14]. One goal of this thesis is to
expand on the extensive results obtained in Refs. [82, 83] by obtaining the global and local polarization
in a theory of dissipative hydrodynamics featuring transport coefficients that can be systematically
improved.

Alignment of ϕ and K⋆0 mesons

Another possible observable related to polarization is the so-called alignment of vector mesons, which
is given by the difference of the 00-element of their density matrix from the unpolarized value of

2In practice, this angle has to be estimated from experiment, and a correction factor has to be introduced [99].
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1/3 [15]. Since both ϕ and K⋆0 mesons decay mainly via the parity-conserving strong interaction,
their polarization vectors cannot be measured. However, utilizing the decays ϕ → K+ + K− and
K⋆0 → K+ + π−, one can relate the angular distribution of the decay products to the 00-element of
the density matrix via [9]

dN

d cos ξ⋆
=

3

4

[
1− ϱ00 + (3ϱ00 − 1) cos2 ξ⋆

]
. (1.5)

While not entering the polarization vector, the 00-element of the spin density matrix is part of the
so-called tensor polarization, and constitutes an effect that is only present for particles of spin 1 or
higher [15]. The measured (global) alignment of ϕ mesons, displayed in Fig. 1.3, is larger than expected,
with the additional complication that the alignment of K⋆0 mesons is compatible with zero [16–18].
In recent years, the explanation of these results, which cannot be provided by naively combining the
polarizations of the constituent quarks, as the effect would be too weak, has become the subject of
intense work [19–27], but an established solution is still missing. In this thesis, while not yet being
able to make quantitative predictions, we will, as shown in Ref. [28], arrive at a theoretical description
of this type of effect in a hydrodynamic framework, with the alignment of the vector mesons induced
by dissipative fluid gradients.

1.3 Overview of this thesis

In order to provide an introduction into the description of macroscopic systems, Chapter 2 starts from a
thermodynamic viewpoint and introduces ideal hydrodynamics through the concept of local equilibrium.
After presenting different ways to arrive at theories of dissipative fluid dynamics in Sec. 2.3, the
inclusion of spin is discussed. Both with and without spin, the conservation equations that govern
ideal fluid dynamics are not sufficient to describe all degrees of freedom appearing in the conserved
currents. To remedy this, we turn to a formulation of quantum kinetic theory, whose basic building
blocks are established in Chapter 3. Introducing the concept of the Wigner function, it is shown how
to connect to the macroscopic conserved currents through phase-space integrals. Then, Secs. 3.3, 3.4,
and 3.5 discuss the phase-space formulation of the dynamics of massive scalar, spinor, and vector fields,
respectively. It is shown how to extend phase space by an additional variable in order to work with a
scalar distribution function for fields of any spin. Different pseudogauges are introduced, and kinetic
equations for the Wigner function of all fields are derived. On the right-hand sides of these evolution
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equations, there appear collision terms which specify the scattering between quasiparticles. Chapter 4
is then concerned with computing these collision terms for all of the aforementioned fields. To perform
this computation, the so-called GLW method is used, which consists of an expansion in “in”-picture
reduced density matrices. Both local and nonlocal contributions are computed, and the spacetime
shifts characterizing the nonlocality are given in a manifestly covariant form. In Sec. 4.6, the state of
local equilibrium is discussed, and is found to be equal to the one corresponding to global equilibrium,
as long as the particles have nonzero spin. In Chapter 5, the computation of the collision terms is
repeated, this time using the KB approach, which starts from the Dyson-Schwinger equations and
assumes a reasonable truncation for the appearing self-energy. The results of the previous chapter are
recovered, with the important addition that quantum-statistical effects are retained. This manifests
itself also in the discussion of equilibrium in Sec. 5.6, where the known quantum-statistical distributions
are recovered. Having laid the groundwork on the underlying quantum kinetic theory, Chapter 6
is concerned with deriving dissipative fluid dynamics. The method of moments is introduced and
generalized to the case of particles with nonzero spin, necessitating the introduction of irreducible
moments of different ranks in spin. The exact equations of motion of the irreducible moments of
all spin-ranks are derived. In order to close the system of moment equations, the IReD approach is
employed, which denotes a perturbative scheme where the higher-order terms are approximated by
using their Navier-Stokes values. This then allows to derive equations of motion for all dissipative
degrees of freedom that appear in the conserved currents, thus completing the construction of spin
hydrodynamics from kinetic theory. It is found that those spin degrees of vector particles which
are responsible for the tensor polarization couple to the standard hydrodynamic fields, leading to
corrections in the respective transport coefficients. In Sec. 6.5, the polarization-related observables,
i.e., the Pauli-Lubanski pseudovector and the alignment, are expressed in terms of hydrodynamic
fields, and also shown in the Navier-Stokes limit. Finally, Chapter 7 summarizes this work and lists
future perspectives.



Chapter 2

Relativistic hydrodynamics

In general, describing the behavior of a macroscopic physical system is a highly nontrivial task.
Evaluating the equations of motion for all microscopic degrees of freedom is not feasible, as it would
require solving O(NA) ∼ O

(
1023

)
coupled differential equations. Instead, it is sensible to take a

diametrically opposed approach that does not build on evaluating the evolution of the microscopic
degrees of freedom, but rather on a few macroscopic variables that describe the emergent properties
of the system. In this chapter we will discuss a few of these approaches, the most well-known being
usual thermodynamics, which deals with systems in thermal equilibrium. Relaxing the assumption
of complete thermal equilibrium yields a theory that deals with spacetime-dependent fields in local
equilibrium, namely ideal hydrodynamics. Removing this constraint as well, which is necessary in order
to be able to describe dissipative processes, leads into the realm of dissipative hydrodynamics. This
last and most general approach to describe macroscopic systems, which in contrast to the previous two
requires system-specific input beyond an equation of state, will be the main topic of the thesis.

2.1 Thermodynamics

In complete thermal equilibrium, a macroscopic system can be characterized by a comparatively small
set of extensive and intensive quantities, extensive meaning that the quantity scales with the system’s
size, which does not hold for intensive quantities. Considering a system at rest in the absence of
external fields, the extensive thermodynamic quantities are given by the energy E , the entropy S, the
volume V, and the particle number N . These quantities obey the first law of thermodynamics,

dE = TdS − PdV +

Nspec∑
i=1

µidNi , (2.1)

where the factors in front of the differentials are the intensive quantities of the system, namely the
temperature T , the pressure P , and the chemical potentials {µi}, where i = 1, · · · , Nspec. In the
following, we will always assume that the system consists of a single particle species, i.e., Nspec = 1.
The intensive quantities can be related to the extensive ones by the relations

T :=
∂E
∂S

∣∣∣∣
V,N

=

(
∂S
∂E

∣∣∣∣
V,N

)−1

, (2.2a)

P := −∂E
∂V

∣∣∣∣
S,N

= T
∂S
∂V

∣∣∣∣
E,N

, (2.2b)

µ :=
∂E
∂N

∣∣∣∣
S,V

= −T ∂S
∂N

∣∣∣∣
E,V

, (2.2c)
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which follow immediately from Eq. (2.1) by considering either the energy or the entropy as a function
of the other extensive variables, i.e., E ≡ E(S,V,N ) or S ≡ S(E ,V,N ), respectively.

Given that E ,S,V and N are all extensive quantities, we can deduce that the energy is a homogeneous
function of order one, i.e.,

E(λS, λV, λN ) = λE(S,V,N ) , (2.3)

which holds for any λ ∈ R+. Expanding λ around unity, λ = 1 + η, η ≪ 1, we find

(1 + η)E(S,V,N ) = E [(1 + η)S, (1 + η)V, (1 + η)N ]

= E(S,V,N ) + η

(
∂E
∂S

∣∣∣∣
V,N
S +

∂E
∂V

∣∣∣∣
S,N
V +

∂E
∂N

∣∣∣∣
S,V
N
)

+O(η2) , (2.4)

from which it follows by equating terms of order O(η) and using Eqs. (2.2) that

E = TS − PV + µN . (2.5)

This relation is called the Euler equation. For the following considerations, it is helpful to work not
with total quantities, but rather with densities. Introducing the energy density ε := E/V, the entropy
density s := S/V and the particle-number density n := N/V, we have

ε+ P = Ts+ µn . (2.6)

Defining the inverse temperature β := 1/T and the ratio of chemical potential over temperature
α := µ/T ≡ µβ, we can rewrite the first law as

ds = βdε− αdn . (2.7)

Furthermore, by Legendre-transforming the energy with respect to S,V, and N as well as using Eq.
(2.5), we find the Gibbs-Duhem relation

dP = sdT + ndµ , (2.8)

which upon switching from (µ, T ) to (α, β) and using the Euler equation takes on the following form,

βdP = −(ε+ P )dβ + ndα . (2.9)

The discussion up to now tacitly assumed a fixed reference frame and did not assess the question of
how thermodynamic variables transform upon changing the reference frame, for which a covariant
formulation is needed.

2.1.1 Covariant thermodynamics

As we will discuss in more detail in Sec. 3.1, the action of a relativistic theory should be invariant under
transformations belonging to the Poincaré group, implying the conservation of the energy-momentum
tensor Tµν as well as the total angular momentum tensor Jλµν . Note that the total angular momentum
tensor can be decomposed into the sum of the orbital angular momentum tensor

Lλµν := Tλ[νxµ] (2.10)

and the spin tensor
ℏSλµν := Jλµν − Lλµν . (2.11)

Note that the square brackets denote antisymmetrization, A[µBν] := AµBν −AνBµ. In order to stay
consistent with the thermodynamic relations introduced earlier, we further assume that the theory
features a conserved particle four-current Nµ. Note that these conserved currents are to be identified
with densities (and not total quantities) when comparing to Eqs. (2.6)–(2.9). This can be seen from
the fact that the total charges (i.e., the total particle number N , the total momentum Pµ, and the
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total angular momentum J µν) are given by integrating Nµ, Tµν , and Jλµν over a hypersurface Σ.
Explicitly, we have

N :=

∫
dΣλN

λ , (2.12a)

Pµ :=

∫
dΣλT

λµ , (2.12b)

J µν :=

∫
dΣλJ

λµν , (2.12c)

where the hypersurface can in particular be chosen to be an equal-time one, dΣµ ≡ δµ0 d3x, such that
the total charges are constant in time. The conservation equations for these currents read

∂µN
µ = 0 , (2.13a)

∂µT
µν = 0 , (2.13b)

∂λJ
λµν = ℏ∂λSλµν + T [µν] = 0 . (2.13c)

Given the aforementioned general arguments, it is now clear how to connect the thermodynamic
variables appearing in the standard relations (2.7) and (2.9) to covariant conserved currents. The
energy density is the 00-component of the energy-momentum tensor, ε ≡ T 00, while the particle-number
density denotes the zeroth component of the particle four-current, i.e., n ≡ N0. Assigning a four-vector
Sµ to the entropy density such that s ≡ S0 and expressing the inverse temperature as the zeroth
component of a four-vector, β ≡ β0, we may express the first law (2.7) as

dS0 = β0dT
00 − αdN0 . (2.14)

At this point it is clear that Eq. (2.14) is the zeroth component of a covariant expression evaluated
in some frame, which we can argue to be the rest frame of the medium. First, we note that the
four-velocity of the medium uµ, which in its rest frame (denoted with an index RF) becomes

uµRF = (1, 0, 0, 0)
µ
, (2.15)

is the only vector at our disposal that is related to the system. In a nonrotating system in thermal
equilibrium without external fields, the pressure is isotropic and thus the energy-momentum tensor is
diagonal,

TµνRF = diag (ε, P, P, P )
µν ≡ εuµRFu

ν
RF − P∆µν

RF , (2.16a)

where we defined the projector ∆µν := gµν − uµuν . Since uµ is the only vector at hand, we must have
that Nµ = nuµ, Sµ = suµ, and βµ = βuµ, i.e.,

Nµ
RF = (n, 0, 0, 0)

µ
, (2.16b)

SµRF = (s, 0, 0, 0)
µ
, (2.16c)

βµRF = (β, 0, 0, 0)
µ
. (2.16d)

From Eqs. (2.16), we can then deduce the covariant form of the first law,

dSµ = βνdT
µν − αdNµ , (2.17)

which reduces to Eq. (2.7) in the rest frame of the medium. Similarly, we obtain the covariant form of
the Gibbs-Duhem relation (2.9),

d (βµP ) = −Tµνdβν +Nµdα . (2.18)

The Euler equation (2.6) then reads

Tµνβν + Pβµ = Sµ + αNµ . (2.19)

We remark that from Eq. (2.17) we find that, as expected, the entropy four-current has vanishing
divergence,

∂µS
µ = βν∂µT

µν − α∂µNµ = 0 . (2.20)
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Moving systems in thermal equilibrium

It should be stressed that the previous results always assumed complete thermal equilibrium. This
restricts the possible values of the system’s four-velocity uµ to the ones that are obtained from the
rest-frame values by a constrained class of Lorentz transformations, namely those that let the
four-velocity be a combination of a uniform motion and a rigid rotation.

This condition can be derived along the lines of §10 of Ref. [100], which deals with the nonrelativistic
case. First, we may think of the system in question as made up of N smaller systems, which are
macroscopic nonetheless. These small systems, which we call cells, are themselves in thermodynamic
equilibrium, as well as in equilibrium with each other. Note that, in Sec. 2.2 we will relax the latter
assumption. Thermal equilibrium demands the maximization of the total entropy, which is given by

S :=

∫
dΣλS

λ . (2.21)

The total entropy S of the system is given by the sum of the entropies of the cells Si, and the latter
have to be functions of the internal energy of the cell, i.e., the difference between the total energy of
the cell and its kinetic energy. Thus, we have

S =

N∑
i=1

Si (Ei −Mi(γi − 1)) , (2.22)

where

γi =
1√

1− v2i
=

√
1 +

p2i
M2
i

(2.23)

is the Lorentz factor, vi := ui/γi is the three-velocity and pi :=Miγivi denotes the momentum of
the i-th cell, which has the mass Mi. Furthermore, the conservation of the total four-momentum and
the total angular momentum imply

N∑
i=1

pµi = const. ,

N∑
i=1

ϵµναβxi,αpi,β = const. , (2.24)

where we neglected the possibility of particles having spin for now. Maximizing the entropy (2.22)
subject to the constraints (2.24), we find, using the method of Lagrange multipliers,

0 =
∂

∂pµj

N∑
i=1

[
Si (Ei −Mi(γi − 1)) + bαp

α
i + ϖ̃ρσϵ

ρσαβxi,αpi,β
]

= −uj,µ
Tj

+ bµ + ϖ̃ρσϵρσαµx
α
j . (2.25)

Here we employed that
∂γi
∂pµj

=
pi,µ
γiM2

i

δij =
ui,µ
γiMi

δij (2.26)

as well as the definition of the temperature in a moving system

∂Si
∂Ei

∣∣∣∣
Ni

=
γi
Ti

, (2.27)

which reduces to Eq. (2.2a) in the case of γi = 1, as it has to. Rearranging Eq. (2.25) and defining
ϖαβ := ϖ̃ρσϵ

ρσαβ , we find
uµi
Ti
≡ βµi = bµ +ϖµνxi,ν , (2.28)

where ϖµν = 1
2∂

[νβ
µ]
i = const. is the so-called thermal vorticity. This condition tells us that (for

constant temperature) each cell in the medium may move uniformly with the same magnitude and



2.2 Ideal hydrodynamics 11

direction (given by bµ). Furthermore, there may be a constant rotation or acceleration (characterized
by ϖij or ϖ0i, respectively). Note that in the case of nonzero acceleration or rotation the temperature
is not constant [101].

We will encounter the condition (2.28) again in Chapters 4 and 5, where it will arise from an effective
microscopic theory as the condition of global equilibrium.

Recovering a known relation

Since Eq. (2.28) implies that the acceleration and rotation of the system is constant, we can write the
total four-temperature as βµ = bµ +ϖµνxν (where x is continuous now), which can then be inserted
into the first law (2.17). Using the antisymmetry of ϖµν , we find

dSµ = bνdT
µν − 1

2
ϖνλdL

µνλ −ϖνλT
µνdxλ − αdNµ , (2.29)

where we employed the definition (2.10). Note that we still have ∂µSµ = 0 due to the divergence of
the orbital angular momentum tensor, ∂µLµνλ = T [νλ].

To conclude this section, we consider the case of a rigidly rotating (but not uniformly moving) medium.1
The four-velocity is

uµ = γ (1, v)µ = γ (1,ω × x)µ , (2.30)

where ω is the vorticity vector. Via Eq. (2.28), we can then identify

bµ =
( γ
T
, 0, 0, 0

)µ
, ϖ0i = 0 , ϖij =

γ

T
ϵijkωk . (2.31)

In order to obtain the nonrelativistic limit, we may approximate the Lorentz factor

γ =
1√

1− |ω × x|2
= 1 +O

(
|ω|2|x|2

)
, (2.32)

such that T = const. in that regime. Defining the angular momentum vector Li := − 1
2ϵ
ijkL0jk, we

find for the zeroth component of Eq. (2.29) in the nonrelativistic limit

Tds = dε+ ω · dL− µdn . (2.33)

Here we neglected terms of second order in the velocity, using that T 0i = ρvi ∼ O(|ω||x|), where ρ
denotes the density of the medium. As expected, Eq. (2.33) is the first law for nonrelativistic rotating
systems known from the literature, cf., e.g., §26 of Ref. [100].

2.2 Ideal hydrodynamics

When speaking of hydrodynamics, the fundamental difference to usual thermodynamics as discussed
in Sec. 2.1 lies in the concept of local equilibrium. Thinking of the total system (which we call a
fluid from now on) as being made up of a large number of small subsystems, which are nonetheless
large enough themselves to be considered as macroscopic, we can take each of these cells to be in
thermal equilibrium as discussed in the previous section. The crucial difference lies in the relaxation
of the assumption of complete thermal equilibrium, i.e., the assumption that all cells are in thermal
equilibrium with each other. Without this premise, Eq. (2.28) does not necessarily follow, as the
entropy only has to be maximal for a given cell, but not for the whole system; in other words, it has
to be maximized only locally, but not globally. Letting the number of the fluid cells go to infinity

1For a discussion of the accelerating case, see Ref. [101].
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while shrinking their size to zero (such that the volume of the fluid stays finite), we can move from
a set of thermodynamic quantities for each cell {Ti, Pi, uµi , · · · } to a set of thermodynamic fields
{T (x), P (x), uµ(x), · · · } that depend continuously on spacetime.

The equations of motion for these quantities are given by the conservation equations (2.13). For the
purpose of this section, we will ignore the conservation law for the total angular momentum, which
will be discussed in Sec. 2.4. As argued in Sec. 2.1, we may decompose the particle four-current and
the energy-momentum tensor as

Nµ = nuµ and Tµν = εuµuν − P∆µν . (2.34)

Inserting these decompositions into the respective conservation laws, we obtain

∂µN
µ = ṅ+ nθ , (2.35a)

∂µT
µν = [ε̇+ (ε+ P ) θ]uν + (ε+ P ) u̇ν −∇νP . (2.35b)

Here, we defined the comoving derivative d
dτ

:= uµ∂
µ, which is denoted by a dot and reduces to a

time derivative in the rest frame of the fluid, where uµ = (1, 0, 0, 0)µ. Similarly, the spacelike gradient
∇µ := ∆µν∂ν was introduced. Furthermore, we defined the so-called expansion scalar θ := ∂µu

µ.
Projecting Eq. (2.35b) along the fluid four-velocity (by contracting with uν) and onto the three-space
orthogonal to it (by contracting with ∆µ

ν) yields

ṅ = −nθ , (2.36a)
ε̇ = − (ε+ P ) θ , (2.36b)

(ε+ P ) u̇µ = ∇µP , (2.36c)

where we used the fact that uµu̇µ = 1
2du

2/dτ = 0 since the four-velocity is normalized to one. Equations
(2.36) are called the relativistic Euler equations and constitute the basis of relativistic ideal fluid
dynamics.

Evidently, the ideal fluid is characterized by five variables, namely ε, n, and uµ, where it has to
be noted that uµ only has three independent components due to its normalization. Recall that the
pressure is not an independent quantity, as it is determined in terms of the energy and particle-number
density after specifying an equation of state of the form f(P, ε, n) = 0 with some function f . Thus,
the evolution of an ideal fluid is completely specified by the conservation equations and (covariant)
thermodynamics. It has to be stressed that at this point the only information that is specific to the
fluid under consideration comes from the equation of state; Eqs. (2.36) are (under the assumption
of isotropy in the fluid-rest frame) universal, and the fluid to be studied merely provides the initial
conditions.

Lastly, note that the covariant thermodynamic relations (2.17)–(2.19) still hold, and thus the entropy
four-current is conserved, cf. Eq. (2.20). Analogous to Eqs. (2.36), its equation of motion reads

0 = ∂µS
µ = ṡ+ sθ . (2.37)

At this point, it should be mentioned that, due to the nonlinearity of the Euler equations, a perfect
fluid may develop shock waves (discontinuities). At these points, the energy-momentum tensor and the
particle four-current are no longer continuously differentiable [102, 103]. The resulting values of Tµν and
Nµ on both sides of the discontinuity are then determined by the (relativistic) Rankine-Hugoniot
conditions [104]. It can subsequently be shown that shock waves have to increase the entropy [102,
103], i.e., they constitute irreversible processes.

Nonrelativistic limit

We close this section by connecting with the nonrelativistic theory. In order to perform this limit, we
have to decompose the fluid four-velocity into its time and space components u0 = γ and u = γv, which
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behave as a scalar and a vector under Galilei-transformations, respectively. In the nonrelativistic
case, we have |v| =: v ≪ 1,2 such that the fluid four-velocity reads

uµ ≃ (1, v)µ , (2.38)

where we neglected terms of second order in v. Then, the expansion scalar takes the form

θ ≃ ∇ · v . (2.39)

The comoving derivative reads
d

dτ
= uµ∂

µ ≃ ∂

∂t
+ v · ∇ , (2.40)

while the spacelike gradient becomes

∇µ = ∂µ − uµ
d

dτ
≃ (0, ∇)µ , (2.41)

where we again neglected terms of second order in v. Using that, in the nonrelativistic limit, the
particle-number density is directly related to the mass density ρ of the fluid made out of constituents
of mass m, mn = ρ, and expressing the energy density as ε ≡ ρe with the specific internal energy e,
we find from Eqs. (2.36)

∂ρ

∂t
= −∇ · (ρv) , (2.42a)

∂e

∂t
+ (v · ∇) e = −P

ρ
∇ · v , (2.42b)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P . (2.42c)

Note that the zeroth component of Eq. (2.36c) became trivial and was consequently omitted from
the system of equations. Manifestly, Eq. (2.42a) denotes a continuity equation for the mass flow and
Eq. (2.42b) describes the evolution of the specific internal energy, while Eq. (2.42c) determines the
evolution of the fluid velocity.

2.3 Dissipative hydrodynamics

As we have seen in Sec. 2.2, ideal fluids evolve adiabatically (except for shock waves), implying that
all processes are reversible. However, any real system features some degree of degree of dissipation,
which renders the evolution of the fluid irreversible. Giving up the premise of local thermodynamic
equilibrium, we can no longer argue that the energy-momentum tensor is diagonal in the rest frame of
the fluid, as there may be nonzero fluxes in energy or momentum. Of course, the conservation equations
(2.13) are still valid, and constitute the basis of a theory of dissipative fluids as well. Considering a
fluid whose constituents do not have spin, i.e., setting Sλµν = 0, the conservation of total angular
momentum (2.13c) enforces the energy-momentum tensor to be symmetric.

In order to proceed, we irreducibly decompose Nµ and Tµν with respect to uµ, which at this point
merely is a normalized timelike four-vector that specifies a frame of reference. We obtain

Nµ = nuµ + nµ , (2.43a)

Tµν = εuµuν + u(µhν) − P∆µν + πµν , (2.43b)

where the round brackets denote symmetrization, A(µBν) := AµBν +AνBµ. In addition, n := u ·N
is the particle-number density in the frame characterized by uµ, while nµ := ∆µνNν denotes the

2The dimensionless quantity that controls the expansion around the nonrelativistic limit is of course v/c, where c is
the speed of light in vacuum.
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θ ωµν σµν

reference expansion vorticity shear

Figure 2.1: Sketch of the intuition behind the irreducible components of the derivative of the four-
velocity ∇µuν (Figure adapted from Ref. [103], p.136).

particle diffusion in that frame. The energy density is still given by ε := uµuνT
µν , but can now be

accompanied by an energy flux hµ := ∆µνuαTνα. Note that, due to the symmetry of Tµν , the energy
flux and the momentum density are equal. The isotropic pressure is given by P := − 1

3∆µνT
µν , while

the remaining part is called the shear-stress tensor πµν := ∆µν
αβT

αβ . Here, the traceless projector

∆µν
αβ := 1

2∆
(µ
α ∆

ν)
β − 1

3∆
µν∆αβ projects a rank-two tensor onto the subspace orthogonal to uµ.

The divergences of the particle four-current and the energy-momentum tensor read

∂µN
µ = ṅ+ nθ + ∂µn

µ , (2.44a)

∂µT
µν = [ε̇+ θ (ε+ P ) + ∂µh

µ]uν + ḣν +
4

3
θhν

+ hµ(σ
µν + ωµν) + (ε+ P ) u̇ν −∇νP + ∂µπ

µν . (2.44b)

Here, we made use of the following irreducible decomposition of the derivative of the four-velocity uµ,

∂µuν = uµu̇ν +
θ

3
∆µν + σµν + ωµν , (2.45)

where we defined the shear tensor σµν := ∆µν
αβ∂

αuβ and the vorticity ωµν := 1
2∇[µuν]. Intuitively, the

expansion scalar θ describes a change of the volume of a fluid cell without any additional motion, while
the vorticity describes a rotation at constant volume. The shear tensor can be envisioned as the change
of the shape of a fluid cell without changing the volume. These interpretations are visualized in Fig.
2.1.

2.3.1 Hydrodynamic frames

It is important to remark that the variables ε, n, and P a priori do not fulfill the thermodynamic
relations (2.6)–(2.9) since they are related to the nonequilibrium fluid. However, one can formally
take the particle four-current and the energy-momentum tensor as sums of equilibrium and dissipative
parts, and then interpret some of the quantities that appear in Eqs. (2.43) as equilibrium contributions.
First, we write

Nµ = Nµ
0 + δNµ , (2.46a)

Tµν = Tµν0 + δTµν , (2.46b)
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where the equilibrium contributions read

Nµ
0 := n0u

µ , Tµν0 := ε0u
µuν − P0∆

µν . (2.47)

Note that the variables n0, ε0, and P0 are the particle-number density, energy density, and pressure
characterizing a fictitious equilibrium state, and they do fulfill the thermodynamic relations (2.6)–
(2.9).3 In particular, there exists an equation of state, such that the equilibrium pressure P0(n0, ε0)
can be expressed in terms of the equilibrium particle-number density and energy density. Decomposing
the deviations from equilibrium as

δNµ = uµδn+ nµ , (2.48a)

δTµν = uµuνδε+ u(µhν) −Π∆µν + πµν , (2.48b)

we can identify
ε = ε0 + δε , n = n0 + δn , P = P0 +Π . (2.49)

At this point, it is clear that we have introduced several new variables which are not defined unambigu-
ously, as is evident by simply counting the degrees of freedom: Nµ has four independent components,
while Tµν , being a symmetric second-rank tensor, has ten. However, we are dealing with five scalar
quantities (ε0, δε, n0, δn, and Π), three vectors (nµ, hµ, and uµ, which have three independent
components each), and one traceless symmetric tensor (πµν , which has five independent components).
In total, we thus are faced with 19 quantities whose evolution has to be specified, five of which have to
be fixed by defining the fictitious equilibrium state characterized by n0, ε0, and uµ. These defining
relations are known as matching conditions, and a specific choice is called a hydrodynamic frame.
Two hydrodynamic frames are ubiquitous in the literature because of their straightforward physical
interpretation, namely the Eckart frame [105] and the Landau frame [102]. In both of these, the
deviations of the particle-number and energy density from their equilibrium values are set to zero,

ε0 := uµuνT
µν =⇒ δε= 0 , (2.50a)

n0 := uµN
µ =⇒ δn= 0 , (2.50b)

implying that n and ε behave as if they were in local thermal equilibrium. The four-velocity is defined
in the Eckart frame via

Nµ
E = n0u

µ
E =⇒ nµE = 0 , (2.51)

i.e., the rest frame specified by the four-velocity uµE is such that there is no particle diffusion. The
price to pay for this definition consists in the energy diffusion not vanishing, hµE ̸= 0. In contrast, the
Landau frame defines the four-velocity through

TµνuL,ν = ε0u
µ
L =⇒ hµL = 0 , (2.52)

such that in the rest frame defined through uµL there is no energy diffusion. However, in general there
will be a nonvanishing particle diffusion, nµL ̸= 0.

In the past years, more general frame choices have gained popularity due to their desirable properties
regarding the causality and stability of the resulting system of equations [106–110]. However, a
thorough discussion is outside the scope of this thesis, where we will choose the Landau frame.

Inserting Eqs. (2.49) into Eqs. (2.44) and projecting the equation of motion for the energy-momentum
tensor with uν and ∆µ

ν , we find

0 = ṅ0 + δṅ+ (n0 + δn)θ + ∂µn
µ , (2.53a)

0 = ε̇0 + δε̇+ (ε0 + P0 + δε+Π) θ + (∂µ − u̇µ)hµ − πµνσµν (2.53b)

0 = ∆µν ḣν +
4

3
θhµ + hν(σ

νµ + ωνµ)

+ (ε0 + P0 + δε+Π) u̇µ −∇µ(P0 +Π) +∆µν∂απνα . (2.53c)

3We remark that neither the equilibrium nor the dissipative quantities are measurable by themselves, but only their
sum, i.e., the components of the physical particle four-current and energy-momentum tensor.
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In the Landau frame, the conservation equations read

ṅ0 = −n0θ + u̇µn
µ −∇µnµ , (2.54a)

ε̇0 = − (ε0 + P0 +Π) θ + πµνσµν (2.54b)
(ε0 + P0 +Π) u̇µ = ∇µ(P0 +Π) + πµν u̇ν −∆µν∇απνα . (2.54c)

Here we decomposed the partial derivatives ∂µ = uµ d
dτ +∇µ and used that the particle diffusion and

the shear-stress tensor are orthogonal to the fluid four-velocity.

It is straightforwardly seen that, even after enforcing matching conditions such as Eqs. (2.50)–(2.52),
the system of equations (2.54) remains underdetermined. The reason is that we are still dealing with
14 dynamical quantities, while the conservation laws only provide five equations of motion, which
determine ε0, n0, and uµ. Intuitively, this underdetermination arises because dissipation results from
complicated microscopic processes in the fluid, and thus it is a property of the specific system at hand,
as opposed to the general conservation laws that govern ideal fluid dynamics. Thus, we always have to
provide some microscopic input that specifies which kind of fluid we aim to describe. This microscopic
input consists in additional equations that determine the dissipative quantities, i.e., Π, nµ, and πµν in
the Landau frame. The two most prominent approaches to provide these equations are the gradient
expansion, which relates the dissipative currents to fluid gradients in algebraic equations, and the
Müller-Israel-Stewart (MIS)-type theories, which keep the dissipative quantities dynamical and
provide differential equations for them.

2.3.2 Gradient expansion

The basic idea of the gradient expansion lies in relating the dissipative quantities to derivatives of
the fluid-dynamical quantities that characterize the fictitious local equilibrium state, i.e., {ε0, n0, u

µ},
or equivalently {α0, β0, u

µ}, where α0 and β0 are defined through the equation of state and the
thermodynamic relations (2.6)–(2.9). In the Landau frame, we find for the relevant dissipative
quantities

Π = −ζθ , (2.55a)
nµ = κIµ + λJµ , (2.55b)
πµν = 2ησµν , (2.55c)

where we defined Iµ := ∇µα0, Jµ := ∇µβ0, and collected terms on the right-hand side that contain
only one derivative and fulfill the necessary symmetries. A theory that builds on relations like Eqs.
(2.55), which are of first order in derivatives of equilibrium quantities, is commonly referred to as a
first-order theory. Note that the coefficients ζ, κ, λ, and η are not fixed and have to be calculated
from a microscopic approach that describes the fluid under consideration.

First-order entropy

Even though there are no universal values for the coefficients in Eqs. (2.55), we can constrain them to
some extent via the second law of thermodynamics. First, note that our fictitious equilibrium state
also features an entropy current

Sµ0 = Tµν0 β0uν + P0β0u
µ − α0N

µ
0

=
[
β0 (P0 + ε0)− α0n0︸ ︷︷ ︸

=:s0

]
uµ , (2.56)
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cf. Eq. (2.19). Its divergence reads

∂µS
µ
0 = β0uν∂µT

µν
0 − α0∂µN

µ
0

= −β0uν∂µδTµν + α0∂µδN
µ

= β0 (π
µνσµν −Πθ) + α0∂µn

µ , (2.57)

where we used the conservation of the total particle four-current and the energy-momentum tensor.
Note that, since we are working in the Landau frame, it holds that δε = δn = 0, hµ = 0. Defining the
first-order correction to the entropy current [111]

Sµ1 := −α0δN
µ ≡ −α0n

µ , (2.58)

we find

∂µ (S
µ
0 + Sµ1 ) = β0 (π

µνσµν −Πθ)− nµIµ
≡ β0

(
2ησµνσµν + ζθ2

)
− (κIµ + λJµ) Iµ , (2.59)

where we inserted the first-order gradient expansion (2.55). From the second law of thermodynamics,
∂µS

µ ≥ 0, we then find that4

λ
!
= 0 , ζ

!
≥ 0 , κ

!
≥ 0 , η

!
≥ 0 . (2.60)

Thus, the bulk viscosity ζ, the thermal conductivity κ, and the shear viscosity η should be nonnegative.

Inserting Eq. (2.55) with the constraints (2.60) into Eqs. (2.54), we arrive at the relativistic Navier-
Stokes equations,

ṅ0 = −n0θ + κu̇µI
µ −∇µ (κIµ) , (2.61a)

ε̇0 = − (ε0 + P0 − ζθ) θ + 2ησµνσµν (2.61b)
(ε0 + P0 − ζθ) u̇µ = ∇µ(P0 − ζθ) + 2ησµν u̇ν − 2∆µν∇α (ησνα) . (2.61c)

Unfortunately, Eqs. (2.61) are not usable in practice, as they constitute parabolic equations, which
feature an infinite speed of signal propagation, thus being inconsistent with special relativity [103].
This is not merely a conceptual problem, as acausality in the rest frame of the fluid leads to (linear)
instabilities in moving frames [29–32]. Going to higher orders in the gradient expansion does not
fix this problem, either, as this procedure results in the (relativistic) Burnett equations [112, 113],
which are unstable even in the nonrelativistic regime [114]. At this point, we remark again that, if one
chooses nonstandard matching conditions where the deviation from the equilibrium particle-number
and energy density are kept, it is possible to formulate first-order theories that are causal and stable
[106–110].

Nonrelativistic limit

To conclude this subsection, we show how to obtain the nonrelativistic limit of the conservation
equations (2.61). In addition to the nonrelativistic limits introduced in Sec. 2.2, we need to express
the shear tensor,

σ0µ ≃ 0 , σij ≃ Λij − δij 1
3
∇ · v , (2.62)

where we introduced Λij := 1
2 (∂

ivj + ∂jvi). The nonrelativistic limit of the continuity equation (2.61a)
reads5

∂ρ

∂t
= −∇ ·

(
ρv − m

h
q
)
≃ −∇ · (ρv − q) , (2.63a)

4Since Iµ is spacelike, we have that IµIµ ≤ 0.
5The continuity equation acquires a contribution from the heat current due to the choice of the Landau frame [115].

In the Eckart frame, the continuity equation would be unchanged compared to the ideal case, whereas Eqs. (2.63b)
and (2.63c) would receive corrections involving the heat flux, which however vanish in the nonrelativistic limit [103].
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where we neglected terms of second order in v. Moreover, we identified6 the heat flux q ≡ −hn = hκI,
where h := (ε0+P0)/n0 denotes the enthalpy per particle, which in the nonrelativistic limit is dominated
by the rest-mass energy, h ≃ m. With these considerations, the energy-conservation equation (2.61b)
takes the form

∂e

∂t
+ (v · ∇) e = −P0

ρ
∇ · v − 1

ρ
∇ · q+

2η

ρ
ΛijΛ

ij +
1

ρ

(
ζ − 2

3
η

)
(∇ · v)2 . (2.63b)

Lastly, neglecting terms of second order in v, the evolution equation for the fluid velocity (2.61c)
becomes

∂vi

∂t
+ (v · ∇) vi = −1

ρ

{
∂iP0 − ∂j

[
η

(
∂iv

j + ∂jv
i − 2

3
δij∇ · v

)
+ ζδij∇ · v

]}
, (2.63c)

which is called the nonrelativistic Navier-Stokes equation. Equations (2.63), together with an
equation of state and appropriate choices for the viscosities and conductivities ζ, η, and κ, completely
determine the evolution of a nonrelativistic fluid and have wide-ranging practical applications.

2.3.3 MIS-type theories

As mentioned in the previous subsection, the relativistic Navier-Stokes equations are not used in
practice, since they feature an infinite speed of signal propagation, which leads to instabilities in
the linearized theory when observed in the frame of a (with respect to the system) moving observer
[29–32]. A straightforward way to amend this issue is to make the equations hyperbolic by introducing
relaxation-type equations for the dissipative currents, i.e.,

τΠΠ̇ + Π = −ζθ + · · · , (2.64a)

τnṅ
⟨µ⟩ + nµ = κIµ + · · · , (2.64b)

τππ̇
⟨µν⟩ + πµν = 2ησµν + · · · , (2.64c)

where the dots symbolize terms of higher order in dissipative quantities and fluid gradients, and τΠ, τn,
and τπ denote the characteristic relaxation timescales of Π, nµ, and πµν , respectively. Furthermore,
we introduced the notation

ṅ⟨µ⟩ := ∆µν ṅν , π̇⟨µν⟩ := ∆µν
αβ π̇

αβ , (2.65)

where the projector is needed to remove the components of the equations (2.64) which are not
independent. The crucial difference between Eqs. (2.64), which are said to be of MIS type, and
(2.55), is that in the former the dissipative quantities are kept as independent dynamical degrees of
freedom satisfying differential equations, whereas the Navier-Stokes relations (2.55) express them
through gradients of fluid-dynamical quantities in an algebraic way. Note that Eqs. (2.64) relax to
their respective Navier-Stokes values at asymptotically long times. While such a formulation can
render the equations causal and stable [31], it introduces several ambiguities. Besides the values of the
relaxation times τΠ, τn, and τπ, the higher-order terms on the right-hand sides of Eqs. (2.64) have to
be specified. In order to find the most general form of these terms, we first have to introduce small
parameters that control the expansion. The first dimensionless quantity is the so-called Knudsen
number Kn, which is defined as

Kn :=
ℓmicro

Lhydro
, (2.66)

where ℓmicro denotes a microscopic scale, such as, e.g., the mean free path of the particles that constitute
the fluid, while Lhydro stands for a macroscopic hydrodynamic length scale, which we can associate
with the distance over which macroscopic quantities vary, ∂ ∼ L−1

hydro. This parameter quantifies
how large the separation between microscopic and macroscopic scales is. The second quantity that

6This identification can be seen from an argumentation in §136 of Ref. [102]. Pure heat conduction takes place when the
total particle three-current vanishes, i.e., when n = −v/n0. The heat flux then is given by qi = T 0i = (ε0+P0)ui = −hni.
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controls the quality of the expansion is the inverse Reynolds number Re−1, which is defined as the
ratio of a dissipative quantity and its equilibrium value and thus quantifies how close the system is
to equilibrium. Since there are several dissipative quantities, each of them has an associated inverse
Reynolds number,

Re−1
Π :=

|Π|
P0

, Re−1
n :=

√−nµnµ
β0P0

, Re−1
π :=

√
πµνπµν

P0
. (2.67)

Taking into account all dissipative currents and fluid gradients at our disposal, the most general
relaxation-type equations up to second order in Kn and Re−1 read [51]

τΠΠ̇ + Π = −ζθ + J +K +R , (2.68a)

τnṅ
⟨µ⟩ + nµ = κIµ + J µ +Kµ +Rµ , (2.68b)

τππ̇
⟨µν⟩ + πµν = 2ησµν + J µν +Kµν +Rµν . (2.68c)

Here, the terms

J := −ℓΠn∇ · n− τΠnn · F − δΠΠΠθ − λΠnn · I + λΠππ
µνσµν , (2.69a)

J µ := −τnnνωνµ − δnnnµθ − ℓnΠ∇µΠ+ ℓnπ∆
µν∇λπλν + τnΠΠF

µ − τnππµνFν
− λnnnνσµν + λnΠΠI

µ − λnππµνIν , (2.69b)

J µν := 2τππ
⟨µ
λ ω

ν⟩λ − δπππµνθ − τπππλ⟨µσν⟩λ + λπΠΠσ
µν

− τπnn⟨µF ν⟩ + ℓπn∇⟨µnν⟩ + λπnn
⟨µIν⟩ , (2.69c)

denote contributions of first order in both Kn and Re−1, and we defined Fµ := ∇µP0. Similarly, we
introduced

K := ζ̃1ωµνω
µν + ζ̃2σµνσ

µν + ζ̃3θ
2 + ζ̃4I · I + ζ̃5F · F + ζ̃6I · F + ζ̃7∇ · I + ζ̃8∇ · F , (2.70a)

Kµ := κ̃1σ
µνIν + κ̃2σ

µνFν + κ̃3I
µθ + κ̃4F

µθ + κ̃5ω
µνIν + κ̃6∆

µ
λ∇νσλν + κ̃7∇µθ , (2.70b)

Kµν := η̃1ω
λ⟨µων⟩λ + η̃2θσ

µν + η̃3σ
λ⟨µσν⟩λ + η̃4σ

⟨µ
λ ω

ν⟩λ + η̃5I
⟨µIν⟩

+ η̃6F
⟨µF ν⟩ + η̃7I

⟨µF ν⟩ + η̃8∇⟨µIν⟩ + η̃9∇⟨µF ν⟩ , (2.70c)

to collect the terms of second order in the Knudsen number.7 Lastly, the quantities

R := φ1Π
2 + φ2n · n+ φ3π

µνπµν , (2.71a)
Rµ := φ4π

µνnν + φ5Πn
µ , (2.71b)

Rµν := φ6Ππ
µν + φ7π

λ⟨µπν⟩λ + φ8n
⟨µnν⟩ , (2.71c)

are of second order in the inverse Reynolds number. The prefactors appearing in the equations
above are the so-called second-order transport coefficients of the system, which have to be computed
from a microscopic theory. The main objective of this thesis is to obtain Eqs. (2.68) as well as their
spin-analogues (cf. Sec. 2.4) from a quantum field-theoretical starting point.

To close this section, we remark that another way to approach the task of finding the second-order
contributions to Eqs. (2.64) without resorting to a microscopic theory is to extend the analysis done
in Subsec. 2.3.2 to second order by considering a higher-order phenomenological entropy current [116,
117]. This type of analysis yields relaxation-type equations as indicated in Eqs. (2.64), but does not
include all possible terms that are allowed by symmetry. Furthermore, it does not provide explicit
values for the transport coefficients.

2.4 Hydrodynamics with spin

When talking about fluids whose constituent particles have a nonvanishing spin, we have to take a step
back and consider the conservation of the total angular momentum (2.13c) in more detail. While for a

7These contributions are in principle problematic, as they render the equations of motion parabolic [51]. In Sec. 6 we
will show that it is possible to set these terms to zero [50].
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fluid consisting of spinless particles the conservation of the total angular momentum simply enforces
the symmetry of the energy-momentum tensor, for fluids consisting of fermions or bosons with nonzero
spin the spin tensor is in principle an independent quantity that fulfills the equation of motion

ℏ∂λSλµν = T [νµ] . (2.72)

Note that, as we noticed in the case of fluid dynamics without spin, the system is severely underdeter-
mined: The spin tensor features 4× 6 = 24 degrees of freedom, since it is antisymmetric in the last
two indices, while the antisymmetric part of the energy-momentum tensor adds six more components.
In contrast, Eq. (2.72) determines six components of the spin tensor, which have to characterize the
ideal case. Collecting these six independent components in an antisymmetric second-rank tensor Ωµν0 ,
we may decompose it with respect to the fluid four-velocity as

Ωµν0 = u[µκ
ν]
0 + ϵµναβuαω0,β , (2.73)

which can be inverted to yield

κµ0 = −Ωµν0 uν , ωµ0 =
1

2
ϵµναβuνΩ0,αβ . (2.74)

The quantity Ωµν0 , which will reappear in Sec. 4.6, is called the spin potential, with κµ0 and ωµ0 being
its electric- and magnetic-like parts, respectively.

Using the vector and tensor structures at our disposal, i.e., uµ, gµν , and Ωµν0 , the spin tensor in the
ideal case can be decomposed as [38]8

Sλµν0 = A0u
λΩµν0 +B0u

λuαΩ
α[µ
0 uν] + C0u

λΩ
α[µ
0 ∆ν]

α +D0uαΩ
α[µ
0 ∆ν]λ + E0∆

λ
αΩ

α[µ
0 uν]

= (A0 −B0 − C0)u
λu[µκ

ν]
0 + (A0 − 2C0)u

λϵµναβuαω0,β

+D0κ
[µ
0 ∆ν]λ + E0u

[µϵν]λαβuαω0,β , (2.75)

where the coefficients A0, · · · , E0 are functions of the temperature and the chemical potential, thus not
adding additional degrees of freedom. The divergence of the equilibrium part of the spin tensor then
reads

∂λS
λµν
0 =

(
u̇[µκ

ν]
0 + u[µκ̇

ν]
0 + θu[µκ

ν]
0

)
(A0 −B0 − C0) + u[µκ

ν]
0 (Ȧ0 − Ḃ0 − Ċ0)

+ ϵµναβ
[
(u̇αω0,β + uαω̇0,β + θuαω0,β) (A0 − 2C0) + uαω0,β(Ȧ0 − 2Ċ0)

]
+D0

(
∇[νκ

µ]
0 − κ

[µ
0 u

ν]θ − κ[µ0 u̇ν]
)
+ κ

[µ
0 ∇ν]D0 + E0

(
∇λu[µ

)
ϵν]λαβuαω0,β

+ u[µϵν]λαβ [(uλu̇αω0,β + uα∇λω0,β)E0 + uαω0,β∇λE0] . (2.76)

The dissipative parts of the spin tensor can be included through

Sλµν = Sλµν0 + δSλµν . (2.77)

As in the case of the energy-momentum tensor and the particle four-current, equilibrium variables (i.e.,
Ωµν0 ) require a choice of hydrodynamic frame in the case where dissipation is present. In this thesis,
we choose the spin analogue of the Landau frame [82], i.e., we demand that

uλδS
λµν = 0 , (2.78)

such that we can rewrite
∂λδS

λµν = −u̇λδSλµν +∇λSλµν . (2.79)

8In principle there could also be a term ∼ gλ[µuν], cf. Ref. [118]. We did not consider it here because it does not
depend on the spin potential and will not emerge from the microscopic theory, as shown in Subsec. 6.2.2.
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Projecting Eq. (2.72) with uµ and 1
2ϵµναβu

β , we obtain the equations of motion for the components of
the spin potential,

ℏκ̇⟨µ⟩0 = − ℏ
A0 −B0 − C0

[
κµ0 (Ȧ0 − Ḃ0 − Ċ0)− ϵµναβuν u̇αω0,β(A0 − 2C0 − E0)

−D0 (σ
µν + ωµν)κ0,ν +

(
A0 −B0 − C0 +

2

3
D0

)
θκµ0

− ϵµναβuν (E0∇αω0,β + ω0,β∇αE0) + uν (u̇λ −∇λ) δSλµν −
1

ℏ
T [µν]uν

]
, (2.80a)

ℏω̇⟨µ⟩
0 = − ℏ

A0 − 2C0

[
(Ȧ0 − 2Ċ0)ω

µ
0 + ϵµναβuν u̇ακ0,β(A0 −B0 − C0 +D0)

+ E0(σ
µν + ωµν)ω0,ν +

(
A0 − 2C0 −

2

3
E0

)
θωµ0 − ϵµναβuν (D0∇ακ0,β + κ0,β∇αD0)

+
1

2
ϵµναβuν

(
−u̇λ +∇λ

)
δSλαβ +

1

ℏ
ϵµναβuνTαβ

]
, (2.80b)

where we used Eq. (2.76). When the dissipative parts are set to zero, Eqs. (2.80a) and (2.80b)
determine ideal spin hydrodynamics and have been found to exhibit wavelike behavior in the linear
regime around a nonrotating flow [119]. While it is possible to decompose the dissipative contribution
to the spin tensor in a general way [120], we will not do so in this chapter. However, employing
the formalism presented in Chapter 3, we will be able to determine the equations of motion of the
different components of δSλµν . We remark that, while still an active area of research, in principle
the same points apply that were put forward in Sec. 2.3 concerning the equations of motion for the
dissipative degrees of freedom. In particular, when trying to apply Navier-Stokes-type relations
to the components of δSλµν , Refs. [121, 122] suggest that these theories are plagued with similar
instabilities as the standard relativistic Navier-Stokes theories. Thus, a possible way to obtain a
causal and stable theory consists in deriving relaxation-type equations for the dissipative components
of the spin tensor, which we will do in Chapter 6.
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Chapter 3

Field theory and phase space

The thermodynamic and hydrodynamic formulations treated in the last chapter are all built on
fundamental conserved quantities. Since we will try to derive the macroscopic behavior of a given
system from the bottom up in the following chapters, we have to ask how these conservation laws arise
when considering a microscopic field theory. To begin this endeavor, we recapitulate how the basic
conserved currents introduced in Subsec. 2.1.1 are connected to fundamental spacetime symmetries.

3.1 Conservation laws

The basic transformations in spacetime are characterized by the Poincaré group, which is a semidirect
product of the translation group in four-dimensional Minkowski space R1,3 and the Lorentz group
O(1, 3). The translation group contains the (finite) translations in space and time, i.e.,

xµ
R1,3

−→ x′µ = xµ + aµ , (3.1a)

with some four-vector aµ. The Lorentz group, on the other hand, describes transformations that
connect inertial systems which are rotated or moving uniformly relative to each other,

xµ
O(1,3)−→ x′µ = Λµνx

ν , (3.1b)

where Λµν denotes a general Lorentz transformation. As a special case, a pure boost Lµν describes
the transformation between systems that are uniformly moving with velocity v with respect to each
other and reads

Lµν :=

(
γ −γvT

−γv 1+ (γ − 1)v⊗vT

v2

)µ
ν

(3.2)

where we defined γ := 1/
√
1− v2 with the magnitude of the three-velocity v := |v|, and 1 denotes the

three-dimensional unit matrix. On the other hand, a pure rotation Rµν connects inertial systems that
are rotated against each other and takes the form

Rµν :=

(
1 0T

0 R

)µ
ν

, with R ∈ SO(3) , (3.3)

with 0 := (0, 0, 0)T. While the set of rotations forms a subgroup of O(1, 3) [namely the group SO(3)],
the boosts do not. Given that the Poincaré group is a Lie group, its elements can be expressed via
the exponential map, i.e., we have for a general field φ(x) that transforms in some representation of
the group,

φ(x)
R1,3⋊O(1,3)−→ φ′(x′) =

{[
exp

(
iaαP̂

α
)
exp

(
i

2
ωαβM̂

αβ

)]
φ

}
(Λµνx

ν + aµ) , (3.4)
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where P̂ is the generator of translations, while M̂ generates Lorentz transformations.1 Note that
the ten parameters {aµ, ωµν}, where ωµν = −ωνµ, fully specify the transformation. The commutation
relations for the generators read [123][

P̂µ, P̂ ν
]
= 0 , (3.5a)[

M̂µν , P̂α
]
= i
(
gµαP̂ ν − gναP̂µ

)
, (3.5b)[

M̂µν , M̂αβ
]
= i
(
gµαM̂νβ − gναM̂µβ − gµβM̂να + gνβM̂µα

)
, (3.5c)

where square brackets denote the commutator.

Noether’s (first) theorem tells us that for every continuous symmetry there exists a corresponding
conserved current. The symmetry group G can be characterized by functions Λ and Ω that describe
the behavior of coordinates and fields under infinitesimal transformations, respectively, i.e.,

xµ
G−→ xµ + Λµi (x)δω

i , (3.6a)

φ(x)
G−→ φ(x) + Ωi(x)δω

i , (3.6b)

where δωi are the parameters of the respective transformation.

Explicitly, the conserved current J for a theory of a field φ described by some Lagrangian L reads
[123]

J µ
i =

∂L
∂ (∂µφ)

Ωi − TµνΛνi , (3.7)

where we defined the (canonical) energy-momentum tensor

Tµν :=
∂L

∂ (∂µφ)
∂νφ− gµνL . (3.8)

In Eq. (3.7), the index “i” assumes different forms depending on the generators of the symmetry group.
Note also that the field φ(x), if it transforms in a nontrivial representation of the Lorentz group, will
have multiple components, which are implicitly summed over in Eqs. (3.7) and (3.8).

Since the Poincaré group characterizes the transformations between inertial systems, a sensible
relativistic theory should feature it as one of its symmetry groups. In consequence, two conserved
currents arise immediately, namely the energy-momentum tensor Tµν as well as the total angular
momentum tensor Jλµν . The former is a consequence of the invariance under the translation group R1,3,
while the latter stems from the invariance under the restricted Lorentz group SO+(1, 3). Furthermore,
if the fields are electrically charged, the action of the theory features a global U(1) symmetry, leading
to a conserved electric current, which, given that we are dealing with a single particle species, we may
associate with a four-current Nµ which characterizes the difference between particles and antiparticles.
In the following, we will call Nµ simply the particle four-current.

In this and the following chapters, since we want to start from a quantum field theory, we are going to
deal with operator-valued fields φ̂, which will result in the conserved currents also becoming operators.
The quantities that can be related to experiment are then given by the respective (normal-ordered)
averages, i.e.,

Nµ ≡
〈
: N̂µ :

〉
, Tµν ≡

〈
: T̂µν :

〉
, Jλµν ≡

〈
: Ĵλµν :

〉
. (3.9)

1The Lorentz group also contains the discrete parity and time-reversal transformations, which we will for now ignore,
i.e., we consider the proper orthochronous (or restricted) Lorentz group SO+(1, 3) that is the connected component of
O(1, 3) containing the identity.
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3.1.1 Pseudogauge transformations

Even though Noether’s theorem allows to compute conserved currents from the Lagrangian, they are
not fixed uniquely. To see this, consider the following transformation,

Ŝλµν −→ Ŝλµνpgt := Ŝλµν − Φ̂λµν + ℏ∂ρẐµνλρ , (3.10a)

T̂µν −→ T̂µνpgt := T̂µν +
ℏ
2
∂λ

(
Φ̂λµν + Φ̂νµλ + Φ̂µνλ

)
, (3.10b)

where Φ̂ is antisymmetric in the last two indices, Φ̂λµν = −Φ̂λνµ, and Ẑ is antisymmetric in the first
and last pair of indices, Ẑµνλρ = −Ẑνµλρ = −Ẑµνρλ. Since we have

∂µ∂λ

(
Φ̂λµν + Φ̂νµλ + Φ̂µνλ

)
= 0 , (3.11)

the new energy-momentum tensor is also conserved,

∂µT̂
µν
pgt = 0 . (3.12)

Furthermore, due to the relation
∂λ∂ρẐ

µνλρ = 0 (3.13)

in conjunction with
T̂

[µν]
pgt = T̂ [µν] + ℏ∂λΦ̂λµν , (3.14)

the equation of motion for the spin tensor stays unchanged as well,

ℏ∂λŜλµνpgt = T̂
[νµ]
pgt . (3.15)

Finally, the conserved charges are left invariant under the transformation (3.10) as long as boundary
terms can be neglected. Denoting the unit vector on the boundary of Σ as t̂, this becomes immediately
clear for the energy-momentum tensor,

P̂µpgt =

∫
dΣλT̂

λµ
pgt

=

∫
Σ

dΣλT̂
λµ +

ℏ
2

∮
∂Σ

dt̂λ,ν

(
Φ̂νλµ + Φ̂µλν + Φ̂λµν

)
≡ P̂µ . (3.16)

In the case of the total angular momentum tensor, we first compute

Ĵλµνpgt = T̂λ[νxµ] +
ℏ
2

[
∂α

(
Φ̂αλν + Φ̂λνα + Φ̂νλα

)
xµ − ∂α

(
Φ̂αλµ + Φ̂λµα + Φ̂µλα

)
xν
]

+ ℏŜλµν − ℏΦ̂λµν

= Ĵλµν +
ℏ
2
∂α

(
Φ̂αλ[νxµ] − Φ̂λα[νxµ] + x[µΦ̂ν]λα

)
, (3.17)

from which we obtain

Ĵ µνpgt =

∫
dΣλĴ

λµν
pgt

=

∫
Σ

dΣλĴ
λµν +

ℏ
2

∮
∂Σ

dt̂λ,α

(
Φ̂αλ[νxµ] − Φ̂λα[νxµ] + x[µΦ̂ν]λα

)
≡ Ĵ µν . (3.18)

The transformation (3.10) is called a pseudogauge transformation [34] and describes an ambiguity in the
definition of the conserved currents. At this point, since the total charges and the equations of motion
for the transformed quantities are left invariant, it seems that there is no reason for observables to
depend on the pseudogauge. However, as we will see in Chapter 6, a truncation has to be made in order
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to obtain dissipative hydrodynamics from a microscopic theory. At that point, the chosen pseudogauge
might influence the truncation and the resulting theory thus becomes pseudogauge-dependent. This
issue will reappear in Subsec. 6.3.4.

In the remainder of this chapter, we will discuss some commonly used pseudogauges for fields of
different spin. In order to assign an intuitive meaning to the different pseudogauge choices, however, it
is advantageous to express the conserved currents as phase-space integrals, the formulation of which
will be the subject of the next section.

3.2 Phase-space formulation

3.2.1 Classical systems

In classical mechanics, the dynamics of an ensemble of N ≫ 1 particles is often conveniently described
via a formulation in phase space. Since each particle (labeled by 1 ≤ i ≤ N) has a well-defined position
xi := (ti, r⃗i) and a well-defined momentum ki := (k0i , k⃗i), there exists a scalar function FN ({xi}; {ki})
(depending on all 8N particle coordinates) that describes the distribution of positions and momenta.
The function FN is then called an N -particle distribution function, and it describes the probability of
finding N particles at the phase-space positions {(x1, k1), · · · , (xN , kN )}. Parametrizing the trajectory
of the i-th particle by the parameter τi, the N -particle distribution function can be written as [124]

FN ({xi}; {ki}) :=
1

mNN !

〈∫
dτ1 · · ·

∫
dτN

×
∑

j1,···,jN

N∏
i=1

δ(4) [xi − xji(τji)] δ(4) [ki − kji(τji)]
〉

ens

, (3.19)

where m is the particle mass and the angular brackets denote ensemble averaging. The intuition behind
Eq. (3.19) is that all worldlines of the N particles are traced out in phase space via the integrals
over τ1, · · · , τN , and the sum checks whether the arguments of the function {xi}, {ki} all lie on a
worldline. Knowledge of the N -particle distribution function FN is equivalent to complete knowledge
of the system, and thus to solving O(N) coupled differential equations. What we aim to achieve via a
phase-space formulation, however, is a coarse-grained description of the system. In the classical picture,
this coarse-graining consists in not considering the whole N -particle distribution function, but rather
s-particle distributions (with s < N), where the information about N − s particles is integrated out,

Fs(x1, · · · , xs; k1, · · · , ks) := mN−s(N − s)!
∫

dΣs+1d
4ks+1 · · ·

∫
dΣNd4kN FN ({xi}; {ki}) , (3.20)

with Σi being three-dimensional spacelike hypersurfaces. The distribution function (3.20) now describes
the probability of finding s particles at the phase-space positions {(x1, k1), · · · , (xs, ks)}. Since this
function describes less particles than are contained in the system, it does not provide complete
information anymore. In particular, the N − s particles that were integrated over act as a source term
for the change of the s-particle distribution function, leading to the fact that the evolution of Fs will
depend on Fs+1, such that the system is not closed and has to be truncated. This dependence on
higher-order distribution functions is called the BBGKY hierarchy, after Bogoliubov, Born, Green,
Kirkwood, and Yvon [125–128].

Taking this procedure to the extreme by setting s = 1, we arrive at the notion of the one-particle
distribution function F (x, k) := F1(x, k), describing the probability of finding a particle at position x
and with momentum k. As discussed above, its evolution depends on the two-particle distribution
function F2, and as such its evolution equation is not closed. One popular way of truncating this system
is by introducing the condition of molecular chaos, where one assumes the two-particle distribution
function to simply be a product of the one-particle distribution functions, i.e.,

F2(x1, x2; k1, k2) = F (x1, k1)F (x2, k2) . (3.21)
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We will encounter this condition again in a slightly different form in Chapters 4 and 5.

Conserved currents

With the concept of the one-particle distribution function, it is possible to reconnect to the conserved
quantities introduced earlier in Sec. 3.1. Considering a system made up of the same species of particles
in the absence of inelastic processes (i.e., no particles are created or destroyed), the particle four-current
Nµ is conserved, with the global charge being given by the total number of particles. It can then be
expressed as the average of the four-momentum, i.e.,

Nµ(x) =

∫
d4k

(2πℏ)4
kµF (x, k) =

∫
d3k

(2πℏ)3k0
kµf(x, k) . (3.22)

Here we made use of the fact that for classical particles the momentum is always on shell, k2 = m2,
which allows us to write

F (x, k) ≡ 4πℏ δ(k2 −m2)f(x, k) , (3.23)

and subsequently employ the identity∫
d4kδ(k2 −m2) =

∫
d4k

1

2k0
δ
(
k0 −

√
k2 +m2

)
≡
∫

d3k

2k0
, (3.24)

where in the last d3k-integral it is implied that k0 =
√
k2 +m2. The energy-momentum tensor can be

expressed similarly as

Tµν(x) =

∫
d4k

(2πℏ)4
kµkνF (x, k) =

∫
d3k

(2πℏ)3k0
kµkνf(x, k) . (3.25)

Equations (3.22) and (3.25) provide relations between the conserved currents (which describe the
macroscopic properties of the system) and the one-particle distribution function. This implies that, if
the evolution of f is known, the conserved currents follow at once, providing the equations of motion
that were missing from the purely macroscopic analysis of Chapter 2. First, however, we have to ask
the question of how to provide a phase-space formulation in the case of quantum-mechanical systems.

3.2.2 Quantum systems

In contrast to the classical systems we just discussed, in a quantum system there cannot be a scalar
function describing the position and momenta of all particles that looks like Eq. (3.19), since a
quantum-mechanical particle does not have well-defined position and momentum at the same time.
This can be seen straightforwardly from the fact that the position and momentum operators do not
commute. Nevertheless, it is possible to formulate a phase-space description of a quantum theory
at the cost of giving up some of the properties of the distribution function that have been taken for
granted in Subsec. 3.2.1. We will first illustrate the idea by considering one-dimensional nonrelativistic
quantum mechanics before moving on to a relativistic quantum field-theoretical formulation.

One-dimensional nonrelativistic quantum mechanics

Building on Eqs. (3.22) and (3.25), we may reformulate the question of obtaining a phase-space
formulation by asking whether there exists a function W (x, k, t) that fulfills

Tr
[
ϱ̂(x̂, k̂, t)Â(x̂, k̂)

]
=

∫
dx

∫
dk

2πℏ
A(x, k)W (x, k, t) , (3.26)
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where ϱ̂ is the density matrix and Â is an arbitrary operator. Note that, in this example, we returned
to nonrelativistic physics, such that the time coordinate takes a special role. Indeed there is an infinite
number of functions that satisfy Eq. (3.26), but none of them features all the properties one would
expect of a one-particle distribution function, namely

• being real, W ∗(x, k, t) =W (x, k, t),

• being nonnegative, W (x, k, t) ≥ 0 ∀ (x, k, t) ∈ R3, and

• giving the correct marginal distributions, i.e.,∫
dk

2πℏ
W (x, k, t) = |Ψ(x, t)|2 ,

∫
dxW (x, k, t) = |Ψ̃(k, t)|2 , (3.27)

where Ψ is the wave function of the quantum-mechanical particle, and Ψ̃ is its Fourier transform.

In the literature, one finds several choices for W (x, k, t), depending on the problem at hand; for a
review, see Ref. [37].2 In this thesis, we are going to use the so-called Wigner function

W (x, k, t) :=

∫
dv e−

i
ℏkv

〈
x+

v

2

∣∣∣ ϱ̂ ∣∣∣x− v

2

〉
=

∫
dv e−

i
ℏkvΨ∗

(
x+

v

2

)
Ψ
(
x− v

2

)
, (3.28)

where the second equality holds if the system is in a pure state, i.e., ϱ̂ = |Ψ⟩ ⟨Ψ|. Note that, while the
Wigner function is real and gives the correct marginal distributions, it is not necessarily nonnegative,
such that the strict interpretation as a probability density fails, the reason being that interference
effects are incorporated [37]. In order to verify that Eq. (3.26) indeed holds, we have to define A(x, k),
which will be the Wigner-Weyl transform of the operator Â,

A(x, k) :=

∫
du e−

i
ℏku

〈
x+

u

2

∣∣∣ Â ∣∣∣x− u

2

〉
. (3.29)

Inserting the above equation into the left-hand side of Eq. (3.26) and omitting the dependence on x̂, k̂
for brevity, we find∫

dx

∫
dk

2πℏ
A(x, k)W (x, k, t) =

∫
dx

∫
dv
〈
x− v

2

∣∣∣ Â ∣∣∣x+
v

2

〉〈
x+

v

2

∣∣∣ ϱ̂ ∣∣∣x− v

2

〉
=

∫
dy−

∫
dy+ ⟨y−| Â |y+⟩ ⟨y+| ϱ̂ |y−⟩

≡ Tr
(
Â ϱ̂
)
. (3.30)

Here we substituted y± := x± v/2 in the second step. The Wigner function (3.28) thus fulfills the
desired property, as long as the correct transform of the operator in question is used.

Field theory: Covariant Wigner operator

We now want to generalize the concept of phase space in quantum mechanics to a quantum field theory
of some field φ̂ that furnishes a certain representation of the inhomogeneous Lorentz group. In
particular, if φ̂ has spin j, it transforms in the(

j
2 ,

j
2

)
− representation

2We remark that one of the possible choices is given by the Glauber-Sudarshan P representation [129].
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of the Lorentz group if j is integer, and in the(
2j−1
4 , 2j−1

4

)
⊗
[(

1
2 , 0
)
⊕
(
0, 12

)]
− representation

if j is half-integer. Since the (m,n)-representation of the Lorentz group is (2m+1)(2n+1)-dimensional,
we have (j + 1)2 [(2j + 1)2] components for integer (half-integer) spin. However, a (massive) field of
spin j only has 2j + 1 degrees of freedom, such that the field φ̂ fulfills suitable constraint equations
that reduce the number of independent components [123]. Building on the definition (3.28), we can
generalize the Wigner function in one dimension to a Wigner operator in 3+1 dimensions,

Ŵ (x, k) := κ

∫
d4ve−

i
ℏk·vφ̂

(
x+

v

2

)
φ̂
(
x− v

2

)
, (3.31)

where the constant is |κ| = 2/ℏ for integer and |κ| = 1 for half-integer spin, and we defined

φ̂ :=

{
φ̂† , j integer ,
φ̂†γ0 , j half-integer .

(3.32)

Note that this definition differs from the conventions in Refs. [43, 44] by a factor of (2πℏ)4 in the
d4v-integration measure, but agrees with the formulation used in Ref. [46].3 The Wigner operator
(3.31) has 2⌊j⌋ Lorentz indices and an additional 2 Dirac indices if j is half integer. From the
number of degrees of freedom of the field φ̂, it follows that the Wigner operator features (2j + 1)2

independent components, which we will verify for the cases j ∈ {0, 1/2, 1} in the following sections. The
Wigner function follows from the corresponding operator by taking its normal-ordered expectation
value, W (x, k) := ⟨: Ŵ (x, k) :⟩. We remark that, as soon as the fields φ̂ do not transform trivially
under Lorentz transformations, the Wigner function is no longer real, but fulfills W̃ =W ∗, where
[43]

W̃ :=

{
WT , j integer ,
γ0WTγ0 , j half-integer .

(3.33)

Since the energy-momentum and particle-number operators for free fields are bilinear in derivatives of
the fields φ̂, φ̂, we need to formulate expressions of the type[

∂µ1 · · · ∂µn φ̂(x)
]
[∂ν1 · · · ∂νm φ̂(x)]

in terms of integrals over the Wigner operator. Firstly, note that the inverse of the Wigner transform
is given by ∫

d4k

(2πℏ)4
Ŵ (x, k) = κ φ̂(x)φ̂(x) . (3.34)

Furthermore, we define the so-called Bopp operator [130]

Dµ := kµ +
iℏ
2
∂µ , D∗µ := kµ − iℏ

2
∂µ , (3.35)

which fulfills

DµŴ (x, k) = iℏκ
∫

d4ve−
i
ℏk·vφ̂

(
x+

v

2

)
∂µφ̂

(
x− v

2

)
, (3.36a)

D∗µŴ (x, k) = −iℏκ
∫

d4ve−
i
ℏk·v

[
∂µφ̂

(
x+

v

2

)]
φ̂
(
x− v

2

)
. (3.36b)

3In this thesis, we adopt the latter convention because it allows the interpretation of the Wigner function as a
particle-number density, as we will see in Chapter 4.
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To prove this, we compute, denoting the derivative with respect to v as ∂µv , and abbreviating φ± :=
φ(x± v/2),

∂µŴ (x, k) = κ

∫
d4ve−

i
ℏk·v

[(
∂µφ̂+

)
φ̂− + φ̂+ (∂µφ̂−)

]
= κ

∫
d4ve−

i
ℏk·v

[
2
(
∂µv φ̂+

)
φ̂− + φ̂+ (∂µφ̂−)

]
= κ

∫
d4ve−

i
ℏk·v

[
2
i

ℏ
kµφ̂+φ̂− − 2φ̂+ (∂µv φ̂−) + φ̂+ (∂µφ̂−)

]
= κ

∫
d4ve−

i
ℏk·v

[
2
i

ℏ
kµφ̂+φ̂− + 2φ̂+(∂

µφ̂−)

]
≡ 2

i

ℏ
kµŴ (x, k) + 2κ

∫
d4ve−

i
ℏk·vφ̂+ (∂µφ̂−) . (3.37)

This proves Eq. (3.36a), while Eq. (3.36b) follows analogously. Combining the identities (3.34) and
(3.36), we are able to express any operator bilinear in the fields as

κ
[
∂µ1 · · · ∂µn φ̂(x)

]
[∂ν1 · · · ∂νm φ̂(x)]

= (−1)n
(

1

iℏ

)n+m ∫
d4k

(2πℏ)4
(D∗µ1 · · ·D∗µn) (Dν1 · · ·Dνm) Ŵ (x, k) . (3.38)

Equation (3.38) is the central formula that we will use to represent conserved currents of different
fields as momentum-space integrals.

Power-counting in the Planck constant

In the following sections, we will encounter equations of motion for the Wigner functions that involve
different powers of ℏ. We will then often perform a so-called “ℏ-expansion” which consists in writing a
quantity A(x, k) as a power series

A(x, k) ≡
∞∑
n=0

ℏnA(n)(x, k) (3.39)

that can then be perturbatively solved in order to determine the coefficients A(n)(x, k).

This kind of expansion, which is well-known in quantum mechanics and thermodynamics [100, 131],
is of course independent from the value of the Planck constant, which can in the end be safely set
to unity and acts as a book-keeping parameter. As we will see, a power of ℏ that contributes to the
power-counting (as opposed to the powers appearing in, e.g., the measure of momentum space) is
always accompanied by a derivative, such that the ℏ-expansion also becomes an expansion in gradients.
The dimensionless quantity that controls the quality of the expansion is given by the ratio of the
Compton-wavelength λC = ℏ/m and a macroscopic length scale L, where we take the gradient to be
proportional to its inverse, ∂ ∼ L−1. The classical limit (corresponding to ℏ→ 0) is then given by

ℏ/m
L
→ 0 ,

which is the well-known eikonal approximation that appears in the transition from wave optics to
geometric optics [132] and was already recognized by Schrödinger as the classical limit of quantum
mechanics [133]. It should be noted that this classical limit, where the notion of a particle has a
well-defined meaning, corresponds also to the limit where kinetic theory, as imagined by Boltzmann,
i.e., as a theory of particles colliding in small regions of spacetime, is valid. In the remainder of the
thesis, we will mostly contain ourselves to the first order in the ℏ-expansion, treating quantum effects
(in particular those induced by the particle spin) as small corrections.
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3.3 Scalar fields

As a first example, we consider the case of complex scalar fields, which do not feature any spin and
transform in the (0, 0)-representation of the Lorentz group. Accordingly, all quantities related to the
scalar field are denoted with a subscript S.

3.3.1 Dynamics

A complex scalar field ϕ̂ is described by the Klein-Gordon Lagrangian

L̂S = ℏ
[(
∂µϕ̂†

)(
∂µϕ̂

)
− m2

ℏ2
|ϕ̂|2

]
+ L̂S,int , (3.40)

where L̂S,int denotes an interaction Lagrangian, which we assume to be independent of the derivatives
of the field. The resulting equations of motion read(

□+
m2

ℏ2

)
ϕ̂ = ρ̂ , (3.41a)(

□+
m2

ℏ2

)
ϕ̂† = ρ̂ † , (3.41b)

where we introduced the source terms

ρ̂ :=
1

ℏ
∂L̂S,int

∂ϕ̂†
, ρ̂ † :=

1

ℏ
∂L̂S,int

∂ϕ̂
. (3.42)

The Green’s function ∆(x, x′) of the complex scalar field can be obtained from(
□x +

m2

ℏ2

)
∆(x, x′) = δ(4)(x− x′) , (3.43)

which in Fourier space becomes∫
d4k

(2πℏ)4

∫
d4k′

(2πℏ)4
e−

i
ℏ (k·x+k′·x′)(−k2 +m2)∆̃(k, k′)

=

∫
d4k

(2πℏ)4

∫
d4k′

(2πℏ)4
e−

i
ℏ (k·x+k′·x′)(2πℏ)4ℏ2δ(4)(k + k′) . (3.44)

With the definition ∆̃(k, k′) =: (2πℏ)4δ(4)(k + k′)∆̃(k), we find the retarded and advanced Green’s
functions

∆̃R(k) = −
ℏ2

k2 −m2 + iηk0
, (3.45a)

∆̃A(k) = −
ℏ2

k2 −m2 − iηk0 , (3.45b)

where the infinitesimal quantity η > 0 in the denominator indicates that, when evaluating the Fourier
integral via contour integration, the half-circle has to be closed in the lower or upper half-plane,
respectively.

3.3.2 Wigner function

The Wigner operator is defined [in accordance with Eq. (3.31)] as

Ŵ (x, k) :=
2

ℏ

∫
d4ve−

i
ℏk·vϕ̂†

(
x+

v

2

)
ϕ̂
(
x− v

2

)
. (3.46)
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Acting on it with the operator D2 − m2 and using Eq. (3.38), we obtain with the help of the
Klein-Gordon equation(

k2 −m2 + iℏk · ∂ − ℏ2

4
□

)
Ŵ (x, k) = ℏĈ(x, k) , (3.47)

where we defined
Ĉ(x, k) := −2

∫
d4ve−

i
ℏk·vϕ̂†

(
x+

v

2

)
ρ̂
(
x− v

2

)
. (3.48)

Taking the real and imaginary parts of the expectation value of Eq. (3.47), and defining D := Re ⟨: Ĉ :⟩,
C := Im ⟨: Ĉ :⟩, we find (

k2 −m2 − ℏ2

4
□

)
W (x, k) = ℏD(x, k) , (3.49)

k · ∂W (x, k) = C(x, k) . (3.50)

Here we also made use of the fact that the Wigner function is real. One can see that Eq. (3.49)
constitutes a mass-shell equation for the Wigner function, i.e., it will ensure that the momentum k
will obey the relativistic energy-momentum relation, k2 = m2, in the classical limit. Equation (3.50)
on the other hand denotes a kinetic equation that will determine the time evolution of W (x, k).

3.3.3 Conserved currents

From the Lagrangian (3.40), we immediately obtain the canonical energy-momentum tensor

TµνS,C + gµνLS = ℏ
〈
:
(
∂(µϕ̂†

)(
∂ν)ϕ̂

)
:
〉
. (3.51)

The canonical energy-momentum tensor is manifestly symmetric, which is to be expected from the
conservation of the total angular momentum, since the scalar field does not carry spin. In order to
express the energy-momentum tensor in terms of the Wigner function, we make use of Eq. (3.38)
and obtain

TµνS,C + gµνLS =
1

2

∫
d4k

(2πℏ)4
D∗(µDν)W (x, k)

=

∫
d4k

(2πℏ)4

(
kµkν +

ℏ2

4
∂µ∂ν

)
W (x, k) . (3.52)

Furthermore, the action of the scalar field is invariant under the global U(1) transformation

ϕ̂→ e−
i
ℏ qαϕ̂ , ϕ̂† → e

i
ℏ qαϕ̂† ,

leading to the conserved electric current

jµS = iq
〈
:
(
ϕ̂†∂µϕ̂− ϕ̂∂µϕ̂†

)
:
〉
≡ iq

〈
: ϕ̂†
←→
∂µ ϕ̂ :

〉
. (3.53)

Employing the general prescription (3.38) again, we can express the electric current as

jµS =
q

2

∫
d4k

(2πℏ)4
(D∗µ +Dµ)W (x, k)

= q

∫
d4k

(2πℏ)4
kµW (x, k) , (3.54)

which is a very intuitive result. At this point it becomes clear that there is the general correspondence

“
←→
∂µ between ϕ̂† and ϕ̂ =⇒ 2

iℏ
kµ in the momentum integral ” .
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GLW pseudogauge

Even though the scalar field does not have spin, we can still perform a pseudogauge transformation.
Considering the vectors and tensors at our disposal, it is clear that the superpotentials Φ̂, Ẑ can only
consist of (at most) one gradient and the metric tensor. Defining

Φ̂λµνGLW :=
1

2

(
ϕ̂†gλ[µ∂ν]ϕ̂+ h.c.

)
, ẐµνλρGLW := − 1

4ℏ
gξ[µgν][λδ

ρ]
ξ |ϕ̂|2 , (3.55)

where “h.c.” denotes the hermitian conjugate, we see that

ℏ∂ρẐµνλρGLW = Φ̂λµνGLW , (3.56)

such that [according to Eq. (3.10a)] the spin-tensor does not change in this so-called GLW pseudogauge
(after de Groot, van Leeuwen and van Weert), ŜλµνS,KG = ŜλµνS,C = 0. Considering that

Φ̂λµνGLW + Φ̂µνλGLW + Φ̂νµλGLW = ϕ̂†gν[µ∂λ]ϕ̂+ h.c. , (3.57)

the energy-momentum tensor becomes

TµνS,GLW = −ℏ
2

〈
: ϕ̂†
←→
∂µ
←→
∂ν ϕ̂ :

〉
− gµν

〈
:

{
L̂S −

ℏ
2

[
ϕ̂†□ϕ̂+

(
∂λϕ̂†

)(
∂λϕ̂

)
+ h.c.

]}
:

〉
. (3.58)

Denoting the last term in the equation above as

L̂S,GLW := L̂S −
ℏ
2

[
ϕ̂†□ϕ̂+

(
∂λϕ̂†

)(
∂λϕ̂

)
+ h.c.

]
= L̂S,int −

ℏ
2

[
ϕ̂†
(
□+

m2

ℏ2

)
ϕ̂+ h.c.

]
, (3.59)

the energy-momentum tensor can be expressed through the Wigner function as

TµνS,GLW + gµνLS,GLW =

∫
d4k

(2πℏ)4
kµkνW (x, k) . (3.60)

The right-hand side of the equation above resembles the form we would expect to obtain for the
energy-momentum tensor in kinetic theory, with the Wigner function taking the role of the distribution
function.

Before moving on to higher-spin fields, we remark two things about the Lagrangian (3.59): First, if
the theory is free, i.e., if L̂S,int = 0, it vanishes as soon as the equations of motion are imposed. More
precisely, in the case that the interaction term is a polynomial in the fields, we have that

LS,int ∼ ϕ̂†ρ̂+ ρ̂†ϕ̂ , (3.61)

such that we get from Eq. (3.60) after applying the equations of motion

LS,GLW ∼
∫

d4k

(2πℏ)4
D , (3.62)

showing that this term incorporates off-shell effects [43, 134, 135]. Second, we could have started
directly from the Lagrangian L̂S,GLW, which differs from the canonical Lagrangian L̂S by a total
derivative, thus yielding the same action and equations of motion. In that case, since L̂S,GLW depends
on second derivatives of the field, we would have to compute the energy-momentum tensor as [43]

TµνS,GLW + gµνLS,GLW =

〈
:

{[
∂L̂S,GLW

∂(∂µϕ̂†)
+

∂L̂S,GLW

∂(∂µ∂λϕ̂†)

←→
∂λ

]
∂ν ϕ̂+ h.c.

}
:

〉
, (3.63)

yielding precisely the result (3.58). Thus, this pseudogauge transformation is equivalent to changing
the Lagrangian by a total divergence.
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3.4 Spinor fields

We now move on to Dirac particles of spin 1/2, which transform in the (1/2, 0)⊕ (0, 1/2)-representation
of the Lorentz group. The quantities related to these fields are denoted with a subscript D.

3.4.1 Dynamics

A massive Dirac field ψ̂ is described by the Lagrangian

L̂D := ψ̂

(
iℏ
2

←→
/∂ −m

)
ψ̂ + L̂D,int , (3.64)

where /A := γ ·A for any four-vector A and γµ are the Dirac matrices fulfilling

γµγν + γνγµ = 2gµν . (3.65)

The Lagrangian (3.64) leads to the following equations of motion,(
iℏ/∂ −m

)
ψ̂ = ℏρ̂ , (3.66a)

ψ̂
(
iℏ
←−
/∂ +m

)
= −ℏρ̂ , (3.66b)

where the source terms are given by

ρ̂ := −1

ℏ
∂L̂D,int

∂ψ̂
, ρ̂ := −1

ℏ
∂L̂D,int

∂ψ̂
. (3.67)

Note that by acting with the operators (iℏ/∂ + m) and (iℏ
←−
/∂ − m) on Eqs. (3.66a) and (3.66b),

respectively, we obtain (
□+

m2

ℏ2

)
ψ̂ = −

(
i/∂ +

m

ℏ

)
ρ̂ , (3.68a)(

□+
m2

ℏ2

)
ψ̂ = ρ̂

(
i
←−
/∂ − m

ℏ

)
, (3.68b)

i.e., all components of the Dirac fields also fulfill the Klein-Gordon equation.

The Green’s function of the Dirac field S(x, x′) is obtained by solving(
iℏ/∂ −m

)
S(x, x′) = ℏδ(4)(x− x′) , (3.69)

or in Fourier space ∫
d4k

(2πℏ)4

∫
d4k′

(2πℏ)4
e−

i
ℏ (k·x+k′·x′)(/k −m)S̃(k, k′)

=

∫
d4k

(2πℏ)4

∫
d4k′

(2πℏ)4
e−

i
ℏ (k·x+k′·x′)(2πℏ)4ℏδ(4)(k + k′) . (3.70)

Defining S̃(k, k′) =: (2πℏ)4δ(4)(k + k′)S̃(k), we find for the retarded and advanced Green’s functions

S̃R(k) = ℏ
/k +m

k2 −m2 + iηk0
= −1

ℏ
(/k +m) ∆̃R(k) , (3.71a)

S̃A(k) = ℏ
/k +m

k2 −m2 − iηk0 = −1

ℏ
(/k +m) ∆̃A(k) . (3.71b)
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3.4.2 Wigner function

The Wigner operator for Dirac fields is defined as

Ŵαβ(x, k) =

∫
d4ve−

i
ℏk·vψ̂β

(
x+

v

2

)
ψ̂α

(
x− v

2

)
, (3.72)

where we made the Dirac indices α, β explicit. As we discussed in Subsec. 3.2.2, the Wigner
operator formally has 16 components, but only four of them are independent. It is easiest to see which
components constitute the independent degrees of freedom by decomposing the Wigner operator in
terms of the Clifford algebra, i.e.,

Ŵ =
1

4

(
F̂ + iγ5P̂ + /̂V + γ5 /̂A+

1

2
σµν Ŝµν

)
, (3.73)

where σµν := i
2 [γ

µ, γν ], and the square brackets denote the commutator. Equation (3.73) can be
inverted by taking suitably weighted traces over Dirac space,

F̂ = Tr Ŵ , P̂ = −iTr γ5Ŵ , V̂µ = Tr γµŴ , Âµ = Tr γµγ5Ŵ , Ŝµν = TrσµνŴ . (3.74)

The equations of motion for the Wigner operator are found by applying the operator /D −m to Eq.
(3.72) and employing Eq. (3.38) in conjunction with the Dirac equation, obtaining[(

/k +
iℏ
2
/∂ −m

)
Ŵ (x, k)

]
αβ

= ℏĈαβ(x, k) , (3.75)

where we defined
Ĉαβ(x, k) :=

∫
d4ve−

i
ℏk·vψ̂β

(
x+

v

2

)
ρ̂α

(
x− v

2

)
. (3.76)

The equation above, being matrix-valued in Dirac space, can be decomposed w.r.t. the Clifford
algebra, and each resulting equation can be separated into real and imaginary parts. We find

Re ⟨: Ĉ :⟩ = 1

4

(
DF + iγ5DP + /DV + γ5 /DA +

1

2
σµνDµνS

)
, (3.77a)

Im ⟨: Ĉ :⟩ = 1

4

(
CF + iγ5CP + /CV + γ5/CA +

1

2
σµνCµνS

)
, (3.77b)

where

DF = Re ⟨: Tr Ĉ :⟩ , DP = −iRe ⟨: Tr γ5Ĉ :⟩ , DµV = Re ⟨: Tr γµĈ :⟩ ,
DµA = Re ⟨: Tr γµγ5Ĉ :⟩ , DµνS = Re ⟨: TrσµνĈ :⟩ , (3.78a)

CF = Im ⟨: Tr Ĉ :⟩ , CP = −iIm ⟨: Tr γ5Ĉ :⟩ , CµV = Im ⟨: Tr γµĈ :⟩ ,
CµA = Im ⟨: Tr γµγ5Ĉ :⟩ , CµνS = Im ⟨: TrσµνĈ :⟩ . (3.78b)

Then, we perform the trace over Eq. (3.76), weighted with the generators of the Clifford algebra
{1,−iγ5, γµ, γµγ5, σµν}. Taking the real part of the resulting set of equations yields

k · V −mF = ℏDF , (3.79a)
ℏ
2
∂ · A+mP = −ℏDP , (3.79b)

kµF − ℏ
2
∂νSνµ −mVµ = ℏDµV , (3.79c)

−ℏ
2
∂µP +

1

2
ϵµναβkνSαβ +mAµ = −ℏDµA , (3.79d)

ℏ
2
∂[µVν] − ϵµναβkαAβ −mSµν = ℏDµνS , (3.79e)



36 3 Field theory and phase space

while the imaginary part gives

∂ · V = 2CF , (3.80a)
k · A = ℏCP , (3.80b)

ℏ
2
∂µF + kνSνµ = ℏCµV , (3.80c)

kµP +
ℏ
4
ϵµναβ∂νSαβ = −ℏCµA , (3.80d)

k[µVν] + ℏ
2
ϵµναβ∂αAβ = −ℏCµνS . (3.80e)

Equations (3.79) and (3.80) determine the components P, Vµ, and Sµν in terms of the independent
degrees of freedom F and Aµ, where it has to be noted that Aµ is subject to the constraint (3.80b)
and thus only has three independent components. Thus, as we argued in Subsec. 3.2.2, the Wigner
function has (2 1

2+1)2 = 4 independent degrees of freedom. The evolution equation for these components
can either be found by manipulating Eqs. (3.79), (3.80), or, which is easier, by employing the fact that
the Dirac spinor fields fulfill the Klein-Gordon equation component-wise, cf. Eqs. (3.68). Acting
with the operators D2 +m2 and D∗2 +m2 on the Wigner operator (3.72) and using Eqs. (3.68), we
find (taking the average over Fock space)

(
D2 −m2

)
Wαβ(x, k) = ℏ

∫
d4ve−

i
ℏk·v

〈
: ψ̂β

(
x+

v

2

) [(
iℏ/∂ +m

)
ρ̂
(
x− v

2

)]
α
:
〉

≡ ℏ
[(
/D +m

)
C(x, k)

]
αβ

, (3.81a)(
D∗2 −m2

)
Wαβ(x, k) = −ℏ

∫
d4ve−

i
ℏk·v

〈
:
[
ρ̂
(
x+

v

2

)(
iℏ
←−
/∂ −m

)]
β
ψ̂α

(
x− v

2

)
:

〉
≡ ℏ

{
γ0
[(
/D +m

)
C(x, k)

]†
γ0
}
αβ

, (3.81b)

Taking the sum and difference of these equations, we obtain, employing the notation of Refs. [44, 46],(
k2 −m2 − ℏ2

4
□

)
Wαβ(x, k) = ℏδMαβ(x, k) , (3.82)

k · ∂Wαβ(x, k) = Cαβ(x, k) , (3.83)

where we introduced

δMαβ(x, k) :=
1

2

{(
/D +m

)
C(x, k) + γ0

[(
/D +m

)
C(x, k)

]†
γ0
}
αβ

, (3.84a)

Cαβ(x, k) := −
i

2

{(
/D +m

)
C(x, k)− γ0

[(
/D +m

)
C(x, k)

]†
γ0
}
αβ

. (3.84b)

Equations (3.82) and (3.83), in analogy to their scalar-field counterparts (3.49) and (3.50), are to be
understood as mass-shell and kinetic equations for the spin-1/2 Wigner function. However, they still
have to be supplied with the subsidiary conditions imposed by the Dirac equation, i.e., Eqs. (3.79)
and (3.80). Since the Wigner function only has 4 independent components, namely F and the part of
Aµ that is orthogonal to the four-momentum, it is sufficient to compute the evolution of these degrees
of freedom via taking the trace of Eqs. (3.82) and (3.83), weighted with 1 and γµγ5, respectively. The
remaining components P , Vµ, and Sµν can then be reconstructed via the subsidiary conditions (3.79),
(3.80).

Extending phase space

Instead of solving four mass-shell and Boltzmann equations, we may enlarge the phase space of
the theory from (x, k) to (x, k, s) to be able to solve only a single equation for a scalar distribution
function f(x, k, s) [38–42]. In order to achieve this, we introduce a “spin”-variable s, that is given by a
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normalized spacelike four-vector, which is orthogonal to the four-momentum k. Defining the scalar
distribution function in extended phase space as

f(x, k, s) :=
1

2
[F(x, k)− s · A(x, k)] ≡ 1

2
Tr [(1− /sγ5)W (x, k)] , (3.85)

we can express Eqs. (3.82) and (3.83) as(
k2 −m2 − ℏ2

4
□

)
f(x, k, s) = ℏM(x, k, s) , (3.86)

k · ∂f(x, k, s) = C(x, k, s) . (3.87)

Here we defined

M(x, k, s) :=
1

2
Tr [(1− /sγ5) δM(x, k)] , (3.88a)

C(x, k, s) :=
1

2
Tr [(1− /sγ5) C(x, k)] . (3.88b)

Note that Eqs. (3.86) and (3.87) contain the information about all independent components of the
Wigner function, as we can obtain F and the part of Aµ that is orthogonal to the four-momentum
via suitably weighted integrals over spin space,

F(x, k) =
∫

dS(k)f(x, k, s) , KµνAν(x, k) =
∫

dS(k)sµf(x, k, s) , (3.89)

where Kµν := gµν − kµkν/k2 is the projector onto the subspace orthogonal to k. Here, the integration
measure in spin space is defined as

dS(k) :=

√
k2

ςπ
d4sδ(s2 + ς2)δ(k · s) , ς2 = 3 , (3.90)

and we used the identities∫
dS(k) = 2 ,

∫
dS(k)sµ = 0 ,

∫
dS(k)sµsν = −2Kµν , (3.91)

which are special cases of a general formula derived in Appendix F.1.

Before going on to discuss the conserved currents for Dirac fields, we remark that we will always
consider spin effects to be small, i.e., they should not enter in the classical limit ℏ → 0. Thus, we
assume that Aµ ∼ O(ℏ), from which, taking into account Eqs. (3.79), it follows that P,Sµν ∼ O(ℏ)
as well, while mVµ = kµF +O(ℏ). Note that this structure could have been predicted based solely
on the fact that at zeroth order in ℏ (which is equivalent to zeroth order in gradients) there are no
four-vectors at our disposal except the four-momentum k. Building on the same argument, since
there are no pseudoscalar, pseudovector, or tensor quantities at zeroth order, we may conclude that
DP , CP ,DµA, CµA,DµνS , CµνS ∼ O(ℏ), from which we can conclude that P ∼ O(ℏ2). With this power-
counting in mind, we have the important relation k · A ∼ O(ℏ2), implying that, to second order in ℏ,
we can replace KµνAν(x, k) by Aµ(x, k) in Eq. (3.89).

3.4.3 Conserved currents

From Noether’s theorem we immediately obtain the canonical energy-momentum tensor as

TµνD,C + gµνLD =
iℏ
2

〈
: ψ̂γµ

←→
∂ν ψ̂ :

〉
, (3.92)

while the canonical spin tensor assumes the form

SλµνD,C =
1

4

〈
: ψ̂
{
γλ, σµν

}
ψ̂ :
〉
= −1

2
ϵλµνα

〈
: ψ̂γαγ5ψ̂ :

〉
, (3.93)
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where the curly brackets denote the anticommutator, {A,B} := AB +BA, and we used the identity

γµγνγλ = gµνγλ + gνλγµ − gµλγν + iϵµνλργργ5

to derive the second equality in Eq. (3.93). Note that the canonical energy-momentum tensor is not
symmetric, implying that the canonical spin tensor is not conserved. Furthermore, the canonical spin
tensor is totally antisymmetric. In terms of the Wigner function, we can invoke the general relation
(3.38) as well as the definitions (3.74) to obtain

TµνD,C + gµνLD =

∫
d4k

(2πℏ)4
kνVµ(x, k) , (3.94)

SλµνD,C = −1

2
ϵλµνα

∫
d4k

(2πℏ)4
Aα(x, k) . (3.95)

Using Eqs. (3.79c), (3.79e), we can rewrite the energy-momentum tensor in terms of the independent
components of the Wigner function,

TµνD,C + gµνLD =

∫
d4k

(2πℏ)4
kν

m

[
kµF +

ℏ
2m

∂α

(
ℏ
2m

∂[µkα]F − ϵµαβγkβAγ
)
− ℏDµV

]
+O(ℏ3) , (3.96)

where we used that ℏ2DµνS ∼ O(ℏ3). Using now Eqs. (3.89) and defining

Σµνs := − 1

m
ϵµναβkαsβ , (3.97)

we may express the energy-momentum and the spin tensor in extended phase space as

TµνD,C + gµνLD =

∫
dΓkν

(
kµ +

ℏ
2
Σµαs ∂α +

ℏ2

4m2
∂[µkα]∂α

)
f(x, k, s)

− ℏ
m

∫
d4k

(2πℏ)4
kνDµV +O(ℏ3) , (3.98)

SλµνD,C =
1

2

∫
dΓ
(
kλΣµνs + kµΣνλs + kνΣλµs

)
f(x, k, s) +O(ℏ2) . (3.99)

In these expressions, we neglected off-shell terms by substituting

f(x, k, s) =: 4mπℏδ(k2 −m2)f(x, k, s) , (3.100)

and we defined the on-shell momentum- and spin-space measure

dΓ := dK dS(k) , where dK :=
d3k

(2πℏ)3k0
≡ d4k

(2πℏ)4
4πℏδ(k2 −m2) . (3.101)

Furthermore, in order to reformulate the spin tensor, we employed the Schouten identity

kλϵµναβ + kµϵναβλ + kνϵαβλµ + kαϵβλµν + kβϵλµνα = 0 , (3.102)

which holds because at least two of the five free indices have to be equal to each other in four dimensions.
When contracted with kβ and Aα, it becomes

k2ϵλµναAα = kλϵµνβαkβAα + kµϵνλβαkβAα + kνϵλµβαkβAα +O(ℏ2) , (3.103)

from which Eq. (3.99) follows.

At this point, we can write down the kinetic representation of the conservation laws (2.13b), (2.13c).
They read to first order in ℏ

0 = ∂µ

(
TµνD,C + gµνLD

)
=

∫
dΓkνC(x, k, s) , (3.104a)

0 = ℏ∂λSλµνD,C + T
[µν]
D,C =

ℏ
2

∫
dΓΣµνs C(x, k, s)− ℏ

m

∫
d4k

(2πℏ)4
k[νDµ]V , (3.104b)



3.4 Spinor fields 39

where we made use of Eq. (3.87) and defined the on-shell collision kernel

C(x, k, s) =: 4mπℏC(x, k, s) . (3.105)

Furthermore, in order to derive Eq. (3.104b), we made use of Eq. (3.104a). It is clear that Eq. (3.104a)
describes the conservation of linear momentum in a collision, while Eq. (3.104b) specifies how spin is
converted into orbital angular momentum. In order to see this, let us assume the form

ℏDµV(x, k)
?
= −

∫
dS∆µ(x, k, s)C(x, k, s) , (3.106)

such that the conservation of the total angular momentum becomes∫
dΓ

(
ℏ
2
Σµνs + k[ν∆µ]

)
C(x, k, s) = 0 . (3.107)

Here, the second term can be identified as a part of the orbital angular momentum. Thus, a change in
the spin of the particle is accompanied by a shift ∆ in its position. We will explicitly calculate how
this shift looks like in Chapter 4, and we will find that the guess (3.106) is not completely correct.

Even though the conservation law (3.104b) is general, the canonical pseudogauge has some drawbacks
in its interpretation. Specifically, consider the divergence of the spin tensor,

ℏ∂λSλµνD,C =
ℏ
2

∫
dΓ
[
Σµνs C(x, k, s) + k[µΣ

ν]λ
s ∂λf(x, k, s)

]
=

ℏ
2

∫
dΓk[µΣ

ν]λ
s ∂λf(x, k, s) +

ℏ
m

∫
d4k

(2πℏ)4
k[νDµ]V , (3.108)

where we used Eq. (3.104b) in the second step. Manifestly, the spin tensor is not conserved on its own,
not even in the free case where DµV = 0. Intuitively, one would expect that the energy-momentum
tensor is symmetric in the free case, such that the spin tensor is also conserved on its own.

Belinfante pseudogauge

One way to achieve this symmetrization of the energy-momentum tensor is through the procedure
introduced by Belinfante and Rosenfeld [136, 137] by choosing the superpotentials

Φ̂λµνB := ŜλµνD,C , ẐµνλρB := 0 . (3.109)

Then, the corresponding conserved currents read

TµνD,B + gµνLD =
iℏ
4

〈
: ψ̂γ(µ

←→
∂ν)ψ̂ :

〉
, (3.110)

SλµνD,B = 0 . (3.111)

In terms of the Wigner function, the energy-momentum tensor is straightforwardly computed to be

TµνD,B + gµνLD =
1

2

∫
d4k

(2πℏ)4
k(νVµ)(x, k)

=
1

2

∫
d4k

(2πℏ)4
k(ν

m

[
kµ)F +

ℏ
2m

∂α

(
ℏ
2m

∂[µ)kα]F − ϵµ)αβγkβAγ
)
− ℏDµ)V

]
+O(ℏ3) ,

(3.112)

which in extended phase space becomes

TµνD,B + gµνLD =
1

2

∫
dΓk(ν

(
kµ) +

ℏ
2
Σ
µ)α
s ∂α +

ℏ2

4m2
∂[µ)kα]∂α

)
f(x, k, s)

− ℏ
2m

∫
d4k

(2πℏ)4
k(νDµ)V +O(ℏ3) . (3.113)

In this case, the spin tensor is constantly zero, such that all spin dynamics are absorbed into the
energy-momentum tensor.
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HW pseudogauge

A less drastic way of ensuring the symmetry of the energy-momentum tensor in the absence of
interactions consists in introducing the HW (after Hilgevoord and Wouthuysen) superpotentials
[54, 138, 139]

Φ̂λµνHW := M̂ [µν]λ − gλ[µM̂α
ν]α + Q̂λµν , ẐµνλρHW := − 1

8m
ψ̂{σµν , σλρ}ψ̂ , (3.114)

where we defined

M̂λµν :=
iℏ
4m

ψ̂σµν
←→
∂λ ψ̂ , Q̂λµν := − ℏ

4m

(
ρ̂γλσµνψ̂ + ψ̂σµνγλρ̂

)
. (3.115)

In this case, it is actually easier to directly evaluate the pseudogauge transformation in terms of the
Wigner function. In particular, note that

Mλµν =
1

2m

∫
d4k

(2πℏ)4
kλSµν , (3.116a)

Qλµν =
ℏ
2m

∫
d4k

(2πℏ)4
(
−gλ[µCν]V + ϵλµναDA,α

)
, (3.116b)

Zµνλρ = − 1

4m

∫
d4k

(2πℏ)4
(
gλ[µgν]ρF − ϵλµνρP

)
, (3.116c)

where we used
γλσµν = igλ[µγν] − ϵλµναγαγ5

to derive the second equality. Then, employing that for any third-rank tensor A that is antisymmetric
in its last two indices it holds that

A[µν]λ +A[µλ]ν +A[νλ]µ = −Aν[µλ] ≡ −2Aνµλ , (3.117)

we find for the energy-momentum tensor

TµνD,HW + gµνLD

=
1

m

∫
d4k

(2πℏ)4

[
kν (kµF − ℏDµV) +

ℏ2

4
(∂ν∂µ − gµν□)F +

ℏ2

4
ϵµναβ∂αDA,β

]
+O(ℏ3) , (3.118)

while the spin tensor becomes [due to Eqs. (3.79d) and (3.80c)]

SλµνD,HW =
1

2m

∫
d4k

(2πℏ)4
kλSµν

=
1

2m

∫
d4k

(2πℏ)4
kλ
(

ℏ
2m

∂[µkν]F − ϵµναβkαAβ
)
+O(ℏ2) . (3.119)

Note that, since the first term in the spin tensor is separately conserved due to momentum conservation,
when taking into account Eq. (3.104b) it becomes clear that the HW spin tensor is conserved in the
absence of interactions, and consequently the energy-momentum tensor is symmetric in that case. In
general, however, the HW energy-momentum tensor is not symmetric.

Lastly, we remark that, in the case of free fields, this set of energy-momentum and spin tensors can
also be obtained via the Noether procedure from the Lagrangian [140]

L̂D,HW :=
ℏ2

2m

[(
∂µψ̂

)(
∂µψ̂

)
− m2

ℏ2
ψ̂ψ̂

]
, (3.120)

where the resulting equation of motion is given by the Klein-Gordon equation and the Dirac
equation has to be supplied as a subsidiary condition.
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GLW pseudogauge

Alternatively, the Lagrangian (3.120) can be changed by a total derivative to give

L̂D,GLW := − ℏ2

4m

[
ψ̂

(
□+

m2

ℏ2

)
ψ̂ + h.c.

]
, (3.121)

which yields the GLW currents in the case of free fields. Here, the (Fock-space averages of the)
superpotentials read in terms of the Wigner function

ΦλµνGLW :=
1

2m

∫
d4k

(2πℏ)4
k[µSν]λ , ZµνλρGLW := 0 . (3.122)

The corresponding energy-momentum tensor is given by

TµνD,GLW + gµνLD =
1

m

∫
d4k

(2πℏ)4
kν (kµF − ℏDµV) , (3.123)

making it obvious that the hard-to-interpret terms of second order in ℏ in Eq. (3.118) have been
removed. Likewise, the spin tensor now reads

SλµνD,GLW =
1

2m

∫
d4k

(2πℏ)4

(
kλSµν + ℏϵλµναDA,α −

ℏ
2
ϵλµνα∂αP

)
. (3.124)

Using Eqs. (3.79d) and (3.79e), this can be rewritten as

SλµνD,GLW =
1

2m

∫
d4k

(2πℏ)4
kλ
(
− 1

m
ϵµναβkαAβ −

ℏ
2m2

k[µ∂ν]F
)
+O(ℏ2) . (3.125)

Given that the last term in the equation above is conserved on its own, we may ask whether it can also
be removed by a suitable pseudogauge transformation. Indeed, we may modify the quantities given in
Ref. [43] by implementing an additional superpotential

ZµνλρGLW′ := − 1

4m3

∫
d4k

(2πℏ)4
k[λgρ][µkν]F ,

such that (upon using momentum conservation) the spin tensor becomes

SλµνD,GLW′ = − 1

2m2

∫
d4k

(2πℏ)4
kλϵµναβkαAβ +O(ℏ2) , (3.126)

while the energy-momentum tensor stays unchanged.

Since in this thesis we do not consider the interaction term proportional to the Lagrangian,4 in extended
phase space we have thus the intuitive result

TµνD,GLW′ =

∫
dΓkµkνf(x, k, s) +O(ℏ2) , (3.127)

SλµνD,GLW′ =
1

2

∫
dΓkλΣµνs f(x, k, s) +O(ℏ2) , (3.128)

which is the formulation we are going to use when constructing spin hydrodynamics in Chapter 6.

3.5 Vector fields

Finally, we consider charged Proca fields V̂ µ, which transform in the (1/2, 1/2)-representation of the
Lorentz group. We will mark the quantities referring to these fields with a subscript P .

4The omission of this contribution is consistent with the procedure in the next chapters, where mean-field effects
will not be considered as well. In the diagrammatic language of Chapter 5, this corresponds to neglecting the tadpole
contributions.
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3.5.1 Dynamics

The Lagrangian reads

L̂P = −ℏ
(
1

2
V̂ †µν V̂µν −

m2

ℏ2
V̂ †µV̂µ

)
+ L̂P,int , (3.129)

where V̂ µν := ∂[µV̂ ν] and L̂P,int again denotes a general interaction Lagrangian. With the Euler-
Lagrange equations, this Lagrangian leads to the following equations of motion,

∂µV̂
µν +

m2

ℏ2
V̂ ν = ρ̂ ν , (3.130a)

∂µV̂
†µν +

m2

ℏ2
V̂ †ν = ρ̂ †ν , (3.130b)

where the source terms read

ρ̂µ := −1

ℏ
∂L̂P,int

∂V̂ †
µ

, ρ̂ †µ := −1

ℏ
∂L̂P,int

∂V̂µ
. (3.131)

Taking the divergence of Eqs. (3.130) yields

∂ · V̂ =
ℏ2

m2
∂ · ρ̂ , ∂ · V̂ † =

ℏ2

m2
∂ · ρ̂ † (3.132)

which implies that the equations of motion become(
□+

m2

ℏ2

)
V̂ µ =

(
gµν +

ℏ2

m2
∂µ∂ν

)
ρ̂ν , (3.133a)(

□+
m2

ℏ2

)
V̂ †µ =

(
gµν +

ℏ2

m2
∂µ∂ν

)
ρ̂ †
ν . (3.133b)

Note that in the free case, i.e., when ρ̂µ = 0, each component of the vector field separately fulfills the
free Klein-Gordon equation. Furthermore, the second terms on the right-hand sides of Eqs. (3.133)
can be seen to be potentially problematic in the limit of m → 0; we will shortly come back to this
limit later.

We now compute the Green’s function Gµν(x, x′) of the massive vector field, which has to fulfill(
□x +

m2

ℏ2

)
Gµν(x, x′)− ∂νx∂x,αGαµ(x, x′) = gµνδ(4)(x− x′) . (3.134)

Transforming Eq. (3.134) into Fourier space, we obtain∫
d4k

(2πℏ)4

∫
d4k′

(2πℏ)4
e−

i
ℏ (k·x+k′·x′)

[
(−k2 +m2)G̃µν(k, k′) + kνkαG̃

αµ(k, k′)
]

=

∫
d4k

(2πℏ)4

∫
d4k′

(2πℏ)4
e−

i
ℏ (k·x+k′·x′)(2πℏ)4ℏ2δ(4)(k + k′)gµν . (3.135)

Defining G̃µν(k, k′) =: (2πℏ)4δ(4)(k + k′)G̃µν(k), the equation above implies

(−k2 +m2)G̃µν(k) + kνkαG̃
αµ(k) = ℏ2gµν . (3.136)

Contracting this equation with Kλµkν and kµKνλ yields

KλµG̃
µν(k)kν = 0 and kµG̃

µν(k)Kνλ = 0 , (3.137)

respectively. Furthermore, from antisymmetrizing Eq. (3.136) it follows that G̃µν(k) is symmetric,
implying that we may decompose the Green’s function as

G̃µν(k) = EµνG̃E(k) +KµνG̃K(k) , (3.138)
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where Eµν := kµkν/k2. Projecting Eq. (3.136) with Kµν and Eµν , we obtain

(−k2 +m2)G̃K(k) = ℏ2 , (3.139a)

m2G̃E(k) = ℏ2 . (3.139b)

Thus, the retarded Green’s function reads in Fourier space

G̃µνR (k) = ℏ2
(
Eµν

m2
− Kµν

k2 −m2 + iηk0

)
. (3.140a)

Its advanced counterpart is obtained similarly as

G̃µνA (k) = ℏ2
(
Eµν

m2
− Kµν

k2 −m2 − iηk0
)
, (3.140b)

where the infinitesimal quantity in the denominator now indicates that the half-circle has to be closed
in the upper half-plane. Employing the Green’s functions of the scalar field (3.45) and making use of
the fact that η is an infinitesimal quantity, we find

G̃µνR (k) = ∆̃R(k)

(
gµν − k2

m2
Eµν

)
, (3.141a)

G̃µνA (k) = ∆̃A(k)

(
gµν − k2

m2
Eµν

)
. (3.141b)

The massless case

In the massless case, the equations of motion for the vector field reduce to

∂µV̂
µν = ρ̂ ν , (3.142)

which yields
∂ · ρ̂ = 0 (3.143)

upon taking the divergence. This implies that the source term for the massless vector field has to be
conserved. Furthermore, note that at this point we lose the subsidiary condition (3.132) due to the
mass vanishing identically. As expected for a massless vector field, the Lagrangian is now invariant
under gauge transformations

V̂ µ → V̂ µ + ∂µΛ̂ , (3.144)

where Λ̂ is an arbitrary scalar function. In order to compute physical quantities, the gauge has to be
fixed in some way, as the equations of motion are ill-posed otherwise. One popular choice of gauge
fixing consists in imposing the Lorenz gauge

∂ · V̂ = 0 , (3.145)

which looks identical to Eq. (3.132) for the case of free fields. However, it has to be stressed that the
former, although intuitive, is only one peculiar choice of gauge, and there exist many situations in
which other gauges may be more suitable.5 Equation (3.132) on the other hand is enforced by the
equations of motion directly.

3.5.2 Wigner function

The Wigner operator for charged vector fields is defined as

Ŵµν(x, k) := −2

ℏ

∫
d4ve−

i
ℏk·vV̂ †µ

(
x+

v

2

)
V̂ ν
(
x− v

2

)
, (3.146)

5As one example, cf. Ref. [141] for a thorough discussion of the Fock-Schwinger gauge.
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cf. Eq. (3.31). Acting with the operators Dµ and D∗
µ on the definition above, using the constraint

equations (3.132) on the vector fields, and taking the average over Fock space, we find(
kµ +

iℏ
2
∂µ

)
W νµ(x, k) =

ℏ
m2

(
kµ +

iℏ
2
∂µ

)
Cνµ(x, k) , (3.147a)(

kµ −
iℏ
2
∂µ

)
Wµν(x, k) =

ℏ
m2

(
kµ −

iℏ
2
∂µ

)
C∗νµ(x, k) , (3.147b)

where we used the fact that the Wigner function is hermitian and defined

Cµν(x, k) := −2
∫

d4ve−
i
ℏk·v

〈
: V̂ †µ

(
x+

v

2

)
ρ̂ ν
(
x− v

2

)
:
〉
. (3.148)

Acting with the operator D2 −m2 on the Wigner function and using Eqs. (3.133) yields(
k2 −m2 − ℏ2

4
□+ iℏk · ∂

)
Wµν(x, k) = −ℏCµν(x, k)

+
ℏ
m2

(
kνkα −

ℏ2

4
∂ν∂α +

iℏ
2
k(ν∂α)

)
Cµα(x, k) . (3.149)

Equations (3.147), which originate from Eq. (3.132) that removed one dynamical component from
the fields V̂ µ, have the effect of reducing the number of independent degrees of freedom of the
Wigner function to nine. It is advantageous to decompose the Wigner function into symmetric and
antisymmetric parts,

Wµν =Wµν
S +Wµν

A , Wµν
S :=

1

2
W (µν) , Wµν

A :=
1

2
W [µν] , (3.150)

for which we obtain constraint equations by taking the sum and difference of Eqs. (3.147):

kµW
µν
S −

iℏ
2
∂µW

µν
A =

ℏ
m2

[
kµ (iCµνA − δMµν

S ) +
ℏ
2
∂µ (CµνS + iδMµν

A )

]
, (3.151a)

kµW
µν
A −

iℏ
2
∂µW

µν
S =

ℏ
m2

[
kµ (iCµνS − δMµν

A ) +
ℏ
2
∂µ (CµνA + iδMµν

S )

]
. (3.151b)

Here, we defined

δMµν := −1

2
(Cµν + C∗νµ) , Cµν :=

i

2
(Cµν − C∗νµ) , (3.152)

and decomposed these objects into symmetric and antisymmetric parts as well. Note that, apart from
signs and the operators /D +m, Eqs. (3.152) are analogous to Eqs. (3.84). Subtracting Eq. (3.149)
from its hermitian conjugate and splitting the result into symmetric and antisymmetric parts, we also
obtain kinetic equations for the symmetric and antisymmetric parts of the Wigner function,

k · ∂Wµν
S = CµνS −

1

2m2

[(
kαk

(µ − ℏ2

4
∂α∂

(µ

)(
Cν)αS − iδMν)α

A

)
+
ℏ
2

(
kα∂

(µ + ∂αk
(µ
)(

iCν)αA + δM
ν)α
S

)]
, (3.153a)

k · ∂Wµν
A = CµνA −

1

2m2

[(
kαk

[µ − ℏ2

4
∂α∂

[µ

)(
iδM

ν]α
S − Cν]αA

)
−ℏ
2

(
kα∂

[µ + ∂αk
[µ
)(

iCν]αS + δM
ν]α
A

)]
. (3.153b)

Since there appear contractions with the momentum k, it appears sensible to further decompose
the Wigner function with respect to momentum such that we are able to extract the independent
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components. This idea is analogous to the Clifford decomposition (3.73) in the spin-1/2 case and
yields

Wµν
S (x, k) = EµνfE +

k(µ

2k
F
ν)
S +KµνfK + FµνK , (3.154a)

Wµν
A (x, k) = i

k[µ

2k
F
ν]
A + iϵµναβ

kα
m
Gβ , (3.154b)

where the components are given by

fE = EµνW
µν , FµS = Kµ(α k

β)

k
Wαβ , fK =

1

3
KµνW

µν , FµνK = Kµν
αβW

αβ , (3.155)

and

FµA = iKµ[α k
β]

k
Wαβ , Gµ = − i

2
ϵµναβ

kν
m
Wαβ , (3.156)

respectively. Here we introduced the traceless projector onto the subspace orthogonal to the four-
momentum,

Kµν
αβ :=

1

2

(
Kµ
αK

ν
β +Kν

αK
µ
β

)
− 1

3
KµνKαβ .

The vectorial quantities FA, FK fulfill FS · k = FA · k = 0 and thus only have three independent
components. The same holds true for the axial vector G. The tensorial quantity FK on the other
hand fulfills FµνK = F νµK , FµνK kν = 0 and FµKµ = 0, leaving five independent components. Thus, the
constraints (3.147) determine FA, FS , and fE in terms of fK , G, and FK . Similarly, we decompose
the quantities δM and C,

δMµν
S (x, k) = EµνDE +

k(µ

2k
Dν)S +KµνDK +DµνK , (3.157a)

δMµν
A (x, k) = i

k[µ

2k
Dν]A + iϵµναβ

kα
m
DG,β , (3.157b)

CµνS (x, k) = EµνCE +
k(µ

2k
Cν)S +KµνCK + CµνK , (3.157c)

CµνA (x, k) = i
k[µ

2k
Cν]A + iϵµναβ

kα
m
CG,β , (3.157d)

with the components defined analogously to the ones introduced before.

In order to expand the kinetic equations to first order in the Planck constant, we have to clarify
which parts of the collision terms enter at leading order. Using the definition of the collision term
(3.148) and the constraint (3.132), we obtain(

kµ −
iℏ
2
∂µ

)
Cµν ∼ O(ℏ) ,

(
kµ +

iℏ
2
∂µ

)
C∗µν ∼ O(ℏ) , (3.158)

from which it follows that CE , DE ∼ O(ℏ). As we did in the last section in the spin-1/2 case, we follow
Refs. [45, 54] and consider a situation where no initial large (vector- or tensor-) polarization is present.
In this case we conclude that Gµ, FµνK ∼ O(ℏ) as well as CµS , CµA, DµS , DµA ∼ O(ℏ), which follows from
the fact that there are no vector or tensor structures at our disposal at order O(1) which possess the
required symmetries of the aforementioned terms.

With these simplifications, we obtain from Eqs. (3.147)

fE =
ℏ2

4k2
Kαβ∂α∂βfK −

ℏ
m2
DE +O(ℏ3) , (3.159a)

F νS = O(ℏ2) , (3.159b)

kF νA = ℏKνµ∂µfK +O(ℏ2) . (3.159c)
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Furthermore, from Eqs. (3.153) we obtain a simple form of the kinetic equations for the independent
components of the Wigner function,

k · ∂fK = CK +O(ℏ2) , (3.160a)

k · ∂FµνK = CµνK +O(ℏ2) , (3.160b)

k · ∂Gµ = CµG +O(ℏ2) , (3.160c)

while the mass-shell equations follow from the real part of Eq. (3.149),

(k2 −m2)fK = ℏDK +O(ℏ2) , (3.161a)

(k2 −m2)FµνK = ℏDµνK +O(ℏ2) , (3.161b)

(k2 −m2)Gµ = ℏDµG +O(ℏ2) . (3.161c)

Extending phase space

In order to combine the nine independent components of the Wigner function into one scalar
distribution function, we may, in the same manner as introduced in the last section for spin-1/2 particles,
enlarge the phase space by introducing an additional variable sµ, together with a respective measure

dS(k) :=
3m

2ςπ
d4sδ(s2 + ς2)δ(k · s) , ς2 := 2 , (3.162)

Note that now the normalization of the spin vector s is different compared to the spin-1/2 case, which
is dictated by the prefactors that should appear in the conserved quantities.

Defining a distribution function in this enlarged phase space

f(x, k, s) := fK − s ·G+
5

8
sµsνFK,µν , (3.163)

Eqs. (3.160) and (3.161) become (up to first order in ℏ)

(k2 −m2)f(x, k, s) = ℏM(x, k, s) , (3.164)
k · ∂f(x, k, s) = C(x, k, s) , (3.165)

where we defined

C(x, k, s) :=

(
1

3
Kµν −

i

2m
ϵµναβk

αsβ +
5

8
sαsβK

αβ
µν

)
Cµν(x, k) , (3.166a)

M(x, k, s) :=

(
1

3
Kµν −

i

2m
ϵµναβk

αsβ +
5

8
sαsβK

αβ
µν

)
δMµν(x, k) . (3.166b)

Using the identities∫
dS(k) = 3 ,

∫
dS(k)sµsν = −2Kµν ,

∫
dS(k)Kµν

ρσ s
ρsσsαsβ =

8

5
Kµν,αβ , (3.167a)

and ∫
dS(k)sµ = 0 ,

∫
dS(k)sµsνsα = 0 , (3.167b)

we can obtain the independent components of the Wigner function via suitably weighted integrations
over spin space,

fK(x, k) =
1

3

∫
dS(k)f(x, k, s) , (3.168a)

Gµ(x, k) =
1

2

∫
dS(k)sµf(x, k, s) , (3.168b)

FµνK (x, k) =

∫
dS(k)Kµν

αβs
αsβf(x, k, s) . (3.168c)
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3.5.3 Conserved currents

Applying Noether’s theorem to the Lagrangian (3.129), we find the canonical currents to be

TµνP,C + gµνLP = −ℏ
〈
:
(
V̂ †µα∂ν V̂α + V̂ µα∂ν V̂ †

α

)
:
〉
, (3.169)

SλµνP,C =
〈
:
(
V̂ †λ[ν V̂ µ] + V̂ λ[ν V̂ †µ]

)
:
〉
. (3.170)

Using the definition of V̂ µν and the general formula (3.38), the energy-momentum tensor reads in
terms of the Wigner function

TµνP,C + gµνLP

=
1

2

∫
d4k

(2πℏ)4

(
DνD∗[µWα]

α +Wα
[α
←−−
Dµ]←−−D∗ν

)
=

∫
d4k

(2πℏ)4

[(
kµkν +

ℏ2

4
∂µ∂ν

)
Wα

α −
(
kνkα +

ℏ2

4
∂ν∂α

)
Wαµ
S − iℏ

2
k[ν∂α]W

αµ
A

]
, (3.171)

where we split the Wigner function into symmetric and antisymmetric parts in the second step. The
spin tensor on the other hand can be written as

SλµνP,C =
i

2

∫
d4k

(2πℏ)4

[(
D∗λ +Dλ

)
W [µν] +Wλ[µ

←−−
D∗ν] −D[νWµ]λ

]
= i

∫
d4k

(2πℏ)4

(
2kλWµν

A + k[µW
ν]λ
A − iℏ

2
∂[νW

µ]λ
S

)
. (3.172)

Expressing the canonical conserved currents up to first order in ℏ in extended phase space by using
Eqs. (3.154) in conjunction with Eqs. (3.159) and (3.168), we have

TµνP,C + gµνLP =

∫
dΓkµkνf(x, k, s) +O(ℏ2) , (3.173)

SλµνP,C =

∫
dΓ

[
kλ
(
Σµνs −

ℏ
3m2

k[µ∂ν]
)
+

1

2
k[µΣ

ν]λ
s +

ℏ
6
Kλ[µ∂ν]

]
f(x, k, s) +O(ℏ2) .

(3.174)

Here, we defined the tensor Σs as in Eq. (3.97), and set

f(x, k, s) =: 4πℏδ(k2 −m2)f(x, k, s) , (3.175)

which differs from Eq. (3.100) by a factor of mass. This can be understood directly from the dimension
of the fields: while a Dirac spinor (in natural units, where we choose to measure energy in MeV) has
dimension MeV3/2, a vector field has dimension MeV. Then, for Dirac fields the Wigner function
has dimension MeV−1, while the one for vector fields has units of MeV−2. Given that the units of the
delta function for the mass shell are MeV−2, it is clear that with the definitions (3.100) and (3.175)
the function f(x, k, s) is dimensionless for any spin.

Belinfante pseudogauge

The Belinfante pseudogauge is constructed by taking the superpotentials

Φ̂λµνB = ŜλµνP,C , ẐµνλρB := 0 , (3.176)

which lead to the energy-momentum tensor

TµνP,B + gµνLP = ℏ
〈
:

[
V̂ †µαV̂α

ν + V̂ µαV̂ † ν
α +

m2

ℏ2
(
V̂ †µV̂ ν + V̂ µV̂ †ν

)]
:

〉
, (3.177)
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while the spin tensor vanishes by construction, SλµνP,B = 0. In terms of the Wigner function we have

TµνP,B + gµνLP =

∫
d4k

(2πℏ)4

[(
kµkν +

ℏ2

4
∂µ∂ν

)
Wα

α −
(
kαk

(ν +
ℏ2

4
∂α∂

(ν

)
W

µ)α
S

+iℏ∂αk(νWµ)α
A +

(
k2 −m2 +

ℏ2

4
□

)
Wµν
S

]
. (3.178)

Note that the last term in the expression above constitutes an off-shell effect [cf. Eqs. (3.161)], which
we take to be of order O(ℏ2) and do not consider further. Thus, in extended phase space we have again

TµνP,B + gµνLP =

∫
dΓkµkνf(x, k, s) +O(ℏ2) . (3.179)

HW pseudogauge

In accordance with the superpotentials introduced in Eq. (3.114) for spin-1/2 particles, we define

Φ̂λµνHW := M̂ [µν]λ − gλ[µM̂α
ν]α + Q̂λµν , ẐµνλρHW := −1

2

(
V̂ †[µgν][λV̂ ρ] + V̂ [µgν][λV̂ †ρ]

)
, (3.180)

where we introduced

M̂λµν :=
1

2

(
V̂ †µ←→∂λ V̂ ν + V̂ µ

←→
∂λ V̂ †ν

)
, Q̂λµν :=

ℏ2

m2
gλ[µ

(
V̂ ν]∂ · ρ̂ † + V̂ †ν]∂ · ρ̂

)
. (3.181)

As in the case of Dirac particles, it is easier to evaluate the conserved quantities in terms of the
Wigner function, where the (Fock-space averages of the) superpotentials read

ΦλµνHW =

∫
d4k

(2πℏ)4

(
ℏ
2
∂ρW

ρ[µ
S gν]λ + ik[µW

ν]λ
A

)
, (3.182a)

ZµνλρHW =
1

2

∫
d4k

(2πℏ)4
(
gν[λW

ρ]µ
S − gµ[λW ρ]ν

S

)
. (3.182b)

Noting that

ΦλµνHW +ΦµνλHW +ΦνµλHW = 2

∫
d4k

(2πℏ)4

(
ℏ
2
∂ρW

ρ[µ
S gλ]ν + ikνWλµ

A

)
, (3.183)

we compute the energy-momentum tensor in the HW pseudogauge as

TµνP,HW + gµνLP =

∫
d4k

(2πℏ)4

[(
kµkν +

ℏ2

4
∂µ∂ν

)
Wα

α −
(
kρk

ν − ℏ2

4
∂ρ∂

ν

)
W ρµ
S

+
iℏ
2
k(ν∂ρ)W

ρµ
A −

gµν

2

(
k2 −m2 +

ℏ2

4
□

)
Wα

α

]
. (3.184)

Using the constraint equations (3.151) and employing that ℏCE , DE ∼ O(ℏ2), we find

TµνP,HW + gµνLP =

∫
d4k

(2πℏ)4

[(
kµkν +

ℏ2

4
∂µ∂ν

)
Wα

α −
ℏ

2m2
kν (−kCµA − kDµS + ℏKµα∂αCK)

−g
µν

2

(
k2 −m2 +

ℏ2

4
□

)
Wα

α

]
+O(ℏ3) , (3.185)

such that to first order in the Planck constant it holds again that

TµνP,HW + gµνLP =

∫
dΓkµkνf(x, k, s) +O(ℏ2) . (3.186)
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The spin tensor becomes in the HW pseudogauge

SλµνP,HW = 2i

∫
d4k

(2πℏ)4
kλWµν

A

=

∫
dΓkλ

(
Σµνs −

ℏ
3m2

k[µ∂ν]
)
f(x, k, s) +O(ℏ2) . (3.187)

Note that, as expected, this spin tensor is conserved in the case where the interactions are absent
and k · ∂f(x, k, s) = 0. The divergence of the spin tensor is equal to the antisymmetric part of the
energy-momentum tensor, yielding the conservation law for the total angular momentum (valid up to
first order in ℏ)

ℏ∂λSλµνP,HW = ℏ
∫

dΓΣµνs C(x, k, s) = − ℏ
m

∫
d4k

(2πℏ)4
k

2m
k[ν
(
Cµ]A +Dµ]S

)
= T

[νµ]
P,HW , (3.188)

where we also used the conservation of momentum and defined the on-shell part of the collision kernel
in extended phase space,

C(x, k, s) =: 4πℏδ(k2 −m2)C(x, k, s) . (3.189)

Note that Eq. (3.188) looks very similar to its spin-1/2 counterpart (3.104b). When identifying the
vector parts of the collision terms DµV and (CµA +DµS)/2, the only differences are a factor of k/m, which
becomes unity on-shell, and a factor of 2 in front of the spin tensor, which is to be expected due to the
higher spin magnitude of vector particles.

Let us note that, as in the cases before, we can derive the HW currents in the free case from the
Lagrangian

LP,HW := −ℏ
[
(∂µV̂

†
ν )∂

µV̂ ν − (∂ · V̂ †)∂ · V̂ − m2

ℏ2
V̂ † · V̂

]
, (3.190)

which differs from the original one by a total divergence.

GLW pseudogauge

Finally, we consider the GLW pseudogauge6 for spin-1 particles, which in the free case can be derived
from the Lagrangian

LP,GLW := ℏ
[
1

2

(
V̂ †µ□V̂µ + V̂ µ□V̂ †

µ

)
+ (∂ · V̂ †)∂ · V̂ +

m2

ℏ2
V̂ † · V̂

]
, (3.191)

which vanishes upon using the equations of motion. Slightly modifying the HW superpotentials (3.180),
we define

Φ̂λµνGLW := Φ̂λµνHW −
1

2
gλ[µ∂ν]V̂ † · V̂ , ẐµνλρGLW := ẐµνλρHW − 1

4
δ[να g

µ][λgρ]αV̂ † · V̂ , (3.192)

The resulting energy-momentum tensor reads

TµνP,GLW + gµνLP =

∫
d4k

(2πℏ)4

[
kµkνWα

α +
ℏ

2m2
kν (kCµA + kCµS + ℏKµα∂αCK)

−g
µν

2

(
k2 −m2 − ℏ2

4
□

)
Wα

α

]
+O(ℏ3) , (3.193)

while the spin tensor stays unchanged.

Analogous to the spin-1/2 case, we can remove the last term in Eq. (3.187) (which is separately
conserved due to momentum conservation) by adding a further superpotential to the quantities in the
HW pseudogauge,

ZµνλρGLW′ := − 1

3m2

∫
d4k

(2πℏ)4
k[λgρ][µkν]Wα

α . (3.194)

6Also referred to as KG (Klein-Gordon) pseudogauge in Ref. [54].
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By virtue of momentum conservation, we thus have, analogous to Eq. (3.128),

TµνD,GLW′ =

∫
dΓkµkνf(x, k, s) +O(ℏ2) , (3.195)

SλµνD,GLW′ =

∫
dΓkλΣµνs f(x, k, s) +O(ℏ2) , (3.196)

which is the formulation we will employ for deriving spin hydrodynamics in Chapter 6. Note that we
again omitted the contribution proportional to the Lagrangian from the energy-momentum tensor.

To close the discussion of the conserved currents, we remark that, although not treated in this thesis,
the formulation of different pseudogauges presented here can also be generalized to the case where
nonzero electromagnetic fields are present, which requires a redefinition of the Wigner function to
render it gauge-invariant [53, 54, 84, 85, 142, 143].



Chapter 4

The kinetic equation in the GLW
approach

In Chapter 3, we showed that the conserved currents can be described as phase-space integrals over
the respective Wigner functions. The time evolution of the latter is given by the kinetic equations for
particles of spins 0, 1/2, and 1, which we also computed in the preceding chapter. In extended phase
space, they read up to first order in ℏ

k · ∂f(x, k, s) = C(x, k, s) , (4.1)

where the collision terms are

C(x, k, s) =



C(x, k) , for spin 0 ,

1

2
[δβα − (/sγ5)βα] Cαβ(x, k) , for spin 1/2 ,(
1

3
Kµν −

i

2m
ϵµναβk

αsβ +
5

8
sαsβK

αβ
µν

)
Cµν(x, k) , for spin 1 ,

(4.2)

cf. Eqs. (3.87) and (3.165). Note that in the case of spin-1/2 particles the indices α, β in the equations
above denote components in Dirac space, while for spin-1 particles they are Lorentz indices. For
scalar particles the spin indices can simply be ignored, such that the s-dependence in Eq. (4.1) is
spurious in that case.

The aim of this chapter is to employ the so-called GLW method [43, 46] (after de Groot, van
Leeuwen, and van Weert) to express the collision term C as a functional of the distribution function
f. In particular, we will impose that the collision kernel should describe binary elastic scattering, i.e.,
we will consider only 2→ 2 scatterings, without the possibility of particle creation or annihilation.

In standard kinetic theory, it can be argued that the Boltzmann equation for binary elastic scattering
takes on the form [43, 115]

k · ∂f(x, k) = Cclass(x, k)

=
1

2

∫
dK ′ dK1 dK2(2πℏ)4δ(4)(k + k′ − k1 − k2)Wkk′→k1k2

×
[
f(x, k1)f(x, k2)f̃(x, k)f̃(x, k

′)− f(x, k)f(x, k′)f̃(x, k1)f̃(x, k2)
]
, (4.3)

where f̃(x, k) := 1 − af(x, k), with a = −1 for bosons and a = 1 for fermions, denote the Bose-
enhancement and Pauli-blocking factors, respectively. For classical particles, one simply has a = 0.
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The quantity Wkk′→k1k2
is called the transition rate for the two particle-scattering process with

momenta k,k′ prior to and momenta k1,k2 after the collision. Note that we have the detailed balance
relation Wkk′→k1k2

=Wk1k2→kk′ , which can be shown to follow from the unitarity of the scattering
matrix [123]. In the following, we will show that the form of the collision term in quantum kinetic
theory assumes a similar form as in Eq. (4.3), with a few important modifications owing to the nonzero
spin of the particles.

4.1 Basic idea

Recalling the definitions of the collision terms (3.76) and (3.148), it becomes clear that the main task
consists in evaluating the expectation value of an operator bilinear in the respective fields and source
terms. The basic idea behind the GLW approach lies in employing a complete orthogonal basis of
the relevant Fock space in terms of “in”-states. Then, one can express the expectation value of a
general operator Ô as a series of “in”-Wigner functions, which are constructed from the operators
creating and annihilating the “in”-states. Truncating this series such that the resulting expression is
only bilinear in Wigner functions, one obtains the sought-after expression for the collision term.

4.1.1 Fock space and expectation values

The first step, which consists in deriving a formula for expressing the expectation value of a general
operator in terms of “in”-Wigner functions, can be done in a general manner for fields of any spin. In
this subsection, we present the general formulation, and specialize to fields of fixed spin in the following
sections.

Fock space

We define the “in”-states as
|kn;σn⟩in := â†in(k

n, σn) |0⟩ , (4.4)

where we introduced
kn := kµ1 , k

µ
2 , · · · , kµn , σn := σ1, σ2, · · · , σn , (4.5a)

as well as
â†in(k

n, σn) := â†in(k1, σ1)â
†
in(k2, σ2) · · · â†in(kn, σn) . (4.5b)

Here, the values of the spin-variables σ range from 0 to 2j + 1, where j is the spin of the particle
described by a field φ̂. These states form a complete and orthogonal basis of the Fock space, i.e., we
have the relations

in⟨k;σ| k′;σ′⟩in = (2πℏ)32k0δ(3)(k− k′)δσσ′ , (4.6a)

1 =

∞∑
n=0

1

2nn!

∑
σn

∫
dKn |kn;σn⟩in in⟨kn;σn| . (4.6b)

Here we defined ∫
dKn :=

∫
dK1 dK2 · · · dKn ,

∑
σn

:=

2j+1∑
σ1=1

2j+1∑
σ2=1

· · ·
2j+1∑
σn=1

. (4.7)

The factorial in Eq. (4.6b) is needed to account for double counting, such that the Fock space is
spanned by all distinct “in”-states. Furthermore, the factor 2n arises because of the definition of the
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measure dK. Note that the same completeness relation also holds for the “out”-states, which describe
outgoing free particles. Using these creation and annihilation operators, we define the “in”-fields [123]

φ̂ain(x) := λ
∑
σ

∫
d4k

(2πℏ)3
Θ(k0)δ(k2 −m2)e−

i
ℏk·xUa(k, σ)âin(k, σ)

≡ λ

2

∑
σ

∫
dKe−

i
ℏk·xUa(k, σ)âin(k, σ) , (4.8)

where the prefactor λ is needed to recover the correct dimensions of the respective fields, e.g., λ = 1
for spin-1/2 particles, whereas λ =

√
ℏ for spin-0 and spin-1 particles. Note that, for simplicity, Eq.

(4.8) neglects antiparticle contributions, whose inclusion is demonstrated in Ref. [43]. The quantities
Ua(k, σ) span the internal space for particles with nonzero spin and correspond to the basis spinors
uαr (k) and polarization vectors ϵ(λ)µ(k) in the case of spin-1/2 and spin-1 particles, respectively. The
index a collects all internal indices of the field φ̂. We require the following orthogonality relation,

U
a
(k, σ)Ua(k, σ) = ηδσσ′ , (4.9)

where the choice of η depends on the spin of the particle, e.g., η = 1 for spin-0, η = 2m for spin-1/2,
and η = −1 for spin-1 particles. Using Eq. (4.8), we define the “in”-Wigner function,1

W ab
in (x, k) := κ

∫
d4ve−

i
ℏk·v

〈
φ̂
b

in

(
x+

v

2

)
φ̂ain

(
x− v

2

)〉
, (4.10)

which is consistent with Eq. (3.31).

Re-expressing Fock-space averages

In a subsequent step, we show how to express the expectation value of an arbitrary operator Ô in
terms of the “in”-Wigner function (4.10). Inserting Eq. (4.6b), we can express the expectation value
of Ô as〈

Ô
〉
:= Tr ϱ̂ Ô

=

∞∑
n=0

1

22n(n!)2

∑
λn,λ′n

∫
dKn

∫
dK ′n

in⟨kn;λn|Ô |k′n;λ′n⟩in in⟨k′n;λ′n|ϱ̂ |kn;λn⟩in , (4.11)

where we assume that the initial state has been prepared such that the “in”-particle number operator
commutes with the density matrix. The next task is to express the matrix element of the density
matrix through expectation values of bilinear products of creation and annihilation operators. For this
we first compute, using the cyclicity of the trace,〈

â†in(k
n, λn)âin(k

′n, λ′n)
〉
= Tr âin(k

′n, λ′n)ϱ̂ â†in(k
n, λn)

=

∞∑
k=0

1

2kk!

∑
σn

∫
dP k

in

〈
pk, k′n;σk, λ′n

∣∣ϱ̂ ∣∣pk, kn;σk, λn〉
in
. (4.12)

The inversion of this relation, proven in Ref. [43], gives

in⟨k′n;σ′n|ϱ̂ |kn;σn⟩in =

∞∑
m=0

(−1)m
22m(m!)2

∑
σm,σ′m

∫
dPm

∫
dP ′m

in
⟨pm;σm| p′m;σ′m⟩in

×
〈
â†in(k

n, pm, σn, σm)âin(k
′n, p′m, σ′n, σ′m)

〉
, (4.13)

1Because of the exclusion of antiparticles, we omit the normal-ordering prescription.
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which we may insert into Eq. (4.11) to obtain

〈
Ô
〉
=

∞∑
n=0

1

22n(n!)2

∑
ρn,ρ′n

∫
dKn

∫
dK ′n

in⟨kn; ρn|Ô |k′n; ρ′n⟩in

×
∞∑
m=0

(−1)m
22m(m!)2

∑
σm,σ′m

∫
dPm

∫
dP ′m

in
⟨pm;σm| p′m;σ′m⟩in

×
〈
â†in(k

n, pm, ρn, σm)âin(k
′n, p′m, ρ′n, σ′m)

〉
. (4.14)

Introducing a new summation index, j := n+m, and using the fact that
∑∞
n=0

∑∞
m=0 ≡

∑∞
j=0

∑j
m=0,

we arrive at〈
Ô
〉
=

∞∑
j=0

1

22j(j!)2

∑
σj ,σ′j

∫
dKj

∫
dK ′j

in
⟪kj ;σj∣∣ Ô ∣∣k′j ;σ′j⟫

in

〈
â†in(k

j , σj)âin(k
′j , σ′j)

〉
, (4.15)

where we defined

in
⟪kj ;σj∣∣ Ô ∣∣k′j ;σ′j⟫

in
:=

j∑
m=0

(−1)m
(
j
m

)2

in
⟨km;σm| k′m;σ′m⟩in

×
in

〈
kj−m;σj−m

∣∣Ô ∣∣k′j−m;σ′j−m〉
in
. (4.16)

Note that the expression above is taken to be symmetric (antisymmetric) under the exchange of primed
and unprimed momenta if the particles are bosons (fermions). Next we put in the essential assumption
of molecular chaos, implying that the expectation value of creation and annihilation operators factorizes
pairwise as

〈
â†in(k

n, σn)âin(k
′m, σ′m)

〉
= δnm

∑
P

(±1)P
n∏
j=1

〈
â†in(kj , σj)âin(k

′
j , σ

′
j)
〉
. (4.17)

In this context, the symbol P stands for the summation over all possible permutations of primed and
unprimed variables, while the factor (±1)P gives a sign change for odd permutations if the particles
are fermions, and no sign change if they are bosons. In terms of the fields, Eq. (4.17) becomes

〈
φ̂
b1
in (x1) · · · φ̂

bn
in (xn)φ̂

a1
in (x

′
1) · · · φ̂amin (x′m)

〉
= δnm

∑
P

(±1)P
n∏
j=1

〈
φ̂
bj
in(xj)φ̂

aj
in (x

′
j)
〉
. (4.18)

Inverting the definition of the “in”-fields (4.8), we have

1

2πℏ
1

ηλ

∫
d4xe

i
ℏk·xUa(k, σ)φ̂

a
in(x) = Θ(k0)δ(k2 −m2)âin(k, σ) . (4.19)

Inserting this expression into Eq. (4.15) and renaming the sum index j → n, we obtain

〈
Ô
〉
=

∞∑
n=0

1

n!

∫
d4xn

∫
d4x′nÕn,a1b1···anbn(x

n;x′n)
n∏
j=1

〈
φ̂
bj
in(xj)φ̂

aj
in (x

′
j)
〉
, (4.20)

where

Õn,a1b1···anbn(x
n;x′n) :=

1

(ηλ)2n

∫
d4kn

(2πℏ)4n

∫
d4k′n

(2πℏ)4n
∑
σn,σ′n

in⟪kn;σn| Ô |k′n;σ′n⟫in

×

 n∏
j=1

e−
i
ℏ (kjxj−k′jx′

j)Ubj (kj , σj)Uaj (k
′
j , σ

′
j)

 . (4.21)
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Using the definition of the “in”-Wigner function (4.10), we have

κ
〈
φ̂
b

in

(
x+

v

2

)
φ̂ain

(
x− v

2

)〉
=

∫
d4k

(2πℏ)4
e

i
ℏk·vW ab

in (x, k) . (4.22)

Defining the center and difference variables x̄j := (xj + x′j)/2 and vj := xj − x′j , Eq. (4.22) in
conjunction with Eq. (4.20) then yields〈

Ô
〉
=

∞∑
n=0

1

n!

∫
d4x̄n

∫
d4k̄n

(2πℏ)4n
On,a1b1···anbn(x̄

n; k̄n)

n∏
j=1

W
ajbj
in (x̄j , k̄j) , (4.23)

where we defined

On,a1b1···anbn(x̄
n; k̄n) :=

(
1

κλ2η2

)n ∫
d4un

(2πℏ)4n
∑
σn,σ′n in

⟪k̄n − un

2
;σn

∣∣∣∣ Ô ∣∣∣∣k̄n +
un

2
;σ′n⟫

in

×

 n∏
j=1

e
i
ℏuj ·x̄jUbj

(
k̄j −

uj
2
, σj

)
Uaj

(
k̄j +

uj
2
, σ′
j

) . (4.24)

Note that in this calculation k̄ is the integration variable appearing in Eq. (4.22), we used the emerging
delta function δ(4)

(
kj+k

′
j

2 − k̄j
)

and defined kj − k′j =: uj .

Equation (4.23) is the sought-after relation that allows to express the expectation value of any operator
in terms of the “in”-Wigner function. In the following sections we will employ this relation to evaluate
the collision term for particles of different spins.

Expressing W in terms of Win

The first application, however, lies in applying Eq. (4.23) to the Wigner function itself. We recognize
that the Wigner function can be expressed as the expectation value

W ab(x, k) =
〈
e

i
ℏ P̂ ·xΨ̂ab(k)e−

i
ℏ P̂ ·x

〉
, (4.25)

where we introduced2

Ψ̂ab(k) := κ

∫
d4ve−

i
ℏk·vφ̂

b
(v
2

)
φ̂a
(
−v
2

)
, (4.26)

and P̂ is the usual momentum operator. Then, applying Eq. (4.23) and relegating details to App. B.1,
we obtain the intuitive result

W ab(x, k) =W ab
in (x, k) + terms of higher order in the density . (4.27)

Thus, we may replace every “in”-Wigner function appearing in the expression for the collision term
on the right-hand side of the kinetic equation by the full one, up to corrections of higher order in the
density, cf. Ref. [43]. Note that this step is indeed important, as the Boltzmann equation has to be
closed in terms of the full Wigner function that appears on its left-hand side. We remark that this
introduces another approximation into our scheme that is different from the (ℏ-)gradient expansion,
and essentially corresponds to an expansion in terms of the (dimensionless) coupling constant of the
interaction. In the following, to be consistent in the truncation, we will always neglect collisional
contributions that arise inside the collision integral itself.

The second, and arguably more involved application of Eq. (4.23) lies in expressing the collision term
in terms of the Wigner function, which we will demonstrate for particles up to spin 1 in the following.

2As noted before, we do not consider the normal ordering due to the formal omission of antiparticle contributions,
whose inclusion is demonstrated in Ref. [43], p. 96.
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4.2 A helpful theorem

Before proceeding to the actual computation, we state an important theorem that simplifies the
calculation significantly. The proof is provided in Appendix A.

Theorem 1. The kinetic equation for the Wigner function of particles of any spin also holds on the
mass shell to any order in ℏ.

Specifically, this means that, when considering the Wigner function W (x, k) for a general field defined
in Eq. (3.31), and expanding it as a series in ℏ, we may consider the momentum k to lie on the
mass-shell, k2 = m2. We thus have the following implication,

k · ∂W (x, k) = C(x, k) =⇒ k · ∂Won-shell(x, k) = Con-shell(x, k) , (4.28)

where

W (x, k) =: δ(k2 −m2)Won-shell(x, k) +Woff-shell(x, k) , (4.29a)

C(x, k) =: δ(k2 −m2)Con-shell(x, k) + Coff-shell(x, k) , (4.29b)

with the “off-shell” terms being nonsingular on the mass shell. Note that this does not imply that
the Wigner function does not have off-shell parts. Rather, it provides an evolution equation for the
on-shell parts of the Wigner function. The off-shell parts can then be reconstructed perturbatively
from the on-shell ones by employing the mass-shell equations, such as Eqs. (3.49), (3.82), and (3.161).

4.3 Scalar fields

The scalar case has been discussed thoroughly in Ref. [43], but we nonetheless treat it here for
completeness. Furthermore, nonlocal collisions have not been taken into account in Ref. [43], which, as
we will show, bears no consequences to first order in ℏ.

4.3.1 Rewriting expectation values

The Fourier decomposition of the “in”-fields in the scalar case reads

ϕ̂in(x) :=
√
ℏ
∫

d4k

(2πℏ)3
Θ(k0)δ(k2 −m2)e−

i
ℏk·xâin(k) , (4.30)

and the “in”-Wigner function is defined as

Win(x, k) :=
2

ℏ

∫
d4ve−

i
ℏk·v

〈
ϕ̂†in

(
x+

v

2

)
ϕ̂in

(
x− v

2

)〉
. (4.31)

Evaluated for spin-0 particles, Eq. (4.23) becomes〈
Ô
〉
=

∞∑
n=0

1

n!

∫
d4x̄n

∫
d4k̄n

(2πℏ)4n
On(x̄

n; k̄n)

n∏
j=1

Win(x̄j , k̄j) , (4.32)

where we introduced

On(x̄
n; k̄n) :=

1

2n

∫
d4un

(2πℏ)4n
in

⟪k̄n − un

2

∣∣∣∣ Ô ∣∣∣∣k̄n +
un

2
⟫
in

n∏
j=1

e
i
ℏuj ·x̄j . (4.33)

Note that the quantities Ua(k, σ) become unity in the spinless case.
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Expressing C in terms of Win

In order to express the collision term as a function of Win, we express it as an average over Fock
space,

C(x, k) =
〈
e

i
ℏ P̂ ·xΦ̂(k)e−

i
ℏ P̂ ·x

〉
, (4.34)

where we introduced

Φ̂(k) := i

∫
d4ve−

i
ℏk·v

[
ϕ̂†
(v
2

)
ρ̂
(
−v
2

)
− ρ̂ †

(v
2

)
ϕ̂
(
−v
2

)]
. (4.35)

Then, we can utilize Eq. (4.32) to express the collision term as

C(x, k) =
∞∑
n=2

1

n!

∫
d4x̄n

∫
d4k̄n

(2πℏ)4n
Φn(x̄

n; k̄n|k)
n∏
j=1

Win(x+ x̄j , k̄j) , (4.36)

where we defined the kernel

Φn(x̄
n; k̄n|k) := 1

2n

∫
d4un

(2πℏ)4n
in

⟪k̄n − un

2

∣∣∣∣ Φ̂(k) ∣∣∣∣k̄n +
un

2
⟫
in

n∏
j=1

e
i
ℏuj ·x̄j . (4.37)

In Eq. (4.36), the n-th term in the sum, being proportional to a product of n Wigner functions,
contributes to the effect of n-particle collisions. In the remainder of this chapter we focus on binary
elastic scattering and thus truncate the sum after the n = 2 term. Note that, when comparing to the
expected result (4.3), we can already anticipate that this truncation will lead to the loss of effects that
originate from Bose-Einstein statistics, since these are characterized by the product of three and
four distribution functions [144]. After inserting a complete set of “out”-states and using the fact that
the “in”-and “out”-states are momentum eigenstates, we obtain

in

〈
k2 − u2

2

∣∣∣∣Φ̂(k) ∣∣∣∣k2 + u2

2

〉
in

= i

∞∑
m=0

1

2mm!

∫
dK ′m

in

〈
k2 − u2

2

∣∣∣∣[ϕ̂†(0)∣∣∣∣k′m〉
out out

〈
k′m
∣∣∣∣ρ̂(0)

− ρ̂ †(0)

∣∣∣∣k′m〉
out out

〈
k′m
∣∣∣∣ϕ̂(0)] ∣∣∣∣k2 + u2

2

〉
in

(2πℏ)4δ(4)
k + m∑

j=0

k′j − k1 − k2


=
i

2

∫
dK ′

in

〈
k2 − u2

2

∣∣∣∣[ϕ̂†(0)∣∣∣∣k′〉
out out

〈
k′
∣∣∣∣ρ̂(0)

− ρ̂ †(0)

∣∣∣∣k′〉
out out

〈
k′
∣∣∣∣ϕ̂(0)] ∣∣∣∣k2 + u2

2

〉
in

(2πℏ)4δ(4) (k + k′ − k1 − k2) . (4.38)

Note that in the last equality we assumed some conserved charge to be present (e.g. baryon number or
electric charge), and assumed only one species of particles. Under these conditions, the only permissible
scattering with two outgoing particles is 2→ 2 scattering. In Eq. (4.38), we next have to evaluate the
matrix elements of the fields and the source terms. The former can be treated via the Yang-Feldman
equation [43]

ϕ̂(0) = ϕ̂in(0) +

∫
d4x∆R(−x)ρ̂(x) , (4.39)

leading to

out

〈
k′
∣∣∣∣ϕ̂(0) ∣∣∣∣k2 + u2

2

〉
in

=
√
ℏ(2πℏ)32k′0

[
δ(3)

(
k′ − k2 −

u2

2

)
+ (1↔ 2)

]
+ ∆̃R

(
k1 + k2 +

u1 + u2
2

− k′
)

out

〈
k′
∣∣∣∣ρ̂(0) ∣∣∣∣k2 + u2

2

〉
in

, (4.40)
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where we introduced the Fourier-transformed retarded propagator of the scalar field, cf. Eqs. (3.45).
The matrix elements of the sources on the other hand can be connected to the transfer matrix t̂ (i.e.,
the nontrivial part of the scattering matrix [145]) through the relation

out⟨k′|ρ̂(0)
∣∣k2〉

in
=

1√
ℏ
⟨k, k′| t̂

∣∣k2〉 . (4.41)

Inserting Eqs. (4.40) and (4.41) into Eq. (4.38), we find

in

〈
k2 − u2

2

∣∣∣∣Φ̂(k) ∣∣∣∣k2 + u2

2

〉
in

= i(2πℏ)4
{
δ

(
k0 − k01 − k02 +

√(
k2 −

u2

2

)2
+m2

)
δ(3)

(
k− k1 −

u2

2

)
×
〈
k +

u1 + u2
2

, k2 −
u2
2

∣∣∣∣ t̂ ∣∣∣∣k2 + u2

2

〉
+ (1↔ 2)

−
[
δ

(
k0 − k01 − k02 +

√(
k2 +

u2

2

)2
+m2

)
δ(3)

(
k− k1 +

u2

2

)
×
〈
k2 − u2

2

∣∣∣∣ t̂ † ∣∣∣∣k − u1 + u2
2

, k2 +
u2
2

〉
+ (1↔ 2)

]
− 1

2ℏ

∫
dK ′

〈
k2 − u2

2

∣∣∣∣ t̂ † ∣∣∣∣k − u1 + u2
2

, k′
〉〈

k′, k +
u1 + u2

2

∣∣∣∣ t̂ ∣∣∣∣k2 + u2

2

〉
×
[
∆̃R

(
k − u1 + u2

2

)
− ∆̃∗

R

(
k +

u1 + u2
2

)]
δ(4) (k + k′ − k1 − k2)

}
. (4.42)

In order to simplify this expression further, we split the transfer matrix t̂ into its real and imaginary
parts. The real parts, which were neglected in Ref. [43], correspond to Vlasov-like terms that belong
to the left-hand side of the Boltzmann equation, cf. e.g. Ref. [146]. In the remainder of this thesis,
we will not consider these terms further for simplicity, but including them is straightforward. Thus, we
can approximate the transfer matrix by its imaginary part, whose matrix elements can be rewritten
through the optical theorem [43]

i

2

〈
k2
∣∣ t̂− t̂ † ∣∣p2〉 = − (2πℏ)4

16

∫
dQ1 dQ2 δ

(4)(q1 + q2 − k1 − k2)
〈
k2
∣∣ t̂ ∣∣q2〉 〈q2∣∣ t̂ † ∣∣p2〉 . (4.43)

Utilizing this theorem, we are in a position to reinsert Eq. (4.42) into Eq. (4.37) and subsequently into
Eq. (4.36). However, in order to obtain a simpler expression it is advantageous to employ Theorem 1
and evaluate everything on the mass shell. The main effect of this usage is that the last line of Eq.
(4.42) can be evaluated at the point u1 = u2 = 0, since otherwise the difference of the propagators
would introduce off-shell terms. This can be seen from the identity

lim
η→0

1

x± iη = P
1

x
∓ iπδ(x) , (4.44)

where P denotes the Cauchy principal value. Then, since the retarded propagators are evaluated at
the same momentum, we are able to use the important relation

∆̃R (k)− ∆̃∗
R(k) = 2πiℏ2δ(k2 −m2) . (4.45)

Defining the on-shell contributions to the Wigner function and the collision term

W (x, k) =: 4πℏδ(k2 −m2)f(x, k) +Woff-shell(x, k) , (4.46a)

C(x, k) =: 4πℏδ(k2 −m2)C(x, k) + Coff-shell(x, k) , (4.46b)
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where the off-shell parts are taken to be nonsingular at k2 = m2, we obtain

C(x, k) =
(2πℏ)4

32

∫
d4x̄2

∫
dK1 dK2 dK

′
∫

d4u2

(2πℏ)8
e

i
ℏ (u1·x̄1+u2·x̄2)

×
[
f(x+ x̄1, k1)f(x+ x̄2, k2)δ

(4)(k + k′ − k1 − k2)

×M
(
k +

u1 + u2
2

, k′, k1 +
u1
2
, k2 +

u2
2

)
M∗

(
k − u1 + u2

2
, k′, k1 −

u1
2
, k2 −

u2
2

)
− 1

2
f
(
x+ x̄1, k −

u2
2

)
f(x+ x̄2, k

′)δ(4)
(
k + k′ − k1 − k2 +

u1
2

)
×M

(
k +

u1 + u2
2

, k′ − u2
2
, k1, k2

)
M∗

(
k +

u1 − u2
2

, k′ +
u2
2
, k1, k2

)
− 1

2
f
(
x+ x̄1, k +

u2
2

)
f(x+ x̄2, k

′)δ(4)
(
k + k′ − k1 − k2 −

u1
2

)
×M

(
k +

u2 − u1
2

, k′ − u2
2
, k1, k2

)
M∗

(
k − u1 + u2

2
, k′ +

u2
2
, k1, k2

)]
, (4.47)

where we introduced the notation

⟨k, k′| t̂
∣∣k2〉 = 1

ℏ
⟨k, k′| : L̂int(0) :

∣∣k2〉 =:M(k, k′, k1, k2) . (4.48)

Note that we also used the fact that we can neglect the off-shell contributions of the Wigner functions
inside the collision integrals, as they are either of order O(ℏ2) or of collisional origin themselves, putting
them outside our employed truncation. Finally we expand the on-shell Wigner function around x as

f(x+ x̄j , k) ≃ f(x, k) + x̄j · ∂f(x, k) , (4.49)

such that we obtain (after performing the dx̄2-integrations) and making use of the symmetries of M

C(x, k) =
(2πℏ)4

32

∫
dK1 dK2 dK

′
∫

d4u2

×
(
δ(4)(k + k′ − k1 − k2)

2∏
j=1

{[
δ(4)(uj)− iℏ∂ρuj

δ(4)(uj)∂ρ

]
f(x, kj)

}
×M

(
k +

u1 + u2
2

, k′, k1 +
u1
2
, k2 +

u2
2

)
M∗

(
k − u1 + u2

2
, k′, k1 −

u1
2
, k2 −

u2
2

)
− 1

2

{[
δ(4)(u1)− iℏ∂ρu1

δ(4)(u1)∂ρ

]
f
(
x, k − u2

2

)}
×
{[
δ(4)(u2)− iℏ∂ρu2

δ(4)(u2)∂ρ

]
f (x, k′)

}
δ(4)

(
k + k′ − k1 − k2 +

u1
2

)
×M

(
k +

u1 + u2
2

, k′ − u2
2
, k1, k2

)
M∗

(
k +

u1 − u2
2

, k′ +
u2
2
, k1, k2

)
− 1

2

{[
δ(4)(u1)− iℏ∂ρu1

δ(4)(u1)∂ρ

]
f
(
x, k +

u2
2

)}
×
{[
δ(4)(u2)− iℏ∂ρu2

δ(4)(u2)∂ρ

]
f (x, k′)

}
δ(4)

(
k + k′ − k1 − k2 −

u1
2

)
×M

(
k +

u2 − u1
2

, k′ − u2
2
, k1, k2

)
M∗

(
k − u1 + u2

2
, k′ +

u2
2
, k1, k2

))
. (4.50)

The equation above already features a structure of gain and loss terms, determining the rate of particles
scattering into and out of the momentum state k, respectively. However, the loss term, given by
the second and third term in the equation above, consists of two contributions, differing in the signs
of the momentum-space shifts u1, u2. The first terms in curly brackets denote local contributions
to the collision term, while the respective second terms characterize nonlocal collisions, since they
originate from the fact that the distribution functions in Eq. (4.47) were originally evaluated at
different spacetime positions, cf. Eq. (4.49). At this point it is apparent that at zeroth order in ℏ only
local collisions take place, while at first order both local and nonlocal contributions enter. Note that,
from now on, we will also neglect the momentum dependence of the vertices M .
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4.3.2 Local collisions

Evaluating the first terms in curly brackets in Eq. (4.50), i.e., setting u1 = u2 = 0, we find the local
collision term

Clocal(x, k) =
1

2

∫
dK1 dK2 dK

′(2πℏ)4δ(4)(k + k′ − k1 − k2)
|M |2
16

× [f(x, k1)f(x, k2)− f(x, k)f(x, k′)] , (4.51)

Comparing this expression to Eq. (4.3), we can identify Wkk′→k1k2
≡ |M |2/16. Furthermore, as

expected, we lost the effect of quantum statistics due to our truncation of the collision expansion
(4.36), which is valid in the low-density regime [43].

4.3.3 Nonlocal collisions

In order to evaluate the nonlocal terms, we integrate by parts in u1, u2 in Eq. (4.50). We find two
contributions (which we will label by Roman numbers), one where the u1, u2-derivatives act on the
distribution functions in the loss terms, and a second one where they act on the momentum-conserving
delta functions in the loss terms. In principle, there would be a third contribution where the derivatives
act on the vertices M , which vanishes due to our assumption of them being momentum-independent.
The first contribution reads

Cnonlocal
I (x, k) = −iℏ |M |

2

64

∫
dK1 dK2 dK

′(2πℏ)4δ(4)(k + k′ − k1 − k2)

×
∫

d4u2δ
(4)(u2)∂

ρ
u2

[
f
(
x, k − u2

2

)
+ f

(
x, k +

u2
2

)]
∂ρf(x, k

′)

= − iℏ
2

|M |2
64

∫
dK1

∫
dK2

∫
dK ′(2πℏ)4δ(4)(k + k′ − k1 − k2)

× ∂ρk [−f (x, k) + f (x, k)] ∂ρf(x, k
′)

= 0 . (4.52)

The second contribution can be evaluated similarly. Noting that

∂µu1
δ(4)

(
k + k′ − k1 − k2 ±

u1
2

)
= ±1

2
∂µk′δ

(4)
(
k + k′ − k1 − k2 ±

u1
2

)
,

we can rewrite the u1-derivative acting on the delta function as a k′-derivative and integrate by parts
again to obtain

Cnonlocal
II (x, k) =

iℏ
2

|M |2
64

∫
dK1 dK2 dK

′(2πℏ)4δ(4)(k + k′ − k1 − k2)

× ∂ρk′ [f (x, k′)− f (x, k′)] ∂ρf(x, k)
= 0 . (4.53)

Thus, in the case of scalar particles, the nonlocal contributions vanish and the collision term stays
local up to first order in ℏ. The intuition behind this fact is that nonlocal collisions are needed to
exchange orbital and spin angular momenta. More specifically, the exchange of spin will necessitate
a nonzero net orbital angular momentum in the collision, which is realized by shifting the position
of the particles. However, since the spin of scalar particles is zero, the orbital angular momentum is
separately conserved, and such shifts are thus not induced.

As we shall see in the coming sections, this changes for particles with nonzero spin.
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4.4 Spinor fields

After having completed the treatment of scalar fields, we move on to Dirac fermions with spin 1/2.
While the general steps are very similar to what has been shown in the last section, there are some
subtleties related to the nontrivial internal structure of the fields.

4.4.1 Rewriting expectation values

For a spinor field, the Fourier decomposition reads

ψ̂in(x) =
∑
s

∫
d4k

(2πℏ)3
Θ(k0)δ(k2 −m2)e−

i
ℏk·xus(k)âin(k) , (4.54)

where we introduced the basis spinors ur, cf. Eq. (4.8). These quantities are constrained by the Dirac
equation to satisfy

(/k −m)ur(k) = 0 , (4.55)

and they are constructed to fulfill the following orthogonality and completeness relations,

ur,α(k)u
α
s (k) = 2mδrs , (4.56a)∑

r

uαr (k)ur,β(k) = (/k +m)αβ ≡ 2mΛ+,α
β(k) , (4.56b)

where we made the Dirac indices explicit3 and introduced the projector onto positive-energy states

Λ+(k) :=
/k +m

2m
. (4.57)

Accordingly, the “in”-Wigner function for the Dirac field is defined as

Win,αβ(x, k) :=

∫
d4ve−

i
ℏk·v

〈
ψ̂β

(
x+

v

2

)
ψ̂α

(
x− v

2

)〉
. (4.58)

From Eq. (4.23) we obtain for spin-1/2 particles〈
Ô
〉
=

∞∑
n=0

1

n!

∫
d4x̄n

∫
d4k̄n

(2πℏ)4n
On,α1β1···αnβn(x̄

n; k̄n)

n∏
j=1

W
αjβj

in (x̄j , k̄j) , (4.59)

where we defined

On,α1β1···αnβn
(x̄n; k̄n) :=

1

(2m)2n

∫
d4un

(2πℏ)4n
∑
rn,r′n in

⟪k̄n − un

2
; rn
∣∣∣∣ Ô ∣∣∣∣k̄n +

un

2
; r′n⟫

in

×

 n∏
j=1

e
i
ℏuj ·x̄jurj ,βj

(
k̄j −

uj
2

)
ur′j ,αj

(
k̄j +

uj
2

) . (4.60)

Expressing Cαβ in terms of Win,αβ

As demonstrated in the last section for scalar particles, we now express the collision term (3.84b) in
terms of the “in”-Wigner function, which can then be replaced by the full Wigner function to close
the resulting equation. Note that, once the collision term (3.84b) is known, we can proceed to translate
it into extended phase space via Eq. (3.88b).

3From now on, we will not distinguish between upper and lower Dirac indices, as they will be traced over in the final
result anyway.
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Orienting on Eq. (4.34), we express the collision term as the average

Cαβ(x, k) =
〈
e

i
ℏ P̂ ·xΦ̂αβ(k)e

− i
ℏ P̂ ·x

〉
, (4.61)

where we defined the operator

Φ̂αβ(k) :=
i

2

∫
d4ve−

i
ℏk·v

{[
P̂µ, ρ̂

(v
2

)
γµ
]
β
ψ̂α

(
−v
2

)
+mρ̂β

(v
2

)
ψ̂α

(
−v
2

)
−ψ̂β

(v
2

) [
γµρ̂

(
−v
2

)
, P̂µ

]
α
−mψ̂β

(v
2

)
ρ̂α

(
−v
2

)}
. (4.62)

Here we used that for an arbitrary operator Â(x), the (covariant version of) the Heisenberg equation
of motion states that [

Â(x), P̂µ
]
= iℏ∂µÂ(x) . (4.63)

Employing Eq. (4.59), the collision term can be written as

Cαβ(x, k) =
∞∑
n=2

1

n!

∫
d4x̄n

∫
d4k̄n

(2πℏ)4n
Φαβn,α1β1···αnβn

(x̄n; k̄n|k)
n∏
j=1

W
αjβj

in (x+ x̄j , k̄j) , (4.64)

where we defined

Φαβn,α1β1···αnβn
(x̄n; k̄n|k) := 1

(2m)2n

∫
d4un

(2πℏ)4n
∑
rn,r′n in

⟪k̄n − un

2
; rn
∣∣∣∣ Φ̂αβ(k) ∣∣∣∣k̄n +

un

2
; r′n⟫

in

×

 n∏
j=1

e
i
ℏuj ·x̄jurj ,βj

(
k̄j −

uj
2

)
ur′j ,αj

(
k̄j +

uj
2

) , (4.65)

in analogy to Eq. (4.60). After inserting a complete set of “out”-states and performing the d4v-
integration we obtain

in

〈
k2 − u2

2
; r2
∣∣∣∣Φ̂αβ(k) ∣∣∣∣k2 + u2

2
; s2
〉

in

=
i

4

∑
r′

∫
dK ′(2πℏ)4δ(4) (k + k′ − k1 − k2)

[
out

〈
k′; r′

∣∣∣∣ψ̂α(0) ∣∣∣∣k2 + u2

2
; s2
〉

in

×
in

〈
k2 − u2

2
; r2
∣∣∣∣ρ̂α′(0)

∣∣∣∣k′; r′〉
out

(
/k − /u1 + /u2

2
+m

)
α′β

−
(
/k +

/u1 + /u2
2

+m

)
αα′

×
out

〈
k′; r′

∣∣∣∣ρ̂α′(0)

∣∣∣∣k2 + u2

2
; s2
〉

in in

〈
k2 − u2

2
; r2
∣∣∣∣ψ̂β(0)∣∣∣∣k′; r′〉

out

]
. (4.66)

As was done in the last section in order to obtain Eq. (4.38), we used that, in the case of a single
particle species that features an intrinsic charge, only binary scattering is permitted. The matrix
elements of the field operators can be evaluated via the Yang-Feldman equation for spin-1/2 particles
[43]

ψ̂(0) = ψ̂in(0) +

∫
d4xSR(−x)ρ̂(x) , (4.67)

where SR denotes the retarded fermion propagator introduced in Sec. 3.4. Then, the respective matrix
elements can be evaluated to be

out

〈
k′; r′

∣∣∣∣ψ̂(0) ∣∣∣∣k2 + u2

2
; s2
〉

in

= (2πℏ)32k′0
[
us1

(
k1 +

u1
2

)
δ(3)

(
k′ − k2 −

u2

2

)
δr′s2 − (1↔ 2)

]
+ S̃R

(
k1 + k2 +

u1 + u2
2

− k′
)

out

〈
k′; r′

∣∣∣∣ρ̂(0) ∣∣∣∣k2 + u2

2
; s2
〉

in

. (4.68)
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Inserting this relation into Eq. (4.66) and employing the definition of the Fourier-transformed
retarded fermion propagator (3.71a), we find

in

〈
k2 − u2

2
; r2
∣∣∣∣Φ̂αβ(k) ∣∣∣∣k2 + u2

2
; s2
〉

in

= im(2πℏ)4
({

us1,α

(
k1 +

u1
2

)
δ(3)

(
k− k1 +

u2

2

)
δ

[
k0 +

√(
k2 +

u2

2

)2
+m2 − k01 − k02

]

×
in

〈
k2 − u2

2
; r2
∣∣∣∣ρ̂α′(0)

∣∣∣k2 + u2
2
; s2

〉
out

Λ+
α′β

(
k − u1 + u2

2

)
+ (1↔ 2)

}
−
{
ur1,β

(
k1 −

u1
2

)
δ(3)

(
k− k1 −

u2

2

)
δ

[
k0 +

√(
k2 −

u2

2

)2
+m2 − k01 − k02

]

× Λ+
αα′

(
k +

u1 + u2
2

)
out

〈
k2 −

u2
2
; r2

∣∣∣ρ̂α′(0)

∣∣∣∣k2 + u2

2
; s2
〉

in
+ (1↔ 2)

}
− m

ℏ
∑
r′

∫
dK ′δ(4)(k + k′ − k1 − k2)

[
∆̃R

(
k +

u1 + u2
2

)
− ∆̃∗

R

(
k − u1 + u2

2

)]
× Λ+

αα′

(
k +

u1 + u2
2

)
out

〈
k′; r′

∣∣∣∣ρ̂α′(0)

∣∣∣∣k2 + u2

2
; s2
〉

in

×
in

〈
k2 − u2

2
; r2
∣∣∣∣ρ̂β′(0)

∣∣∣∣k′; r′〉
out

Λ+
β′β

(
k − u1 + u2

2

))
. (4.69)

Note that in this expression we made use of the completeness relation (4.56b). Next, we have to employ
the relation between the source terms and transfer-matrix elements [i.e., the spin-1/2 equivalent of Eq.
(4.41)], which is given by [43]

⟨k, k′; r, r′| t̂
∣∣k2; r2〉 = −ur(k) out⟨k′; r′|ρ̂(0)

∣∣k2; r2〉in . (4.70)

Then, we split the transfer matrix into real and imaginary parts, neglect the real parts (as they give rise
to Vlasov-like terms, which we do not consider in this work4) and make use of the optical theorem,
which in the case of spin-1/2 particles reads [43]

i

2
⟨k, k′; r, r′| t̂− t̂ †

∣∣k2; r2〉
= − (2πℏ)4

16
δ(4)(k + k′ − k1 − k2)

∑
s2

∫
dQ1 dQ2 ⟨k, k′; r, r′| t̂

∣∣q2; s2〉 〈q2; s2∣∣ t̂ † ∣∣k2; r2〉 . (4.71)

Lastly, similar to Eq. (4.48), we define the tree-level vertices of the theory via

⟨k, k′; r, r′| t̂
∣∣k2; r2〉 = 1

ℏ
⟨k, k′; r, r′| : L̂int(0) :

∣∣k2; r2〉
= ūr,α(k)ūr′,α′(k′)ur1,α1

(k1)ur2,α2
(k2)M

αα′α1α2(k, k′, k1, k2) . (4.72)

Note that, since we are dealing with fermions, we have the symmetry relations

Mαα′α1α2(k, k′, k1, k2) = −Mα′αα1α2(k′, k, k1, k2) = −Mαα′α2α1(k, k′, k2, k1) .

Assuming that the vertex M is symmetric under the exchange k ↔ k1, k′ ↔ k2, we furthermore have〈
k2; r2

∣∣ t̂ † |k, k′; r, r′⟩ = ūr1,α1
(k1)ūr2,α2

(k2)ur,α(k)ur′,α′(k′)Mα1α2αα
′
(k, k′, k1, k2) , (4.73)

where we used that t̂ = t̂ † at tree level.
4These contributions have been called “pure-spin exchange terms” in Ref. [43]. We remark at this point that neglecting

these terms is the equivalent of considering the self-energy in the T -matrix approximation in the Kadanoff-Baym
approach [46, 147].
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These relations can now be inserted into Eq. (4.69) and subsequently into Eq. (4.64), where the sum
is truncated at n = 2. Performing these steps and making use of Theorem 1, we obtain the following
result which only depends on the on-shell parts of the Wigner functions,

Cαβ(x, k)

= (2πℏ)4
m4

2

∫
dK1 dK2 dK

′
∫

d4u2 Λ+
αα′

(
k +

u1 + u2
2

)
Λ+
β′β

(
k − u1 + u2

2

)
×
(
δ(4)(k + k′ − k1 − k2)Λ+

δ2α2
(k′)Λ+

β1γ′
1

(
k1 +

u1
2

)
Λ+
β2γ′

2

(
k2 +

u2
2

)
Λ+
δ′1γ1

(
k1 −

u1
2

)
× Λ+

δ′2γ2

(
k2 −

u2
2

)
δα

′

α1
δβ

′

δ1

2∏
j=1

{[
δ(4)(uj)− iℏ∂ρuj

δ(4)(uj)∂ρ

]
W

γ′
jδ

′
j

on-shell(x, kj)
}

×Mα1α2β1β2

(
k +

u1 + u2
2

, k′, k1 +
u1
2
, k2 +

u2
2

)
×Mγ1γ2δ1δ2

(
k − u1 + u2

2
, k′, k1 −

u1
2
, k2 −

u2
2

)
− 1

2
δ(4)

(
k + k′ − k1 − k2 +

u1
2

)
Λ+
δ2γ′

2

(
k′ +

u2
2

)
Λ+
δ1γ′

1

(
k +

u1 − u2
2

)
Λ+
δ′2α2

(
k′ − u2

2

)
× Λ+

β1γ1
(k1)Λ

+
β2γ2

(k2)δ
α′

α1
δβ

′

δ′1

{[
δ(4)(u1)− iℏ∂ρu1

δ(4)(u1)∂ρ

]
W

γ′
1δ

′
1

on-shell

(
x, k − u2

2

)}
×
{[
δ(4)(u2)− iℏ∂ρu2

δ(4)(u2)∂ρ

]
W

γ′
2δ

′
2

on-shell(x, k
′)
}

×Mα1α2β1β2

(
k +

u2 + u1
2

, k′ − u2
2
, k1, k2

)
Mγ1γ2δ1δ2

(
k +

u1 − u2
2

, k′ +
u2
2
, k1, k2

)
− 1

2
δ(4)

(
k + k′ − k1 − k2 −

u1
2

)
Λ+
δ2γ′

2

(
k′ +

u2
2

)
Λ+
δ′1α1

(
k +

u2 − u1
2

)
Λ+
δ′2α2

(
k′ − u2

2

)
× Λ+

β1γ1
(k1)Λ

+
β2γ2

(k2)δ
α′

γ′
1
δβ

′

δ1

{[
δ(4)(u1)− iℏ∂ρu1

δ(4)(u1)∂ρ

]
W

γ′
1δ

′
1

on-shell

(
x, k +

u2
2

)}
×
{[
δ(4)(u2)− iℏ∂ρu2

δ(4)(u2)∂ρ

]
W

γ′
2δ

′
2

on-shell(x, k
′)
}

×Mα1α2β1β2

(
k +

u2 − u1
2

, k′ − u2
2
, k1, k2

)
Mγ1γ2δ1δ2

(
k − u1 + u2

2
, k′ +

u2
2
, k1, k2

))
. (4.74)

In this expression, we expanded the Wigner functions to first order around x̄1 = x̄2 = 0, cf. Eq.
(4.49), and subsequently performed the dx̄2-integrations. Furthermore, the on-shell contributions of
the Wigner function and the collision term are defined via

W (x, k) =: 4mπℏδ(k2 −m2)Won-shell(x, k) +Woff-shell(x, k) , (4.75a)

C(x, k) =: 4mπℏδ(k2 −m2)C(x, k) + Coff-shell(x, k) , (4.75b)

where the off-shell terms are defined to be nonsingular on the mass shell. Since we can neglect the
off-shell parts of the collision term, we were also able to make use of the relation (4.45) to simplify
the term in Eq. (4.69) containing the difference of the retarded scalar propagator and its complex
conjugate, which can both be evaluated at the momentum k.
Note that, in accordance with Eq. (3.100), we included a factor of mass when defining the on-shell
parts for the fermionic Wigner function. This is to be contrasted with Eqs. (4.46), and has its roots
in the different dimension of the fermionic fields as compared to scalar or vector fields.

As in the case of Klein-Gordon fields, the collision term (4.74) contains both local and nonlocal
contributions. Due to the nontrivial internal structure of particles with spin, however, there appear a
multitude of positive-energy projectors Λ+, many of which are dependent on u1, u2 and thus contribute
to the nonlocal collisions. Indeed, as we will see shortly, these terms are responsible for nonvanishing
nonlocal contributions to the collision term at first order in ℏ. As in the previous section, we will from
now on neglect the momentum dependence of the vertices M for simplicity.
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4.4.2 Local collisions

In order to obtain the local contributions to the collision term, we set all shifts u1, u2 in momentum
space to zero, such that we find

C local
αβ (x, k) =

m4

2

∫
dK1 dK2 dK

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mα1α2β1β2Mγ1γ2δ1δ2Λ+
αα′(k)Λ

+
β′β(k)

×
{
Λ+
δ2α2

(k′)Λ+
β1γ′

1
(k1)Λ

+
β2γ′

2
(k2)Λ

+
δ′1γ1

(k1)Λ
+
δ′2γ2

(k2)δ
α′

α1
δβ

′

δ1

2∏
j=1

W
γ′
jδ

′
j

on-shell(x, kj)

− 1

2
Λ+
δ′2α2

(k′)Λ+
δ2γ′

2
(k′)Λ+

β1γ1
(k1)Λ

+
β2γ2

(k2)
[
δα

′

α1
δβ

′

δ′1
Λ+
δ1γ′

1
(k) + δα

′

γ′
1
δβ

′

δ1
Λ+
δ′1α1

(k)
]

×W γ′
1δ

′
1

on-shell(x, k)W
γ′
2δ

′
2

on-shell(x, k
′)

}
. (4.76)

This expression now has to be translated into extended phase space, i.e., we have to use (the on-
shell part of) Eq. (3.88b) to compute C(x, k, s). In order to obtain a result with a straightforward
interpretation, we also have to relate the Wigner functions in Eq. (4.76) to the scalar distribution
function in phase space f(x, k, s), cf. Eq. (3.85). However, in principle the Wigner function has
more components in its Clifford decomposition than the scalar F and the axial vector A that enter
the distribution f . As discussed in Subsec. 3.4.2, to first order in ℏ the pseudoscalar component P
vanishes, while the vector and tensor contributions read

Vµ(x, k) ≃ kµ

m
F(x, k) , Sµν(x, k) ≃ ℏ

2m2
∂[µkν]F(x, k)− 1

m
ϵµναβkαAβ(x, k) , (4.77)

where the omitted terms are either of second order in ℏ or of collisional origin. Noting that all Wigner
functions in Eq. (4.76) are sandwiched in between two positive-energy projectors, we use the relation

Λ+(k)σµνkνΛ
+(k) = 0 (4.78)

and conclude that
Λ+(k)Won-shell(x, k)Λ

+(k) =

∫
dS(k)h(k, s)f(x, k, s) , (4.79)

where we defined
h(k, s) :=

1

2
(1+ γ5/s) Λ

+(k) . (4.80)

Note that due to
(1+ γ5/s) Λ

+(k) = Λ+(k) (1+ γ5/s) ,

which follows from k · s = 0, it holds that

Λ+(k)h(k, s) = h(k, s)Λ+(k) = h(k, s) . (4.81)

Inserting the representation (4.79) of the on-shell Wigner function into the local collision term (4.76),
we obtain

C local
αβ (x, k) =

m4

4

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)Mα1α2β1β2Mγ1γ2δ1δ2

×
{
Λ+
αα1

(k)Λ+
δ1β

(k)hδ2α2
(k′, s′)hβ1γ1(k1, s1)hβ2γ2(k2, s2)

× f(x, k1, s1)f(x, k2, s2)− hδ2α2
(k′, s′)hβ1γ1(k1, s1)hβ2γ2(k2, s2)

×
[
Λ+
αα1

(k)hδ1β(k, s̄) + Λ+
δ1β

(k)hαα1
(k, s̄)

]
f(x, k, s̄)f(x, k′, s′)

}
, (4.82)

where the momentum- and spin-space measure dΓ has been defined in Eq. (3.101), we made use of the
relation ∫

dS(k)h(k, s) = Λ+(k) , (4.83)
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and inserted a spurious dS̄(k)-integration in the first term. Lastly, we write the on-shell part of Eq.
(3.88b) as

C(x, k, s) :=
1

2
(1+ γ5/s)βα Cαβ(x, k) , (4.84)

which then yields

Clocal(x, k, s) =
m4

4

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)Mα1α2β1β2Mγ1γ2δ1δ2

× hδ2α2
(k′, s′)hβ1γ1(k1, s1)hβ2γ2(k2, s2) [hδ1β(k, s̄)hβα1

(k, s) + hδ1β(k, s)hβα1
(k, s̄)]

× [f(x, k1, s1)f(x, k2, s2)− f(x, k, s̄)f(x, k′, s′)] , (4.85)

where we made use of the identity∫
dS̄(k) [hδ1β(k, s̄)hβα1

(k, s) + hδ1β(k, s)hβα1
(k, s̄)] = 2hδ1α1

(k, s) . (4.86)

In Eq. (4.85), it is interesting to note that, while the distribution functions in the gain term depend
on (k1, s1) and (k2, s2), as expected, the arguments of the functions in the loss term are (k′, s′) and
(k, s̄) [and not (k, s)]. As we will see in Sec. 4.5, this is an effect that is present also for particles of
spin 1. In the case of spin-1/2 particles, it has been shown in Ref. [44] that it is possible to redefine
the collision kernel C(x, k, s) such that the integration over s̄ is removed and the loss term takes the
expected form.5 In general, however, it is not possible to perform such a procedure, which is why we
refrain from doing it at this point. We will return to this issue in Sec. 4.6.

4.4.3 Nonlocal collisions

Integrating by parts in the variables u1, u2 in Eq. (4.74), we split the resulting expression into four
terms, which we will label by Roman numbers, as in the last section. Firstly, the u1, u2-derivatives act
on the first two positive-energy projectors Λ+(k ± u1/2± u2/2) on the right-hand side of Eq. (4.74).
These derivatives can be evaluated by noting that

∂µuΛ
+
(
k +

u

2

) ∣∣∣
u=0

=
1

4m
γµ , (4.87)

leading to

Cnonlocal
I,αβ (x, k) =

iℏ
4m

m4

2

∫
dK1 dK2 dK

′ (2πℏ)4δ(4)(k + k′ − k1 − k2)

×Mα1α2β1β2Mγ1γ2δ1δ2
[
γµαα′Λ

+
β′β (k)− Λ+

αα′ (k) γ
µ
β′β

]
×
{
δα′α1

δβ′δ1Λ
+
δ2α2

(k′)∂µ
[
W β1γ1

on-shell(x, k1)W
β2γ2
on-shell(x, k2)

]
− 1

2
Λ+
β1γ1

(k1)Λ
+
β2γ2

(k2)
[
δα′α1

δδ′1β′δδ1γ′
1
+ δα′γ′

1
δδ1β′δδ′1α1

]
× ∂µ

[
W

γ′
1δ

′
1

on-shell(x, k)W
δ2α2

on-shell(x, k
′)
]}

. (4.88)

Here we used that

W (x, k) =
1

2
Λ+(k)F(x, k) +O(ℏ) , (4.89)

5Such a redefinition is possible since the physical meaning of the spin degree of freedom s is limited and all observable
quantities are given by integrals over spin space.
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implying Λ+(k)W (x, k)Λ+(k) =W (x, k) +O(ℏ), which we may use since the nonlocal contributions
are already of first order in ℏ and the neglected terms are thus of second order. Inserting the relation
(4.79) and employing the definition (4.84), we find

Cnonlocal
I (x, k, s) =

iℏ
4m

m4

4

∫
dΓ1 dΓ2 dΓ

′ dS̄(k) (2πℏ)4δ(4)(k + k′ − k1 − k2)

×Mα1α2β1β2Mγ1γ2δ1δ2 [h(k, s), γµ]β′α′

×
{
δα′α1

δβ′δ1hδ2α2
(k′, s′)hβ1γ1(k1, s1)hβ2γ2(k2, s2)∂µ [f(x, k1, s1)f(x, k2, s2)]

− hβ1γ1(k1, s1)hβ2γ2(k2, s2)hδ2α2(k
′, s′) [δα′α1hδ1β′(k, s̄) + hα′α1(k, s̄)δδ1β′ ]

× ∂µ [f(x, k, s̄)f(x, k′, s′)]
}
. (4.90)

Since the distribution functions only depend on the spin variable at first order in ℏ, which follows
from the fact that Aµ ∼ O(ℏ), we may omit the spin arguments and perform the s̄-integral trivially to
obtain

Cnonlocal
I (x, k, s) =

iℏ
4m

m4

2

∫
dΓ1 dΓ2 dΓ

′ (2πℏ)4δ(4)(k + k′ − k1 − k2)Mα1α2β1β2Mγ1γ2δ1δ2

× hδ2α2
(k′, s′)hβ1γ1(k1, s1)hβ2γ2(k2, s2) [h(k, s), γ

µ]δ1α1

× ∂µ
[
f(x, k1)f(x, k2)−

1

2
f(x, k)f(x, k′)

]
. (4.91)

Here we used that {[h(k, s), γµ],Λ+(k)} = [h(k, s), γµ] since h(k, s)(/k − m) = 0. In the second
contribution to the nonlocal collision term, the u1, u2-derivatives act on the remaining projectors in
Eq. (4.74). Performing the same steps as outlined above, we compute

Cnonlocal
II (x, k, s) = − iℏ

4m

m4

2

∫
dΓ1 dΓ2 dΓ

′ (2πℏ)4δ(4)(k + k′ − k1 − k2)Mα1α2β1β2Mγ1γ2δ1δ2

×
{
f(x, k2)

[
∂µf(x, k1)

]
hδ2α2(k

′, s′)hβ2γ2(k2, s2)hδ1α1(k, s) [h(k1, s1), γ
µ]β1γ1

+ f(x, k1)
[
∂µf(x, k2)

]
hδ2α2

(k′, s′)hβ1γ1(k1, s1)hδ1α1
(k, s) [h(k2, s2), γ

µ]β2γ2

− f(x, k) [∂µf(x, k′)]hβ1γ1(k1, s1)hβ2γ2(k2, s2)hδ1α1(k, s) [h(k
′, s′), γµ]δ2α2

− 1

2

[
f(x, k′)∂µf(x, k)− f(x, k)∂µf(x, k′)

]
× hβ1γ1(k1, s1)hβ2γ2(k2, s2)hδ2α2

(k′, s′) [h(k, s), γµ]δ1α1

}
. (4.92)

When comparing to the nonlocal collisions for spin-0 particles, cf. Subsec. 4.3.3, Eqs. (4.91) and (4.92)
are the essential new contributions that arise from the nontrivial internal structure of the particles.
The remaining contributions were already present in the scalar case, where we proved that they vanish.
Indeed, as we will show now, this is also the case for Dirac fields, such that the contributions from the
positive-energy projectors is the only source of nonlocality at first order in the Planck constant.6 The
third contribution consists in the u1, u2-derivatives acting on the arguments of the Wigner functions
in the loss terms, leading to

Cnonlocal
III (x, k, s) = − iℏ

4m

m4

4

∫
dΓ1 dΓ2 dΓ

′ dS̄(k) (2πℏ)4δ(4)(k + k′ − k1 − k2)

×Mα1α2β1β2Mγ1γ2δ1δ2 [∂µk f(x, k)] [∂µf(x, k
′)]

× hβ1γ1(k1, s1)hβ2γ2(k2, s2)hδ2α2
(k′, s′) [h(k, s), h(k, s̄)]δ1α1

. (4.93)

6One may wonder why there are no contributions that contain momentum-derivatives from the so-called “Poisson-
bracket terms” that arise in the literature [148, 149]. The reason lies in the ℏ-gradient expansion, in which these terms,
corresponding to the nonlocal contributions III and IV, only give nonvanishing corrections at second and higher orders.
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After performing the dS̄(k)-integration trivially, this term vanishes since h(k, s) and Λ+(k) commute.
In the fourth contribution, the derivatives act on the delta functions in the loss terms, yielding

Cnonlocal
IV (x, k, s) = − iℏ

4m

m4

4

∫
dΓ1 dΓ2 dΓ

′ dS̄(k) (2πℏ)4δ(4)(k + k′ − k1 − k2)

×Mα1α2β1β2Mγ1γ2δ1δ2hβ1γ1(k1, s1)hβ2γ2(k2, s2) [h(k, s), h(k, s̄)]δ1α1

× [∂µf(x, k)]
[
hδ2α2

(k′, s′)∂µk′f(x, k
′) + {h(k′, s′), γµ}δ2α2

f(x, k′)
]
. (4.94)

As has been the case with Cnonlocal
III (x, k, s), this term vanishes after performing the dS̄(k)-integration.

Then, the total nonlocal collision term is simply given by the sum of Eqs. (4.91) and (4.92), i.e.,

Cnonlocal(x, k, s) = −
iℏ
4m

m4

2

∫
dΓ1 dΓ2 dΓ

′ (2πℏ)4δ(4)(k + k′ − k1 − k2)Mα1α2β1β2Mγ1γ2δ1δ2

×
{
f(x, k2)

[
∂µf(x, k1)

]
hδ2α2(k

′, s′)hβ2γ2(k2, s2)hδ1α1(k, s) [h(k1, s1), γ
µ]β1γ1

+ f(x, k1)
[
∂µf(x, k2)

]
hδ2α2

(k′, s′)hβ1γ1(k1, s1)hδ1α1
(k, s) [h(k2, s2), γ

µ]β2γ2

− f(x, k) [∂µf(x, k′)]hβ1γ1(k1, s1)hβ2γ2(k2, s2)hδ1α1(k, s) [h(k
′, s′), γµ]δ2α2

− f(x, k′) [∂µf(x, k)]hβ1γ1(k1, s1)hβ2γ2(k2, s2)hδ2α2(k
′, s′) [h(k, s), γµ]δ1α1

− ∂µ
[
f(x, k1)f(x, k2)− f(x, k)f(x, k′)

]
× hβ1γ1(k1, s1)hβ2γ2(k2, s2)hδ2α2(k

′, s′) [h(k, s), γµ]δ1α1

}
. (4.95)

Interestingly, the terms that are proportional to the derivative of f(x, k) cancel each other, which will
get a clear interpretation in the next subsection.

4.4.4 Summary

Collecting the local and nonlocal contributions to the collision kernel given by Eqs. (4.85) and (4.95),
respectively, the Boltzmann equation for the on-shell distribution function in extended phase space
takes on the form

k · ∂f(x, k, s) = C(x, k, s)

=
1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k) (2πℏ)4δ(4) (k + k′ − k1 − k2)W(1/2)

×
[
f(x+∆1 −∆, k1, s1)f(x+∆2 −∆, k2, s2)− f(x, k, s̄)f(x+∆′ −∆, k′, s′)

]
.

(4.96)

Here we defined the (local) transition rate7

W(1/2) :=
m4

2
Mα1α2β1β2Mγ1γ2δ1δ2hβ1γ1(k1, s1)hβ2γ2(k2, s2)hδ2α2

(k′, s′)

× [hδ1β(k, s̄)hβα1
(k, s) + hδ1β(k, s)hβα1

(k, s̄)] (4.97)

and interpreted the nonlocal terms (which are proportional to gradients of the distribution functions)
as the first-order correction in a Taylor expansion, e.g.

f(x+∆, k, s) = f(x, k, s) + ∆ · ∂f(x, k, s) +O(ℏ2) , (4.98)

7Compared to Ref. [46], there is a discrepancy of a factor of two in the kinetic equation, which is compensated by
corresponding inverse factors in the transition rate and the nonlocal shifts. The difference merely lies in where the
volume factor belonging to the integral over s̄ is put.
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and analogously for the other terms. The spacetime shifts ∆, which are of first order in ℏ, are defined
as

∆µ
1 := − iℏ

8m

m4

W(1/2)
Mα1α2β1β2Mγ1γ2δ1δ2hβ2γ2(k2, s2)hδ2α2

(k′, s′)hδ1α1
(k, s) [h(k1, s1), γ

µ]β1γ1
,

(4.99a)

∆µ
2 := − iℏ

8m

m4

W(1/2)
Mα1α2β1β2Mγ1γ2δ1δ2hβ1γ1(k1, s1)hδ2α2

(k′, s′)hδ1α1
(k, s) [h(k2, s2), γ

µ]β2γ2
,

(4.99b)

∆′µ := − iℏ
8m

m4

W(1/2)
Mα1α2β1β2Mγ1γ2δ1δ2hβ1γ1(k1, s1)hβ2γ2(k2, s2)hδ1α1

(k, s) [h(k′, s′), γµ]δ2α2
,

(4.99c)

∆µ := − iℏ
8m

m4

W(1/2)
Mα1α2β1β2Mγ1γ2δ1δ2hβ1γ1(k1, s1)hβ2γ2(k2, s2)hδ2α2

(k′, s′) [h(k, s), γµ]δ1α1
,

(4.99d)

and they are orthogonal to their respective momenta, i.e., they fulfill ∆j · kj = 0, where ∆j ∈
{∆,∆′,∆1,∆2} and kj ∈ {k, k′, k1, k2}.

The interpretation of the nonlocal terms now becomes clear: They represent a spacetime shift of
the colliding particles. More specifically, each particle j is shifted by a (different) amount ∆j , in
addition to a global shift of −∆. This also gives a meaning to the fact that there are no nonlocal
terms proportional to the gradient of f(x, k, s), since in that case the individual and the global shift
cancels. The fact that the particles do not collide at the same spacetime point is in fact mandatory for
particles with spin, since only in that case there is a finite orbital angular momentum at the point of
the collision. This, however, is necessary to enable the exchange of orbital angular momentum and
spin in a collision, since only the total angular momentum Jµν := (ℏ/2)Σµνs + x[µkν] is conserved [44].
At this point, we remark that similar nonlocalities have also been obtained in a nonrelativistic setting
[148, 150, 151]. Furthermore, we stress that the shifts (4.99) are Lorentz-covariant objects, and
thus, apart from situations where the collisions are local and all shifts vanish identically, there is no
possibility to choose a so-called “no-jump frame” where they become zero [152].
We can now also see that the form (3.106) which we assumed for the antisymmetric part of the
energy-momentum tensor, while conveying the right idea, was a little too simple, since the shift ∆
depends on all momenta. We will come back to this quantity in Subsec. 6.2.2, where we will deduce
its correct form from the conservation of the total angular momentum, and compute it explicitly in
Appendix B.3.

To conclude this section, we seek a connection to the standard Boltzmann equation (4.3) and consider
the case where the distribution functions do not depend on their respective spin variables. Then, we can
perform the integrals over spin space, such that the factors of h(kj , sj) inW(1/2) become positive-energy
projectors. The unpolarized transition rate is obtained by averaging over the incoming and summing
over the outgoing spins, yielding

|M(k, k′, k1, k2)|2 :=
1

4

∑
r,r′

∑
r2

∣∣⟨k, k′; r, r′| t̂ ∣∣k2; r2〉∣∣2
= 4m4Mα1α2β1β2Mγ1γ2δ1δ2Λ+

β1γ1
(k1)Λ

+
β2γ2

(k2)Λ
+
δ1α1

(k)Λ+
δ2α2

(k′) . (4.100)

Using the definition above and averaging over the spin variable s [i.e., integrating Eq. (4.96) over s
and dividing by two], we obtain the known form of the spin-averaged Boltzmann equation

k · ∂f(x, k) = g

2

∫
dK1 dK2 dK

′(2πℏ)4δ(4)(k + k′ − k1 − k2)
|M(k, k′, k1, k2)|2

16

× [f(x, k1)f(x, k2)− f(x, k)f(x, k′)] , (4.101)

where the spin-degeneracy factor is g = 2.
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4.5 Vector fields

The methods that have to be applied to determine the kinetic equation for (massive) vector particles
with spin 1 are in essence identical to the ones employed for Dirac spinors, since both types of fields
transform in a nontrivial representation of the Lorentz group. Nevertheless, there are some technical
differences due to the different constraint equations that they fulfill.

4.5.1 Rewriting expectation values

In the case of spin 1, the “in”-fields are given by

V̂ µin(x) :=
√
ℏ
∑
λ

∫
d4k

(2πℏ)3
Θ(k0)δ(k2 −m2)e−

i
ℏk·xϵ(λ)µ(k)âin(k, σ) , (4.102)

where the prefactor of
√
ℏ is needed to recover the correct units of the vector field and is the same

as in the scalar case, cf. Eq. (4.30). Here, the spin index λ runs from −1 to +1, and ϵ(λ)µ(k) are
polarization vectors which are required to be orthogonal to their associated momentum k. They are
constructed to fulfill the following orthogonality and completeness relations,

ϵ∗(λ)µ(k)ϵ(λ
′)

µ (k) = −δλλ′ , (4.103a)∑
λ

ϵ∗(λ)µ(k)ϵ(λ)ν(k) = −Kµν . (4.103b)

Note that the negative signs are necessary because of the signature of Minkowski space. Consequently,
we define the “in”-Wigner function for the Proca field,

Wµν
in (x, k) := −2

ℏ

∫
d4ve−

i
ℏk·v

〈
V̂ †µ
in

(
x+

v

2

)
V̂ νin

(
x− v

2

)〉
, (4.104)

where it should be noted that the Lorentz indices are switched when compared to the general
convention (4.10), which however will not influence the calculation significantly. Specializing Eq. (4.23)
to the spin-1 case, it reads〈

Ô
〉
=

∞∑
n=0

1

n!

∫
d4x̄n

∫
d4k̄n

(2πℏ)4n
On,µ1ν1···µnνn(x̄

n; k̄n)

n∏
j=1

W
µjνj
in (x̄j , k̄j) , (4.105)

where we defined

On,µ1ν1···µnνn(x̄
n; k̄n) :=

(−1)n
2n

∫
d4un

(2πℏ)4n
∑
λn,λ′n in

⟪k̄n − un

2
;λn
∣∣∣∣ Ô ∣∣∣∣k̄n +

un

2
;λ′n⟫

in

×

 n∏
j=1

e
i
ℏuj ·x̄j ϵ(λj)

µj

(
k̄j −

uj
2

)
ϵ
∗(λ′

j)
νj

(
k̄j +

uj
2

) . (4.106)

Note that, as mentioned before, compared to the general case the Lorentz indices of the Wigner
function are reversed, which is due to its definition (4.104), but plays no role otherwise.

Expressing Cµν in terms of Wµν
in

As we have done in the previous sections, we now turn to expanding the collision term Cµν in terms
of the “in”-Wigner function (and thus in terms of the full Wigner function). First we rewrite the
collision term as the following Fock-space average,

Cµν(x, k) =
〈
e

i
ℏ P̂ ·xΦ̂µν(k)e−

i
ℏ P̂ ·x

〉
, (4.107)
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with the operator

Φ̂µν(k) := −i
∫

d4ve
i
ℏk·v

[
V̂ †µ

(v
2

)
ρ̂ ν
(
−v
2

)
− ρ̂ †µ

(v
2

)
V̂ ν
(
−v
2

)]
. (4.108)

Note that in this case, as for spin-0 particles, we do not have to use the Heisenberg equation of
motion (4.63), since the equation of motion for V̂ µ is of second order already and there are thus no
additional differential operators acting on the source terms, in contrast to the case of Dirac spinors.
Making use of Eq. (4.105), we can express the collision term as

Cµν(x, k) =
∞∑
n=2

1

n!

∫
d4x̄n

∫
d4k̄n

(2πℏ)4n
Φµνn,µ1ν1···µnνn(x̄

n; k̄n|k)
n∏
j=1

W
µjνj
in (x+ x̄j , k̄j) , (4.109)

where we introduced

Φµνn,µ1ν1···µnνn(x̄
n; k̄n|k) := (−1)n

2n

∫
d4un

(2πℏ)4n
∑
λn,λ′n in

⟪k̄n − un

2
;λn
∣∣∣∣ Φ̂µν(k) ∣∣∣∣k̄n +

un

2
;λ′n⟫

in

×

 n∏
j=1

e
i
ℏuj ·x̄j ϵ(λj)

µj

(
k̄j −

uj
2

)
ϵ
∗(λ′

j)
νj

(
k̄j +

uj
2

) . (4.110)

As discussed before, we will restrict ourselves to the binary-collision approximation and truncate the
sum over n after the first term. Furthermore, it should be noted that, considering Eq. (3.165), only
the parts of Φµν orthogonal to kµ will contribute to the kinetic equation.8

Inserting a complete set of “out”-states and performing the integration over v yields

in

〈
k2 − u2

2
;λ2
∣∣∣∣Φ̂µν(k) ∣∣∣∣k2 + u2

2
;λ′2

〉
in

= − i
2

∑
σ′

∫
dK ′

in

〈
k2 − u2

2
;λ2
∣∣∣∣[V̂ †µ(0)

∣∣∣∣k′;σ′
〉

out out

〈
k′;σ′

∣∣∣∣ρ̂ ν(0)
− ρ̂ †µ(0)

∣∣∣∣k′;σ′
〉

out out

〈
k′;σ′

∣∣∣∣V̂ ν(0)] ∣∣∣∣k2 + u2

2
;λ′2

〉
in

(2πℏ)4δ(4) (k + k′ − k1 − k2) . (4.111)

In order to evaluate the expectation values involving the full vector fields at the origin, we need to
relate them to their “in”-counterparts and the retarded propagator via the Yang-Feldman equation
for spin-1 particles,

V̂ µ(0) = V̂ µin(0) +

∫
d4xGµνR (−x)ρ̂ν(x) . (4.112)

Inserting this relation into the expectation values in Eq. (4.111), we obtain

out

〈
k′;σ′

∣∣∣∣V̂ µ(0) ∣∣∣∣k2 + u2

2
;λ′2

〉
in

=
√
ℏ(2πℏ)32k′0

[
ϵ(λ

′
1)µ
(
k1 +

u1
2

)
δ(3)

(
k′ − k2 −

u2

2

)
δσ′λ′

2
+ (1↔ 2)

]
+ G̃µνR

(
k1 + k2 +

u1 + u2
2

− k′
)

out

〈
k′;σ′

∣∣∣∣ρ̂ν(0) ∣∣∣∣k2 + u2

2
;λ′2

〉
in

, (4.113)

8This is a consequence of the fact that the distribution function f in extended phase space is constructed to contain
only the independent components of the Wigner function.
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where we used the Fourier decomposition of the retarded propagator. Inserting Eq. (4.113) into Eq.
(4.111), we find

in

〈
k2 − u2

2
;λ2
∣∣∣∣Φ̂µν(k) ∣∣∣∣k2 + u2

2
;λ′2

〉
in

= − i
2

∑
σ′

∫
dK ′(2πℏ)4δ(4) (k + k′ − k1 − k2)

(
out

〈
k′;σ′

∣∣∣∣ρ̂ ν(0) ∣∣∣∣k2 + u2

2
;λ′2

〉
in

×
{√

ℏ(2πℏ)32k′0
[
ϵ∗(λ1)µ

(
k1 −

u1
2

)
δ(3)

(
k′ − k2 +

u2

2

)
δσ′λ2

+ (1↔ 2)
]

+ G̃∗µα
R

(
k − u1 + u2

2

)
in

〈
k2 − u2

2
;λ2
∣∣∣∣ρ̂ †
α(0)

∣∣∣∣k′;σ′
〉

out

}
−

in

〈
k2 − u2

2
;λ2
∣∣∣∣ρ̂ †µ(0)

∣∣∣∣k′;σ′
〉

out

×
{√

ℏ(2πℏ)32k′0
[
ϵ(λ

′
1)ν
(
k1 +

u1
2

)
δ(3)

(
k′ − k2 −

u2

2

)
δσ′λ′

2
+ (1↔ 2)

]
+ G̃ναR

(
k +

u1 + u2
2

)
out

〈
k′;σ′

∣∣∣∣ρ̂α(0) ∣∣∣∣k2 + u2

2
;λ′2

〉
in

})
. (4.114)

In order to evaluate the matrix elements of the source terms in Eq. (4.114), we first rewrite

out

〈
k′;σ′

∣∣∣∣ρ̂ ν(0) ∣∣∣∣k2 + u2

2
;λ′2

〉
in

=

3∑
σ=0

gσσϵ(σ)ν
(
k +

u1 + u2
2

)
ϵ∗(σ)α

(
k +

u1 + u2
2

)
×

out

〈
k′;σ′

∣∣∣∣ρ̂α(0) ∣∣∣∣k2 + u2

2
;λ′2

〉
in

, (4.115)

where we introduced a timelike polarization vector ϵ(0)µ(k) := kµ/k, such that
3∑

σ′=0

gσ
′σ′
ϵ(σ

′)µ(k)ϵ∗(σ
′)ν(k) = Eµν +Kµν = gµν . (4.116)

It is important to note that the term containing the timelike polarization vector in the sum in Eq.
(4.115) is actually one order higher in ℏ than the others. To see this, consider the action of the
respective four-momentum on the source term,(

kα +
uα1 + uα2

2

)
out

〈
k′;σ′

∣∣∣∣ρ̂α(0) ∣∣∣∣k2 + u2

2
;λ′2

〉
in

=
out

〈
k′;σ′

∣∣∣∣ [ρ̂α(0), P̂α] ∣∣∣∣k2 + u2

2
;λ′2

〉
in

= iℏ
out

〈
k′;σ′

∣∣∣∣ (∂ · ρ̂ ) (0) ∣∣∣∣k2 + u2

2
;λ′2

〉
in

.

(4.117)

If the source was conserved, this term would vanish identically. Even though we do not assume this,
we will see shortly that such a term will not contribute to the Boltzmann equation to first order in
ℏ. The contraction of a polarization vector with a source term can be related to the transfer-matrix
elements through

ϵ∗(σ)α (k) out⟨k′;σ′|ρ̂α(0)
∣∣k2;λ′2〉

in
= − 1√

ℏ
⟨k, k′;σ, σ′| t̂

∣∣k2;λ′2〉 . (4.118)

From this equation and Eq. (4.117) we deduce that all transfer-matrix elements in which one of the
polarizations is timelike, i.e., where σ = 0, are one order higher in ℏ than their counterparts where all
polarizations are spacelike. Next we recall Eq. (3.141a) and write the retarded vector boson propagator
in terms of the retarded Green’s function of the Klein-Gordon field,

G̃µνR (k) = ∆̃R(k)

(
gµν − k2

m2
Eµν

)
= ∆̃R(k)

3∑
σ=0

gσσϵ(σ)µ(k)ϵ∗(σ)ν(k)

(
1− k2

m2
δσ0

)
. (4.119)
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Inserting Eqs. (4.115), (4.118), and (4.119) into Eq. (4.114), we obtain

in

〈
k2 − u2

2
;λ2
∣∣∣∣Φ̂µν(k) ∣∣∣∣k2 + u2

2
;λ′2

〉
in

= −i(2πℏ)4
3∑

σ,σ′=0

gσσgσ
′σ′

(
δ

(
k0 − k01 − k02 +

√(
k2 −

u2

2

)2
+m2

)
δ(3)

(
k− k1 −

u2

2

)
δσ′λ1

×
〈
k +

u1 + u2
2

, k2 −
u2
2
;σ, λ2

∣∣∣∣ t̂ ∣∣∣∣k2 + u2

2
;λ′2

〉
ϵ(σ)ν

(
k +

u1 + u2
2

)
ϵ∗(σ

′)µ

(
k − u1 + u2

2

)
+ (1↔ 2)−

[
δ

(
k0 − k01 − k02 +

√(
k2 +

u2

2

)2
+m2

)
δ(3)

(
k− k1 +

u2

2

)
δσλ′

1

×
〈
k2 − u2

2
;λ2
∣∣∣∣ t̂ † ∣∣∣∣k − u1 + u2

2
, k2 +

u2
2
;σ′, λ′2

〉
ϵ∗(σ

′)µ

(
k − u1 + u2

2

)
ϵ(σ)ν

(
k +

u1 + u2
2

)
+ (1↔ 2)

]
− 1

2ℏ
∑
σ′′

∫
dK ′ϵ∗(σ

′)µ

(
k − u1 + u2

2

)
ϵ(σ)ν

(
k +

u1 + u2
2

)
×
〈
k2 − u2

2
;λ2
∣∣∣∣ t̂ † ∣∣∣∣k − u1 + u2

2
, k′;σ′, σ′′

〉〈
k′, k +

u1 + u2
2

;σ′′, σ

∣∣∣∣ t̂ ∣∣∣∣k2 + u2

2
;λ′2

〉
×
{
∆̃R

(
k − u1 + u2

2

)[
1−

(
k − u1+u2

2

)2
m2

δσ′0

]

− ∆̃∗
R

(
k +

u1 + u2
2

)[
1−

(
k + u1+u2

2

)2
m2

δσ0

]}
δ(4) (k + k′ − k1 − k2)

)
, (4.120)

where we inserted identities in order to be able to factor out the sums over σ and σ′. As done in the
previous sections, in the first four terms on the right-hand side of Eq. (4.120), we separate the real
and imaginary parts of t̂ and t̂ † in order to make use of the optical theorem

i

2

〈
k2;λ2

∣∣ t̂− t̂ † ∣∣p2;λ′2〉 = − (2πℏ)4

16

∑
ρ2

∫
dQ1 dQ2 δ

(4)(q1 + q2 − k1 − k2)

×
〈
k2;λ2

∣∣ t̂ ∣∣q2; ρ2〉 〈q2; ρ2∣∣ t̂ † ∣∣p2;λ′2〉 . (4.121)

As mentioned previously, we will not consider the Vlasov-type contributions from the real parts of
the transfer matrix further. Lastly, in order to obtain a manifestly covariant expression, we need to
relate the transfer-matrix elements to the tree-level vertices of the theory via

⟨k, k′;σ, σ′| t̂
∣∣k2;λ′2〉 = ϵ∗(σ)γ1 (k)ϵ∗(σ

′)
γ2 (k′)ϵ(λ

′
1)

δ1
(k1)ϵ

(λ′
2)

δ2
(k2)M

γ1γ2δ1δ2(k, k′, k1, k2) . (4.122)

Since vector particles constitute bosons, we have the following symmetry relations,

Mγ1γ2δ1δ2(k, k′, k1, k2) =Mγ2γ1δ1δ2(k′, k, k1, k2) =Mγ1γ2δ2δ1(k, k′, k2, k1) ,

while the assumption that M is symmetric under the exchange of incoming and outgoing momenta
(together with the fact that t̂ † = t̂ at tree level) yields〈

k2;λ′2
∣∣ t̂ † |k, k′;σ, σ′⟩ = ϵ

∗(λ′
1)

δ1
(k1)ϵ

∗(λ′
2)

δ2
(k2)ϵ

(σ)
γ1 (k)ϵ(σ

′)
γ2 (k′)Mδ1δ2γ1γ2(k, k′, k1, k2) . (4.123)

From now on we will only consider the part of the collision term that is orthogonal to the four-
momentum, which we will label by an index “⊥”, and split it into on- and off-shell contributions, i.e.,

Cµν⊥ (x, k) := Kµ
µ′Kν

ν′Cµ′ν′
(x, k) =: 4πℏδ(k2 −m2)Cµν⊥ (x, k) + Cµν⊥,off-shell(x, k) . (4.124a)

As in the previous sections, the off-shell terms are assumed to be nonsingular on the mass shell.
Similarly, we define the on-shell components of the Wigner function through

Wµν(x, k) =: 4πℏδ(k2 −m2)Wµν
⊥,on-shell(x, k) +Wµν

⊥,off-shell(x, k) , (4.124b)
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and neglect the off-shell contributions inside the collision term on account of Theorem 1.
The following steps are the same as in Secs. 4.3 and 4.4: We use the completeness relation of the
polarization vectors (4.103b), expand the Wigner function to first order around x̄1 = x̄2 = 0, and
perform the dx̄2-integrations, such that we obtain

Cµν⊥ (x, k)

=
(2πℏ)4

32

∫
dK1 dK2 dK

′
∫

d4u2Kµ
µ′Kν

ν′

(
K − U1 + U2

2

)µ′α(
K +

U1 + U2

2

)ν′β

×
(
δ(4)(k + k′ − k1 − k2)K ′

η2γ2

(
K1 +

U1

2

)
δ1β1

(
K2 +

U2

2

)
δ2β2

(
K1 −

U1

2

)
α1ζ1

×
(
K2 −

U2

2

)
α2ζ2

gαη1gβγ1

2∏
j=1

{[
δ(4)(uj)− iℏ∂ρuj

δ(4)(uj)∂ρ

]
W

αjβj

on-shell(x, kj)
}

×Mγ1γ2δ1δ2

(
k +

u1 + u2
2

, k′, k1 +
u1
2
, k2 +

u2
2

)
×Mζ1ζ2η1η2

(
k − u1 + u2

2
, k′, k1 −

u1
2
, k2 −

u2
2

)
− 1

2
δ(4)

(
k + k′ − k1 − k2 +

u1
2

)(
K ′ +

U2

2

)
η2β2

(
K +

U1 − U2

2

)
η1β1

(
K ′ − U2

2

)
α2γ2

×K1,δ1ζ1K2,δ2ζ2gαα1
gβγ1

{[
δ(4)(u1)− iℏ∂ρu1

δ(4)(u1)∂ρ

]
Wα1β1

on-shell

(
x, k − u2

2

)}
×
{[
δ(4)(u2)− iℏ∂ρu2

δ(4)(u2)∂ρ

]
Wα2β2

on-shell (x, k
′)
}

×Mγ1γ2δ1δ2

(
k +

u1 + u2
2

, k′ − u2
2
, k1, k2

)
Mζ1ζ2η1η2

(
k +

u1 − u2
2

, k′ +
u2
2
, k1, k2

)
− 1

2
δ(4)

(
k + k′ − k1 − k2 −

u1
2

)(
K ′ +

U2

2

)
η2β2

(
K +

U2 − U1

2

)
α1γ1

(
K ′ − U2

2

)
α2γ2

×K1,δ1ζ1K2,δ2ζ2gαη1gββ1

{[
δ(4)(u1)− iℏ∂ρu1

δ(4)(u1)∂ρ

]
Wα1β1

on-shell

(
x, k +

u2
2

)}
×
{[
δ(4)(u2)− iℏ∂ρu2

δ(4)(u2)∂ρ

]
Wα2β2

on-shell (x, k
′)
}

×Mγ1γ2δ1δ2

(
k +

u2 − u1
2

, k′ − u2
2
, k1, k2

)
Mζ1ζ2η1η2

(
k − u1 + u2

2
, k′ +

u2
2
, k1, k2

))
.

(4.125)

As in the previous calculations for particles of spins 0 and 1/2, we were able to employ the relation
(4.45) since the difference of the retarded Green’s function and its complex conjugate can be evaluated
at the same momentum. Furthermore, we defined the projectors orthogonal to the sum of momenta k
and q as

(K +Q)
µν := gµν − (k + q)µ(k + q)ν

(k + q)α(k + q)α
.

In Eq. (4.125), it can be seen that to first order the terms in the sum in Eq. (4.120) that include
timelike polarizations, i.e., where σ = 0 or σ′ = 0, do not contribute to the on-shell collision kernel
orthogonal to the four-momentum. This is due to the fact that the transfer-matrix elements containing
timelike polarizations are one order higher in the ℏ-gradient expansion than their counterparts which
include only spacelike polarizations, cf. Eq. (4.117).

When comparing Eq. (4.125) to its spin-1/2 analogue (4.74), it becomes clear that the projectors
orthogonal to the momentum, which arise from the completeness relation (4.103b), take on the role that
the positive-energy projectors Λ+ played in the case of Dirac fields. Thus, we may expect that the
nonlocality of the collision term will, to first order in ℏ, arise solely because of the u1, u2-dependence
of these projectors. As we will see in Subsec. 4.5.3, this is indeed the case. In the remainder of this
section, we will again assume for simplicity that the vertices M do not depend on the momentum.
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4.5.2 Local collisions

Taking into account the terms without u1, u2-derivatives in Eq. (4.125), we find

Cµν⊥,local(x, k) =
1

32

∫
dK1 dK2 dK

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mγ1γ2δ1δ2Mζ1ζ2η1η2KµαKνβ

×
[
K ′
η2γ2K1,δ1β1

K2,δ2β2
K1,α1ζ1K2,α2ζ2gαη1gβγ1W

α1β1

on-shell(x, k1)W
α2β2

on-shell(x, k2)

− 1

2
K ′
η2β2

K ′
α2γ2K1,δ1ζ1K2,δ2ζ2 (Kη1β1

gαα1
gβγ1 +Kα1γ1gαη1gββ1

)

×Wα1β1

on-shell (x, k)W
α2β2

on-shell (x, k
′)

]
. (4.126)

In order to be able to translate this expression into extended phase space, we notice that all Wigner
functions in Eq. (4.126) are contracted with projectors that are orthogonal to the respective momentum.
Since this contraction removes the components that are parallel to the momentum, we have

Kµ
αK

ν
βW

αβ
on-shell(x, k) = KµνfK,on-shell(x, k) + iϵµναβ

kα
m
Gon-shell,β(x, k) + FµνK,on-shell(x, k)

≡
∫

dS(k)hµν(k, s)f(x, k, s) , (4.127)

where we defined
hµν(k, s) :=

1

3
Kµν +

i

2
ϵµναβ

kα
m

sβ +Kµν
αβs

αsβ , (4.128)

cf. Eqs. (3.154), (3.168) and (3.175). Then, Eq. (4.126) becomes

Cµν⊥,local(x, k) =
1

32

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)Mγ1γ2δ1δ2Mζ1ζ2η1η2KµαKνβ

×
[
h′γ2η2(k

′, s′)hζ1δ1(k1, s1)hζ2δ2(k2, s2)gαη1gβγ1f(x, k1, s1)f(x, k2, s2)

− 1

2
hγ2η2(k

′, s′)hζ1δ1(k1, s1)hζ2δ2(k2, s2) [hαη1(k, s̄)gβγ1 + gαη1hγ1β(k, s̄)]

× f (x, k, s̄) f (x, k′, s′)
]
, (4.129)

where we used that
Kµ

αh
αν(k, s) = hµα(k, s)Kα

ν = hµν(k, s) , (4.130)

as well as ∫
dS(k)hµν(k, s) = Kµν . (4.131)

Lastly, we use that the on-shell part of the collision kernel in extended phase space can be written as9

C(x, k, s) = Hνµ(k, s)C
µν(x, k) , (4.132)

where we defined
Hµν(k, s) :=

1

3
Kµν +

i

2
ϵµναβ

kα
m

sβ +
5

8
Kµν
αβs

αsβ , (4.133)

cf. Eq. (3.166a). At this point it is interesting to note that in the case of Dirac fields we did not have
to distinguish between h and H, as is evident from Eqs. (4.79) and (4.84). Furthermore, note that
Eqs. (4.128) and (4.133) differ only at second order in the spin vector s. Utilizing Eq. (4.132), we find

Clocal(x, k, s) =
1

64

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)Mγ1γ2δ1δ2Mζ1ζ2η1η2

× h′γ2η2(k′, s′)hζ1δ1(k1, s1)hζ2δ2(k2, s2)
× [hγ1

α(k, s̄)Hαη1(k, s) +Hγ1
α(k, s)hαη1(k, s̄)]

× [f(x, k1, s1)f(x, k2, s2)− f (x, k, s̄) f (x, k′, s′)] , (4.134)
9We can omit the index “⊥” since H is orthogonal to the four-momentum anyway.
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where we used that∫
dS̄(k) [hγ1

α(k, s̄)Hαη1(k, s) +Hγ1
α(k, s)hαη1(k, s̄)] = 2Hγ1η1(k, s) . (4.135)

Note the remarkable similarity of Eqs. (4.85) and (4.134), where the difference in prefactors arises
because of the different normalization of basis spinors ur(k) and polarization vectors ϵ(λ)(k), which are
2m and 1, respectively. Furthermore, as we found in the spin-1/2 case, the loss term in Eq. (4.134)
depends on (k, s̄), and not on (k, s). Contrary to the case of Dirac fields, in the case of particles of
spin 1 or higher it is not possible to redefine the collision term in extended phase space to remove the
integration over s̄ except in some special cases, such as the equilibrium one discussed in Sec. 4.6.

4.5.3 Nonlocal collisions

The steps to obtain the nonlocal part of the collision term are essentially the same as the ones presented
for Dirac fields in Subsec. 4.4.3: Integrating by parts in u1, u2 in Eq. (4.125) leaves us with four
contributions, which we label by Roman numbers. The first contribution consists of the derivatives
acting on the projectors (K ± U1/2± U2/2)

µν in front of everything on the right-hand side, which we
evaluate by using that

∂λu

(
K +

U

2

)µν ∣∣∣∣
u=0

= − 1

2m2
gλ(µkν) +

kλkµkν

m4
. (4.136)

Note that the second term in the equation above will not contribute since the first index of the
projectors which the derivative acts on is contracted with a projector orthogonal to k. As a result we
obtain

Cµν⊥,nonlocal,I(x, k) =
iℏ
2m2

1

32

∫
dK1 dK2 dK

′(2πℏ)4δ(4)(k + k′ − k1 − k2)

×Mγ1γ2δ1δ2Mζ1ζ2η1η2
(
KρµkαKνβ −KµαKρνkβ

)
×
{
K ′
η2γ2gαη1gβγ1∂ρ [Won-shell,ζ1δ1(x, k1)Won-shell,ζ2δ2(x, k2)]

− 1

2
K1,δ1ζ1K2,δ2ζ2 (gαα1

gβγ1Kη1β1
+ gαη1gββ1

Kα1γ1)

× ∂ρ
[
Won-shell,γ2η2(x, k

′)Wα1β1

on-shell(x, k)
]}

, (4.137)

where we used that

Wµν(x, k) = KµνfK(x, k) +O(ℏ) , (4.138)

and thus Kµ
αW

αβ(x, k)Kβ
ν =Wµν(x, k)+O(ℏ). Translating this equation into extended phase space

and using the fact that the distribution functions are independent of the spin variable at zeroth order
in ℏ we find

Cnonlocal
I (x, k, s) = − iℏ

2m2

1

32

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)

×Mγ1γ2δ1δ2Mζ1ζ2η1η2hγ2η2(k
′, s′)hζ1δ1(k1, s1)hζ2δ2(k2, s2)

× [Hρ
η1(k, s)kγ1 −Hγ1

ρ(k, s)kη1 ] ∂ρ

[
f(x, k1)f(x, k2)−

1

2
f(x, k)f(x, k′)

]
.

(4.139)
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In the second contribution to the nonlocal collision term, the u1, u2-derivatives act on the remaining
projectors, giving

Cnonlocal
II (x, k, s) =

iℏ
2m2

1

32

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mγ1γ2δ1δ2Mζ1ζ2η1η2

×
{
f(x, k2) [∂ρf(x, k1)]hγ2η2(k

′, s′)hζ2δ2(k2, s2)Hγ1η1(k, s)

× [hρδ1(k1, s1)k1,ζ1 − hζ1ρ(k1, s1)k1,δ1 ]
+ f(x, k1) [∂ρf(x, k2)]hγ2η2(k

′, s′)hζ1δ1(k1, s1)Hγ1η1(k, s)

× [hρδ2(k2, s2)k2,ζ2 − hζ2ρ(k2, s2)k2,δ2 ]
− f(x, k) [∂ρf(x, k′)]hζ1δ1(k1, s1)hζ2δ2(k2, s2)Hγ1η1(k, s)

×
[
hρη2(k

′, s′)k′γ2 − hγ2ρ(k′, s′)k′η2
]

− 1

2
[f(x, k′)∂ρf(x, k)− f(x, k)∂ρf(x, k′)]hζ1δ1(k1, s1)hζ2δ2(k2, s2)

× hγ2η2(k′, s′) [Hρ
η1(k, s)kγ1 −Hγ1

ρ(k, s)kη1 ]

}
. (4.140)

The third and fourth contributions to the collision term consist of the derivatives acting on the Wigner
functions and momentum-conserving delta functions in the loss term, respectively. As we showed in the
previous section for spin-1/2 particles, these terms vanish to first order in ℏ, which is also true in the
spin-1 case. The reason is the same as discussed in Subsec. 4.4.3, namely that the two contributions to
the loss term cancel, since the momentum-space shifts u1, u2 appear with opposite signs in them and
the Wigner functions are proportional to momentum-space projectors to zeroth order in ℏ. Thus, we
have to first order in the Planck constant10

Cnonlocal
III (x, k, s) = 0 , (4.141a)

Cnonlocal
IV (x, k, s) = 0 , (4.141b)

such that the total nonlocal collision term for spin-1 particles is given by the sum of Eqs. (4.139) and
(4.140),

Cnonlocal(x, k, s) =
iℏ
2m2

1

32

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mγ1γ2δ1δ2Mζ1ζ2η1η2

×
{
f(x, k2) [∂ρf(x, k1)]hγ2η2(k

′, s′)hζ2δ2(k2, s2)Hγ1η1(k, s)

× [hρδ1(k1, s1)k1,ζ1 − hζ1ρ(k1, s1)k1,δ1 ]
+ f(x, k1) [∂ρf(x, k2)]hγ2η2(k

′, s′)hζ1δ1(k1, s1)Hγ1η1(k, s)

× [hρδ2(k2, s2)k2,ζ2 − hζ2ρ(k2, s2)k2,δ2 ]
− f(x, k) [∂ρf(x, k′)]hζ1δ1(k1, s1)hζ2δ2(k2, s2)Hγ1η1(k, s)

×
[
hρη2(k

′, s′)k′γ2 − hγ2ρ(k′, s′)k′η2
]

− f(x, k′) [∂ρf(x, k)]hζ1δ1(k1, s1)hζ2δ2(k2, s2)hγ2η2(k′, s′)
× [Hρ

η1(k, s)kγ1 −Hγ1
ρ(k, s)kη1 ]

− ∂ρ [f(x, k1)f(x, k2)− f(x, k)f(x, k′)]hζ1δ1(k1, s1)hζ2δ2(k2, s2)

× hγ2η2(k′, s′) [Hρ
η1(k, s)kγ1 −Hγ1

ρ(k, s)kη1 ]

}
. (4.142)

As in the case of Dirac fermions, the terms proportional to the gradient of f(x, k) cancel each other.

10As we shall see in Sec. 5.5, this is in accordance with the fact that in the KB approach some contributions belonging
to the Poisson-bracket terms vanish.
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4.5.4 Summary

We add the nonlocal collision term (4.142) to the local contribution (4.134) and interpret them as the
first two contributions in a Taylor series, such that the Boltzmann equation can be cast in the
following form,

k · ∂f(x, k, s) = C(x, k, s)

=
1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k) (2πℏ)4δ(4)(k + k′ − k1 − k2)W(1)

× [f(x+∆1 −∆, k1, s1)f(x+∆2 −∆, k2, s2)− f(x, k, s̄)f(x+∆′ −∆, k′, s′)] ,
(4.143)

which is formally identical to Eq. (4.96). In the spin-1 case the local transition rate is defined as

W(1) :=
1

32
Mγ1γ2δ1δ2Mζ1ζ2η1η2hζ1δ1(k1, s1)hζ2δ2(k2, s2)hγ2η2(k

′, s′)

× [hγ1
α(k, s̄)Hαη1(k, s) +Hγ1

α(k, s)hαη1(k, s̄)] , (4.144)

while the spacetime shifts read11

∆µ
1 :=

1

3

iℏ
32m2

1

W(1)
Mγ1γ2δ1δ2Mζ1ζ2η1η2hζ2δ2(k2, s2)hγ2η2(k

′, s′)Hγ1η1(k, s)

× [hµδ1(k1, s1)k1,ζ1 − hζ1µ(k1, s1)k1,δ1 ] , (4.145a)

∆µ
2 :=

1

3

iℏ
32m2

1

W(1)
Mγ1γ2δ1δ2Mζ1ζ2η1η2hζ1δ1(k1, s1)hγ2η2(k

′, s′)Hγ1η1(k, s)

× [hµδ2(k2, s2)k2,ζ2 − hζ2µ(k2, s2)k2,δ2 ] , (4.145b)

∆′µ :=
1

3

iℏ
32m2

1

W(1)
Mγ1γ2δ1δ2Mζ1ζ2η1η2hζ1δ1(k1, s1)hζ2δ2(k2, s2)Hγ1η1(k, s)

×
[
hµη2(k

′, s′)k′γ2 − hγ2µ(k′, s′)k′η2
]
, (4.145c)

∆µ :=
1

3

iℏ
32m2

1

W(1)
Mγ1γ2δ1δ2Mζ1ζ2η1η2hζ1δ1(k1, s1)hζ2δ2(k2, s2)hγ2η2(k

′, s′)

× [Hµ
η1(k, s)kγ1 −Hγ1

µ(k, s)kη1 ] . (4.145d)

As before, they fulfill ∆j · kj = 0. Interestingly, even though spin-1 particles have a richer internal
structure than their spin-1/2 counterparts, to first order the Boltzmann equations for Dirac and
Proca fields are formally identical, with minor modifications in the definition of the spacetime shifts
and transition rates. In our formalism, the differences between particles of different spin is encoded in
their dependence on the spin variable s, in the sense that the distribution function of a spin-j particle
contains contributions of all orders ≤ 2j in s.

Lastly, we seek to establish a connection with the usual Boltzmann equation (4.3). Computing the
unpolarized transition rate

|M(k, k′, k1, k2)|2 :=
1

9

∑
λ,λ′

∑
λ2

∣∣⟨k, k′;λ, λ′| t̂ ∣∣k2;λ2〉∣∣2
=

1

9
Mγ1γ2δ1δ2Mζ1ζ2η1η2K1,δ1ζ1K2,δ2ζ2Kη1γ1K

′
η2γ2 , (4.146)

integrating Eq. (4.143) over s, and dividing by three, we find the spin-averaged Boltzmann equation

k · ∂f(x, k) = g

2

∫
dK1 dK2 dK

′(2πℏ)4δ(4)(k + k′ − k1 − k2)
|M(k, k′, k1, k2)|2

16

× [f(x, k1)f(x, k2)− f(x, k)f(x, k′)] , (4.147)

where, as expected, the spin-degeneracy factor is now g = 3.
11The factor of 1/3 has to be present to cancel the factor of 3 that arises from trivially computing the dS̄(k)-integral.
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4.6 Equilibrium

The main results of this chapter are the kinetic equations for the distribution functions in extended
phase space, given by Eqs. (4.51), (4.96), and (4.143) for spin 0, 1/2 and 1, respectively. While in the
case of scalar fields, the spin space is trivial and the collisions are purely local, in the cases of nonzero
spin the particles do not collide at the same spacetime point x. We will now see what effects this
has on the local-equilibrium distribution function feq(x, k, s), which is defined by the property that it
makes the collision term vanish, i.e., it fulfills C[feq](x, k, s) = 0. Note that this distribution function
does not need to satisfy the Boltzmann equation [43, 115], which is what defines global equilibrium.

From the form of the kinetic equations, where quantum-statistical effects were neglected, it is apparent
that the local-equilibrium distribution function should be of Maxwell-Jüttner form,

feq(x, k, s) =: exp [g(x, k, s)] , (4.148)

where g(x, k, s) has to consist of summational invariants, i.e., quantities that are additively conserved in
a collision. In our formulation, which assumed a monatomic gas, there are three distinct summational
invariants, namely a constant which we take to be unity, the four-momentum kµ and the total angular
momentum Jµν . Taking the function g(x, k, s) to be a linear combination of these quantities, we have
[44, 45, 47]

feq(x, k, s) = exp

[
α0(x)− b0(x) · k +

1

2
Ω0,µν(x)J

µν

]
= exp

[
α0(x)− β0(x) · k + σ

ℏ
2
Ω0,µν(x)Σ

µν
s

]
, (4.149)

where σ ∈ {0,1⁄2, 1} is the spin of the particles and α0(x), β0(x), and Ω0(x) are arbitrary functions
of spacetime, which act as Lagrange multipliers and can be associated to the chemical potential
over temperature, the four-temperature and the so-called spin potential, respectively. Note that in the
second step we used Jµν = σℏΣµνs +x[µkν], where Σµνs has been defined in Eq. (3.97), and absorbed the
second part (constituting the contribution from the orbital angular momentum) into the Lagrange
multiplier β0(x), which is defined as

βµ0 (x) := bµ0 (x) + Ωµν0 (x)xν . (4.150)

Inserting the Ansatz (4.149) into the generic form of the collision terms (4.96), (4.143) and expanding
to first order in ℏ, we find

C[feq](x, k, s) =
1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k) (2πℏ)4δ(4)(k + k′ − k1 − k2)W(σ)e2α0−β0·(k+k′)

×
[
σ
ℏ
2
Ω0,µν

(
Σµνs1 +Σµνs2 − Σµνs̄ − Σµνs′

)
+ (∆1 +∆2 −∆−∆′) · ∂α0

− (∆µ
1k

ν
1 +∆µ

2k
ν
2 −∆µkν −∆′µk′ν) ∂µβ0,ν

]
, (4.151)

where we also used the conservation of momentum.

Weak equivalence principle

At this point, we run into a problem: In order to proceed, we need to use the conservation of the total
angular momentum, which reads

Jµν(x, k, s) + Jµν(x, k′, s′)− Jµν(x, k1, s1)− Jµν(x, k2, s2) = 0 . (4.152)

However, the terms involving the microscopic dipole tensor Σ are not proportional to s, but to s̄. In
order to remedy this, we have to remember the fact that only quantities which are integrated over the
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spin variable s correspond to observables, which means that, as long as the integrated quantities stay
the same, we are free to redefine the objects in extended phase space. Specifically, we may reformulate

C(x, k, s)→ C̃(x, k, s) , f(x, k, s)→ f̃(x, k, s) , (4.153)

as long as [44] ∫
dS(k)sµ1 · · · sµn f̃(x, k, s) =

∫
dS(k)sµ1 · · · sµnf(x, k, s) , (4.154a)∫

dS(k)sµ1 · · · sµnC̃(x, k, s) =

∫
dS(k)sµ1 · · · sµnC(x, k, s) , (4.154b)

where n ∈ {0, · · · , 2j} for spin-j particles. From the definition in terms of the components of the
Wigner function, we immediately obtain f̃(x, k, s) = f(x, k, s), which leaves the collision term to
be modified such that the terms which depend on s̄ switch their argument to s. In general, this is
not possible for particles of spin higher than 1/2. Since we are interested in equilibrium, however, we
may use that the equilibrium distribution function only features a linear dependence on s up to first
order in ℏ, which stems from the fact that quantities of higher order in spin (which may be related
to higher-order polarization phenomena, such as alignment [18, 28]) are not connected to conserved
quantities directly. Then, it suffices to consider Eq. (4.154b) only up to n = 1. For parity-conserving
interactions it holds that∫

dSi(ki)W(σ) sµi = 0 ,

∫
dSi(ki)dSj(kj)W(σ) sµiK

νλ
αβ s

α
j s
β
j = 0 , (4.155)

where si, sj ∈ {s1, s2, s′, s, s̄}, since the quantities in Eq. (4.155) transform as pseudotensors under
parity, while the only tensor structures at our disposal are given by an odd number of powers of
momentum, which transform as tensors. We then make use of the equalities∫

dS̄(k)
[
hαα

′
(k, s)hα

′β(k, s̄) + hαα
′
(k, s̄)hα

′β(k, s)
]
= 2hαβ(k, s) , (4.156a)∫

dS(k)sρdS̄(k)s̄σ
[
hαα

′
(k, s)hα

′β(k, s̄) + hαα
′
(k, s̄)hα

′β(k, s)
]
= 2

∫
dS(k)sρsσhαβ(k, s) , (4.156b)

for the terms appearing in the spin-1/2 case, and∫
dS̄(k) [Hµα(k, s)hα

ν(k, s̄) + hµα(k, s̄)Hα
ν(k, s)] = 2Hµν(k, s) , (4.157a)∫

dS(k)sρdS̄(k)s̄σ [Hµα(k, s)hα
ν(k, s̄) + hµα(k, s̄)Hα

ν(k, s)] = 2

∫
dS(k)sρsσHµν(k, s) , (4.157b)

for the quantities appearing for spin 1. Subsequently, we may replace s̄ with s and remove the
dS̄-integral in Eq. (4.151) while redefining the transition rates as

W̃(1/2) := m4Mα1α2β1β2(k, k′, k1, k2)M
γ1γ2δ1δ2(k, k′, k1, k2)

× hβ1γ1(k1, s1)hβ2γ2(k2, s2)hδ1α1
(k, s)hδ2α2

(k′, s′) , (4.158)

and

W̃(1) :=
1

16
Mγ1γ2δ1δ2(k, k′, k1, k2)M

ζ1ζ2η1η2(k, k′, k1, k2)

×Hζ1δ1(k1, s1)Hζ2δ2(k2, s2)Hγ1η1(k, s)Hγ2η2(k
′, s′) , (4.159)

respectively.12 After using the conservation of the total angular momentum, we then find

C̃[feq](x, k, s) =
1

2

∫
dΓ1 dΓ2 dΓ

′ (2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(σ)e2α0−β0·(k+k′)

×
[
σ
ℏ
2
(Ω0,µν −ϖµν)

(
Σµνs1 +Σµνs2 − Σµνs − Σµνs′

)
+ (∆1 +∆2 −∆−∆′) · ∂α0

− 1

2
(∆µ

1k
ν
1 +∆µ

2k
ν
2 −∆µkν −∆′µk′ν) ∂(µβ0,ν)

]
. (4.160)

12In Eq. (4.159), we used that hµν(k, s) = Hµν(k, s) to linear order in s (which are the only relevant terms for this
case).
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From the equation above, we see that the collision term vanishes exactly only if

∂(µβ0,ν) = 0 , ∂µα0 = 0 , Ω0,µν = ϖµν ≡ −
1

2
∂[µβ0,ν] . (4.161)

The conditions above imply that β0 is at most a linear function of x, i.e.,

βµ0 = bµ +ϖµνxν , (4.162)

with b, ϖ = const. Note that this form of the four-temperature β0 coincides with the one in Eq. (2.28)
derived from the global maximization of the entropy. Consequently, the conditions (4.161) constitute
global equilibrium, which not only makes the collision kernel vanish, but also fulfills the Boltzmann
equation. Inserting the equilibrium distribution function subject to the constraints (4.161) into the
left-hand side of the kinetic equation, we indeed find

k · ∂
[
exp

(
α0 − bµkµ − kµϖµνxν + σ

ℏ
2
ϖµνΣ

µν
s

)]
= 0 . (4.163)

Thus, for particles with spin, when defining the state of local equilibrium by requiring the collision
term to vanish exactly, it coincides with the state of global equilibrium. We will inspect this statement
more closely when developing dissipative hydrodynamics with spin in Chapter 6.
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Chapter 5

The kinetic equation in the KB
approach

In this chapter, we show an alternative way of expressing the collision terms (4.2) as functionals of the
on-shell distribution functions f(x, k, s) in extended phase space. This method is originally accredited
to Kadanoff and Baym [147, 149] and is based on the Dyson-Schwinger equations. Compared
to the GLW method treated in Chapter 4, this approach has the advantage of retaining the effects
of quantum statistics, which we expect to appear in the kinetic equation on the grounds of standard
kinetic theory, cf. Eq. (4.3).

5.1 Two-point functions

The objects we are going to analyze in the following are the different possible two-point functions of
the system in question, which encode correlations between the fields φ̂ at different spacetime points.
Note that we will always assume the vacuum expectation values of the fields to vanish, i.e., ⟨φ̂⟩ = 0.
Considering the fields at the two spacetime points x1 ≡ (t1,x1) and x2 ≡ (t2,x2), there are four basic
two-point functions. Firstly, we may not impose any time ordering and define two-point functions
where the fields appear in the same (opposite) order compared to the arguments of the Green’s
function, thus yielding the greater (lesser) propagators1

G>ab(x1, x2) :=
〈
φ̂a(x1)φ̂b(x2)

〉
, (5.1a)

G<ab(x1, x2) := ±
〈
φ̂b(x2)φ̂a(x1)

〉
, (5.1b)

where the plus and minus signs apply to bosons and fermions, respectively. Alternatively, we may order
the field operators according to whether t1 is larger than t2 or vice versa. Opting for the standard
time ordering, denoted by the operator T̂ , gives the Feynman propagator,

GF
ab(x1, x2) :=

〈
T̂
[
φ̂a(x1)φ̂b(x2)

]〉
≡ Θ(t1 − t2)

〈
φ̂a(x1)φ̂b(x2)

〉
±Θ(t2 − t1)

〈
φ̂b(x2)φ̂a(x1)

〉
≡ Θ(t1 − t2)G>ab(x1, x2) + Θ(t2 − t1)G<ab(x1, x2) . (5.1c)

1We use the term “propagator” somewhat loosely here, since the two-point functions that we are using are differing
from the actual propagators by appropriate factors of i, compare, e.g., Refs. [86, 135, 153].
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∞t0 t

Figure 5.1: The closed-time path C .

Choosing the anti-time ordering, for which we use the operator T̂A, yields the so-called anti-Feynman
or Dyson propagator [154],

GF̄
ab(x1, x2) :=

〈
T̂A

[
φ̂a(x1)φ̂b(x2)

]〉
≡ Θ(t2 − t1)

〈
φ̂a(x1)φ̂b(x2)

〉
±Θ(t1 − t2)

〈
φ̂b(x2)φ̂a(x1)

〉
≡ Θ(t2 − t1)G>ab(x1, x2) + Θ(t1 − t2)G<ab(x1, x2) . (5.1d)

These two-point functions are not all independent; indeed we manifestly have

GF̄ +GF = G> +G< . (5.2)

Furthermore, we define the retarded and advanced propagators,

GRab(x1, x2) := Θ(t1 − t2)
[
G>ab(x1, x2)−G<ab(x1, x2)

]
, (5.3a)

GAab(x1, x2) := −Θ(t2 − t1)
[
G>ab(x1, x2)−G<ab(x1, x2)

]
. (5.3b)

Finally, note that the following relations hold,

GF = GR +G< = GA +G> , (5.4a)

GF̄ = G> −GR = G< −GA . (5.4b)

5.1.1 The Keldysh contour

The four basic propagators defined in Eqs. (5.1) can be combined by evaluating the two-point function
along the so-called Keldysh contour [155]. This contour, which we denote by C , runs from t0 to
∞, where it turns around and runs from ∞ back to t0, cf. Fig. 5.1. We then define contour-ordered
correlation functions, indicated by the operator T̂C , such that the fields are ordered according to where
their time arguments appear on the Keldysh contour, i.e., the field appearing at the first position
has the time argument that is the farthest on the contour. Note that, if fields have to be permuted,
appropriate minus signs are added for fermions. Specifically, we consider the contour-ordered two-point
function

Gab(x1, x2) :=
〈
T̂C

[
φ̂a(x1)φ̂b(x2)

]〉
. (5.5)

Depending on where the arguments t1 and t2 lie on the contour C , G will assume different forms. To
see this, consider the situation where both t1 and t2 lie on the upper half of the contour; in this case
the contour-ordering T̂C will be equivalent to the standard time-ordering T̂ . Similarly, if both t1 and
t2 lie on the lower half of the contour, T̂C acts the same way as the anti-time ordering T̂A. If t1 and
t2 lie on the upper (lower) and lower (upper) half of the contour, respectively, t2 (t1) will always be
further advanced on C and thus appear in front. Summarizing, we may write

Gab(x1, x2) =


GFab(x1, x2) , if t1, t2 on upper half ,
G<ab(x1, x2) , if t1 on upper half, t2 on lower half ,
G>ab(x1, x2) , if t2 on upper half, t1 on lower half ,
GF̄ab(x1, x2) , if t1, t2 on lower half .

(5.6)
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Denoting these four cases by “++”, “+−”, “−+”, and “−−”, where + (−) indicates a position on the
upper (lower) half of the contour, we can put the contour-ordered two-point function in the following
matrix form,

G =

(
G++ G+−

G−+ G−−

)
=

(
GF G<

G> GF̄

)
. (5.7)

The Dyson-Schwinger equation for the contour-ordered two-point function reads

G−1
0,acG

AB
cb (x1, x2) = −icABδabδ(4)(x1 − x2) +

i

λ2

∫
d4x′ΣACac (x1, x

′)cCDG
DB
cb (x′, x2) . (5.8a)

Here, G−1
0 is the inverse free propagator for the respective fields, and Σ is the self-energy of the

field. Furthermore, we defined c := diag(1,−1), where the minus sign is needed due to the different
orientation of the lower half of the contour. The factor λ, which was introduced in Eq. (4.8) and is
equal to

√
ℏ and 1 for bosons and fermions, respectively, is convenient to factor out due to different

powers of ℏ appearing in the inverse free propagators on the left-hand side. Note also that in Eq.
(5.8a) the inverse free propagator is taken to act on the argument x1, and in the case of vector fields
the Kronecker delta has to be replaced by a metric tensor. The adjoint of the Dyson-Schwinger
equation is given by

GABac (x1, x2)
←−
G∗−1

0,cb = −icABδabδ(4)(x1 − x2) +
i

λ2

∫
d4x′GACac (x1, x

′)cCDΣ
DB
cb (x′, x2) , (5.8b)

where the inverse free propagator now acts on x2. Explicitly, we have for the lesser propagator[
G−1

0,ac −
i

λ2
ΣMF
ac (x1)

]
G<cb(x1, x2) =

i

λ2

∫
d4x′

[
ΣFac(x1, x

′)G<cb(x
′, x2)− Σ<ac(x1, x

′)GF̄cb(x
′, x2)

]
=

i

λ2

∫
d4x′

[
ΣRac(x1, x

′)G<cb(x
′, x2) + Σ<ac(x1, x

′)GAcb(x
′, x2)

]
,

(5.9a)

as well as

G<ac(x1, x2)

[←−
G∗−1

0,cb −
i

λ2
ΣMF
cb (x2)

]
=

i

λ2

∫
d4x′

[
GFac(x1, x

′)Σ<cb(x
′, x2)−G<ac(x1, x′)ΣF̄cb(x′, x2)

]
=

i

λ2

∫
d4x′

[
GRac(x1, x

′)Σ<cb(x
′, x2) +G<ac(x1, x

′)ΣAcb(x
′, x2)

]
,

(5.9b)

where we employed Eqs. (5.4). Here we took into account that the self-energy in principle contains a
mean-field part that is responsible for mass- and momentum corrections, i.e.,

Σ++(x, x′) = ΣMF(x)δ(4)(x− x′) + ΣF (x, x′) , (5.10a)

Σ−−(x, x′) = −ΣMF(x)δ(4)(x− x′) + ΣF̄ (x, x′) , (5.10b)

whereas we have Σ±∓(x, x′) = Σ≶(x, x′).

5.2 The Kadanoff-Baym equations

In order to arrive at a quantum kinetic theory, we do not need to consider the lesser propagator per se,
but rather its Wigner transform

G<ab(x, k) :=

∫
d4ve−

i
ℏk·vG<ab

(
x− v

2
, x+

v

2

)
, (5.11a)

whose inverse is given by

G<ab(x1, x2) =

∫
d4k

(2πℏ)4
e

i
ℏk·(x2−x1)G<ab

(
x1 + x2

2
, k

)
. (5.11b)
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This definition differs from (the expectation value of) Eq. (3.31)2 only by a factor, i.e., G<(x, k) ≡
±W (x, k)/κ, where κ depends on the spin of the field and has been introduced in Subsec. 3.2.2. In
order to conform with the standard notation, we will keep using G<(x, k) for the Wigner function in
this chapter.

In the following we list some identities of Wigner transforms [86]. First, as already remarked in Eqs.
(3.36), a derivative acting on a function f (which may be matrix-valued) will become a Bopp operator
after the Wigner transform,

iℏ
∂

∂xµ1
f(x1, x2) −→ Dµf(x, k) , −iℏ ∂

∂xµ2
f(x1, x2) −→ D∗

µf(x, k) . (5.12a)

Second, the product of two (possibly matrix-valued) functions, where one of them depends on only one
argument, becomes in Wigner space

f(x1)g(x1, x2) −→ f(x)g(x, k)− iℏ
2

[
∂µf(x)

]
[∂µk g(x, k)] +O(ℏ2) , (5.12b)

f(x2)g(x1, x2) −→ f(x)g(x, k) +
iℏ
2

[
∂µf(x)

]
[∂µk g(x, k)] +O(ℏ2) . (5.12c)

Finally, the convolution of two functions becomes∫
d4x′f(x1, x

′)g(x′, x2) −→ f(x, k)g(x, k)− iℏ
2
{f(x, k), g(x, k)}PB +O(ℏ2) , (5.12d)

where we defined the Poisson brackets

{f(x, k), g(x, k)}PB :=
[
∂µf(x, k)

]
[∂µk g(x, k)]− [∂µk f(x, k)]

[
∂µg(x, k)

]
. (5.13)

Note that these brackets fulfill (for matrix-valued quantities A and B)

{A,B}PB,ab = −
{
BT, AT

}
PB,ba , (5.14)

where T denotes the transpose. Equation (5.12a) was already proved in Sec. 3.2.2 for the case of the
Wigner function, but can be shown to hold for any Wigner transform by considering

Dµf(x, k) =

∫
d4ye−

i
ℏk·v

[
kµ +

iℏ
2
(∂µ1 + ∂µ2 )

]
f
(
x− v

2
, x+

v

2

)
=

∫
d4ve−

i
ℏk·v

[
iℏ
←−
∂µv +

iℏ
2
(∂µ1 + ∂µ2 )

]
f
(
x− v

2
, x+

v

2

)
= iℏ

∫
d4ve−

i
ℏk·v∂µ1 f

(
x− v

2
, x+

v

2

)
. (5.15)

Here, we defined ∂1 (∂2) as a derivative w.r.t. the first (second) argument of the subsequent function.
In order to prove Eq. (5.12b), we compute

f(x1)g(x1, x2) −→
∫

d4ve−
i
ℏk·vf

(
x− v

2

)
g
(
x− v

2
, x+

v

2

)
=

∫
d4ve−

i
ℏk·v

[
f (x)− 1

2
v · ∂f(x)

]
g
(
x− v

2
, x+

v

2

)
+O(ℏ2)

=

∫
d4ve−

i
ℏk·v

[
f (x)− 1

2
iℏ
←−
∂µk · ∂f(x)

]
g
(
x− v

2
, x+

v

2

)
+O(ℏ2)

= f(x)g(x, k)− iℏ
2

[
∂µf(x)

]
[∂µk g(x, k)] +O(ℏ2) . (5.16)

Here, we assumed the function g(x1, x2) to be sharply peaked at x1 = x2 [86], such that we may expand
the quantities in the integral around v = 0. The idea behind this expansion is that the function g

2We repeat that, compared to Refs. [28, 45, 54], we use a different convention in that we assign the factor of (2πℏ)4
to the momentum-space measure, in accordance with Ref. [46].
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will be taken to be one of the propagators; if we are in a regime where quantum kinetic theory is
applicable, there has to be a sufficient separation of microscopic and macroscopic scales, as we already
discussed in previous chapters. While the macroscopic scales will in this case be either related to
inverse macroscopic gradients or the mean free path, the microscopic scale is characterized by the
range of the interaction, which manifests itself in the correlation length between fields, i.e., the values
of the two-point functions at different spacetime points. The proof of Eq. (5.12c) works in the same
way as shown in Eq. (5.16), such that we now concentrate on proving Eq. (5.12d),∫

d4x′f(x1, x
′)g(x′, x2)

−→
∫

d4v

∫
d4x′e−

i
ℏk·vf

(
x− v

2
, x′
)
g
(
x′, x+

v

2

)
=

∫
d4y′

∫
d4z′e−

i
ℏk·(y′+z′)f

(
x− y′ + z′

2
, x+

y′ − z′
2

)
g

(
x+

y′ − z′
2

, x+
y′ + z′

2

)
=

∫
d4y′

∫
d4z′e−

i
ℏk·(y′+z′)

[
f

(
x− y′

2
, x+

y′

2

)
− 1

2
z′ · ∂xf

(
x− y′

2
, x+

y′

2

)]
×
[
g

(
x− z′

2
, x+

z′

2

)
+

1

2
y′ · ∂xg

(
x− z′

2
, x+

z′

2

)]
+O(ℏ2)

= f(x, k)g(x, k)− iℏ
2

{[
∂µf(x, k)

][
∂µk g(x, k)

]
−
[
∂µk f(x, k)

][
∂µg(x, k)

]}
+O(ℏ2)

≡ f(x, k)g(x, k)− iℏ
2
{f(x, k), g(x, k)}PB +O(ℏ2) . (5.17)

In this calculation, we substituted v = y′ + z′, x′ = x+ (y′ − z′)/2 and expanded f (g) around z′ = 0
(y′ = 0). Both of these expansions are permissible since the relevant expansion point is y′ = z′ = 0.

Making use of Eqs. (5.12), we obtain from Eqs. (5.9){
G−1

0,ac −
i

λ2
ΣMF
ac (x)− ℏ

2λ2
[
∂µΣ

MF
ac (x)

]
∂µk

}
G<cb(x, k)

=
i

λ2
[
ΣRac(x, k)G

<
cb(x, k) + Σ<ac(x, k)G

A
cb(x, k)

]
+

ℏ
2λ2

[{
ΣR(x, k), G<(x, k)

}
PB,ab +

{
Σ<(x, k), GA(x, k)

}
PB,ab

]
+O(ℏ3) , (5.18a)

as well as

G<ac(x, k)

{←−
G∗−1

0,cb −
i

λ2
ΣMF
cb (x) +

ℏ
2λ2
←−
∂µk
[
∂µΣ

MF
cb (x)

]}
=

i

λ2
[
GRac(x, k)Σ

<
cb(x, k) +G<ac(x, k)Σ

A
cb(x, k)

]
+

ℏ
2λ2

[{
GR(x, k),Σ<(x, k)

}
PB,ab +

{
G<(x, k),ΣA(x, k)

}
PB,ab

]
+O(ℏ3) , (5.18b)

where G−1
0 now denotes the appropriate Wigner transform of the inverse propagator. Equations

(5.18) are the Kadanoff-Baym (KB) equations in general form, which we will analyze in the following
for fields of different spin. Note that they are expanded to second order in the Planck constant. This
is necessary since we will have to cancel a factor of ℏ on both sides when deriving the kinetic equations,
cf. the discussions that led to Eqs. (3.50), (3.83), and (3.153).

Quasiparticle approximation

In order to simplify the KB equations, we will furthermore need to introduce the so-called quasiparticle
approximation, which builds on the fact that, as long as we are in a regime where quantum kinetic
theory is valid, the transformed lesser propagator should behave like a distribution function for particles
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G≶

k′

G≷
k2

G≷

k1k k

Σ≷ = ±
G≷ G≷

k1 k2

G≶

k′

k k

Figure 5.2: Greater and lesser self-energies (in phase space) in the T-matrix approximation.

on the mass shell. Explicitly, we consider the Wigner transform of a retarded or advanced quantity
X, which can be both the Green’s function and the self-energy [156]. Making use of Eqs. (5.3) as
well as the Fourier transform of the Heaviside function,

Θ̃(ω) =
1

2
δ(ω) +

1

2πi
P

1

ω
≡ lim
η→0

1

2πi

1

ω − iη , (5.19)

where P denotes a principal-value integration [cf. Eq. (4.44)], we find

XR(x, k) =
1

2πi
lim
η→0

∫
dp0

1

p0 − k0 − iη
[
X>(x, p0,k)−X<(x, p0,k)

]
=

1

2

[
X>(x, k)−X<(x, k)

]
+

1

2πi
P

∫
dp0

X>(x, p0,k)−X<(x, p0,k)

p0 − k0
(5.20a)

as well as

XA(x, k) =
1

2πi
lim
η→0

∫
dp0

1

p0 − k0 + iη

[
X>(x, p0,k)−X<(x, p0,k)

]
= −1

2

[
X>(x, k)−X<(x, k)

]
+

1

2πi
P

∫
dp0

X>(x, p0,k)−X<(x, p0,k)

p0 − k0
. (5.20b)

With these relations, we are able to express the KB equations solely in terms of greater and lesser
quantities. The quasiparticle approximation then consists in inserting Eqs. (5.20) and neglecting the
principal-value integrations, which depend only on the off-shell parts of the quantity X. These parts
are, according to our analysis from Chapter 3, which of course remains valid, at least of first order
in ℏ, such that their contributions in the Poisson bracket terms is of third order. In fact, we will
verify in the following sections that these off-shell components are of second order in ℏ, such that the
principal-value integrals enter at third order only. Thus, neglecting these terms does not introduce a
further approximation besides the ℏ-expansion.

Self-energies

Another approximation, however, has to enter when expressing the self-energies. In this thesis, similar
to Ref. [46], we consider the self-energies in the T-matrix approximation. In this formulation, the
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greater and lesser self-energies are given by the Feynman diagrams displayed in Fig. 5.2. After a
computation shown in Appendix B.2.1, we obtain them as

Σ
≷
ab(x, k) =

1

2λ6

∫
d4k1
(2πℏ)4

d4k2
(2πℏ)4

d4k′

(2πℏ)4
(2πℏ)4δ(4)(k + k′ − k1 − k2)

×G≷
a1b1

(x, k1)G
≷
a2b2

(x, k2)G
≶
b′a′(x, k

′)Maa′a1a2Mb1b2bb′ . (5.21)

Here, M , as introduced in Chapter 4, denotes the tree-level vertex of the theory, which we assume
to be independent of momentum. In the case of spin-0 particles, it is a scalar quantity, while for
higher-spin particles it is given by a rank-four tensor in the respective internal space. For example,
if we were to consider Dirac fermions in the Nambu-Jona-Lasinio (NJL) model, the interaction
Lagrangian reads [157, 158]

L̂int,NJL :=
∑
c

Gc

[
ψ̂(x)Γ(c)ψ̂(x)

] [
ψ̂(x)Γ(c)ψ̂(x)

]
. (5.22)

Here, the index c runs over the possible channels [i.e., scalar (S), pseudoscalar (P), vector (V), axial
vector (A), and antisymmetric tensor (T), weighted with couplings Gc], while the matrices Γ denote the
corresponding element of the Clifford algebra, i.e., Γ(S) := 1, Γ(P ) := −iγ5, Γ(V ) := γµ, Γ(A) := γ5γ

µ,
and Γ(T ) := σµν , where a sum over the possible Lorentz indices of Γ is understood in Eq. (5.22). In
this setup, the vertex is [46]

Mα1α2β1β2 ≡ 2Gc
ℏ

(
Γ(c)α1β1Γ(c)α2β2 − Γ(c)α1β2Γ(c)α2β1

)
, (5.23)

where the minus sign is necessary to preserve the antisymmetry under fermion exchange. Similarly, if
we were to consider massive vector bosons interacting via a scalar four-point interaction of strength G,

L̂int,V := ℏG
(
V̂ † · V̂

)2
, (5.24)

the vertex would read [28]

Mµναβ ≡ 2ℏ2G(gµαgνβ + gµβgνα) , (5.25)

where the positive sign takes care of the symmetry under boson exchange.

Note that we did not consider the mean-field part of the self-energies in this approximation, which
corresponds to tadpole-type diagrams [86, 146]. These contributions, as can be deduced from the KB
equations (5.18), are responsible for corrections to the momentum and the energy of the particles
as well as Vlasov-type terms, which are usually written on the left-hand side of the Boltzmann
equation. The fact that we set ΣMF = 0 is equivalent to neglecting the real parts of the transfer matrix
in the GLW approach in Chapter 4, cf. the remarks after Eqs. (4.42), (4.70), and (4.121).

Taking these considerations into account and inserting Eqs. (5.20) into the KB equations, we arrive at

G−1
0,acG

<
cb(x, k) =

i

2λ2
[
Σ>ac(x, k)G

<
cb(x, k)− Σ<ac(x, k)G

>
cb(x, k)

]
+

ℏ
4λ2

[{
Σ>(x, k), G<(x, k)

}
PB,ab −

{
Σ<(x, k), G>(x, k)

}
PB,ab

]
, (5.26a)

G<ac(x, k)
←−
G∗−1

0,cb =
i

2λ2
[
G>ac(x, k)Σ

<
cb(x, k)−G<ac(x, k)Σ>cb(x, k)

]
+

ℏ
4λ2

[{
G>(x, k),Σ<(x, k)

}
PB,ab −

{
G<(x, k),Σ>(x, k)

}
PB,ab

]
, (5.26b)

where terms of third and higher orders in ℏ have been omitted. In the following sections, we will use
this form of the KB equations to derive kinetic equations for particles of spins 0, 1/2, and 1.
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5.3 Scalar fields

Let us consider Eqs. (5.26) for charged scalar fields; in that case the inverse free propagator in real
space is simply given by G−1

0 (x) = □+m2/ℏ2, such that the respective Wigner transforms read

ℏ2G−1
0 = m2 −D2 = −k2 +m2 − iℏk · ∂ +

ℏ2

4
□ , (5.27a)

ℏ2
←−
G∗−1

0 = m2 −←−D∗2 = −k2 +m2 + iℏk · ←−∂ +
ℏ2

4

←−
□ . (5.27b)

Multiplying Eqs. (5.26) by ℏ2 and remembering that λ =
√
ℏ, we thus find(

−k2 +m2 − iℏk · ∂ +
ℏ2

4
□

)
G<(x, k)

=
iℏ
2

[
Σ>(x, k)G<(x, k)− Σ<(x, k)G>(x, k)

]
+

ℏ2

4

[{
Σ>(x, k), G<(x, k)

}
PB −

{
Σ<(x, k), G>(x, k)

}
PB

]
, (5.28a)(

−k2 +m2 + iℏk · ∂ +
ℏ2

4
□

)
G<(x, k)

=
iℏ
2

[
G>(x, k)Σ<(x, k)−G<(x, k)Σ>(x, k)

]
+

ℏ2

4

[{
G>(x, k),Σ<(x, k)

}
PB −

{
G<(x, k),Σ>(x, k)

}
PB

]
. (5.28b)

Taking the sum and difference of Eqs. (5.28) and truncating at first order in ℏ, we obtain(
k2 −m2

)
G<(x, k) = 0 , (5.29a)

k · ∂G<(x, k) = 1

2

[
G>(x, k)Σ<(x, k)−G<(x, k)Σ>(x, k)

]
. (5.29b)

Here we canceled a global factor of iℏ in Eq. (5.29b) and employed Eq. (5.14), which for scalar
particles simply reads {

G≶,Σ≷
}

PB
= −

{
Σ≷, G≶

}
PB

. (5.30)

Equation (5.29a) reveals that the Wigner function G< is on shell up to first order in ℏ. Thus, we do
not need to invoke Theorem 1 to evaluate the Boltzmann equation (5.29b) on the mass shell, since
up to first order in ℏ no off-shell contributions arise. Comparing Eq. (5.29b) to Eq. (3.50), we can
identify the collision terms,

1

2

[
G>(x, k)Σ<(x, k)−G<(x, k)Σ>(x, k)

]
= −ℏIm

∫
d4v e−

i
ℏk·v

〈
ϕ̂†
(
x+

v

2

)
ρ̂
(
x− v

2

)〉
. (5.31)

Writing the lesser and greater Green’s functions as

G<(x, k) = 2πℏ2δ(k2 −m2)f(x, k) , G>(x, k) = 2πℏ2δ(k2 −m2)f̃(x, k) , (5.32)

where we used that κ ≡ 2/ℏ for scalar particles, and inserting the self-energies in the T-matrix
approximation (5.21), we arrive at

k · ∂f(x, k) = 1

2

∫
dK ′ dK1 dK2(2πℏ)4δ(4)(k + k′ − k1 − k2)W(0)

×
[
f(x, k1)f(x, k2)f̃(x, k)f̃(x, k

′)− f(x, k)f(x, k′)f̃(x, k1)f̃(x, k2)
]
, (5.33)

where the restriction to the mass shell is understood and we defined W(0) := M2/16. The function
f̃ ≡ 1 + f gives the Bose enhancement factors, which is shown in Appendix B.2.2. As expected, our
result agrees with the expectations from standard kinetic theory (4.3). When comparing to the result
from the GLW approach (4.51), it becomes apparent that in the KB approach the effect of quantum
statistics is retained rather easily.3

3These effects are also obtainable in the GLW approach, cf., e.g., Ref. [144]. However, the required amount of work is
higher, since the expansion of the collision kernel in terms of Wigner functions has to be extended to fourth order.
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5.4 Spinor fields

Next we turn to the description of Dirac fields, which is more complicated due to the internal structure
of the fields and thus of the Wigner functions. Considering our results from Sec. 4.4, we can already
expect that the collision term will acquire nonlocal parts.

5.4.1 Structure of the equations

The first difference to the case of scalar fields lies in the inverse free propagator, which now takes the
form G−1

0 (x) = i/∂ −m/ℏ in real space. Thus, the needed Wigner transforms are given by

ℏG−1
0 = /D −m = /k −m+

iℏ
2
/∂ , (5.34a)

ℏ
←−
G∗−1

0 =
←−
/D∗ −m = /k −m− iℏ

2

←−
/∂ . (5.34b)

Omitting the spinor indices, the KB equations then read (using that λ = 1)(
/D −m

)
G<(x, k) = Icoll , (5.35a)

G<(x, k)
(←−
/D∗ −m

)
= γ0I†collγ

0 , (5.35b)

where it is understood that
←−
/D∗ := γ · ←−D∗ and we defined

Icoll :=
iℏ
2

[
Σ>(x, k)G<(x, k)− Σ<(x, k)G>(x, k)

]
+

ℏ2

4

[{
Σ>(x, k), G<(x, k)

}
PB −

{
Σ<(x, k), G>(x, k)

}
PB

]
. (5.36)

Here we employed that γ0(G<)†γ0 = G< and similarly for the self-energy. Furthermore, we used the
relation (5.14), which for Dirac fermions takes the form{

G≶,Σ≷
}

PB
= −γ0

{
Σ≷, G≶

}†

PB
γ0 . (5.37)

Comparing Eq. (5.35a) to Eq. (3.75), we can connect the collision terms,

Icoll = −ℏ
∫

d4ve−
i
ℏk·v

〈
ψ̂
(
x+

v

2

)
ρ̂
(
x− v

2

)〉
. (5.38)

Acting with /D +m on Eq. (5.35a) and with
←−
/D∗ +m on Eq. (5.35b), we find(

D2 −m2
)
G<(x, k) = ( /D +m)Icoll , (5.39a)(

D∗2 −m2
)
G<(x, k) = γ0

[
( /D +m)Icoll

]†
γ0 , (5.39b)

Adding and subtracting these equations yields(
k2 −m2 − ℏ2

4
□

)
G<(x, k) =

1

2

{
( /D +m)Icoll + γ0

[
( /D +m)Icoll

]†
γ0
}
, (5.40a)

iℏk · ∂G<(x, k) = 1

2

{
( /D +m)Icoll − γ0

[
( /D +m)Icoll

]†
γ0
}
. (5.40b)

Since we want to compute the distribution function in extended phase space, we make use of the
definition (3.85) (together with the fact that κ = 1 for Dirac fields, i.e., G< ≡ −W ) to obtain(

k2 −m2 − ℏ2

4
□

)
f(x, k, s) = −1

2
ReTr

[
(1+ γ5/s)( /D +m)Icoll

]
, (5.41a)

ℏk · ∂f(x, k, s) = −1

2
ImTr

[
(1+ γ5/s)( /D +m)Icoll

]
. (5.41b)
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Structure of the Wigner function

Before being able to evaluate these equations up to first order in the Planck constant, we need to
clarify the structure of the Wigner functions appearing inside the collision integral Icoll. At this point
we introduce another approximation (that was also employed in the GLW approach), namely neglecting
collisional contributions to the Wigner functions that appear inside the collision terms themselves.
This is justified since the self-energy (5.21) is of second order in the coupling, such that collisional
contributions to the Wigner functions inside Σ≷ would be at least of fourth order. Practically, this
means that the structure of the Wigner function is determined by (a subset of) Eqs. (3.79) and (3.80)
with the right-hand sides set to zero. As before, we decompose the Wigner transforms of the greater
and lesser Green’s functions in terms of the Clifford algebra,

G< =
1

4

(
F + iγ5P + /V + γ5 /A+

1

2
σµνSµν

)
, (5.42a)

G> =
1

4

(
F̃ + iγ5P̃ + /̃V + γ5 /̃A+

1

2
σµν S̃µν

)
. (5.42b)

Then, up to first order in ℏ, the components of the Wigner function which are not independent read

P(x, k) ≃ 0 , Vµ(x, k) ≃ kµ

m
F(x, k) , Sµν(x, k) ≃ ℏ

2m2
∂[µkν]F(x, k)− 1

m
ϵµναβkαAβ(x, k) ,

(5.43a)

P̃(x, k) ≃ 0 , Ṽµ(x, k) ≃ kµ

m
F̃(x, k) , S̃µν(x, k) ≃ ℏ

2m2
∂[µkν]F̃(x, k)− 1

m
ϵµναβkαÃβ(x, k) .

(5.43b)

We may thus write the greater and lesser Green’s functions as

G≷(x, k) ≃ G≷
qc(x, k) +G

≷
∇(x, k) , (5.44)

where we introduced the “quasiclassical” contributions

G<qc(x, k) :=
1

2
Λ+(k)

[
F(x, k) + γ5 /A(x, k)

]
, (5.45a)

G>qc(x, k) :=
1

2
Λ+(k)

[
F̃(x, k) + γ5 /̃A(x, k)

]
, (5.45b)

as well as the “gradient” terms

G<∇(x, k) :=
ℏ

8m2
σµνkν∂µF(x, k) , (5.46a)

G>∇(x, k) :=
ℏ

8m2
σµνkν∂µF̃(x, k) . (5.46b)

The quantities Λ+(k) = (/k +m)/(2m) denote positive-energy projectors and have been introduced in
Eq. (4.57). Furthermore, it is important to note that the quasiclassical terms have contributions both
at zeroth and first order in ℏ, while the gradient terms are of first order only. From Eq. (5.40a) we see
that off-shell effects are either of second order in ℏ or of collisional origin, such that we may approximate
k21 ≃ k22 ≃ k′2 ≃ m2 inside the collision integrals. Translating the components of the Wigner function
into extended phase space via Eq. (3.89), we can express the quasiclassical contributions as

G<qc(x, k) = −4mπℏδ(k2 −m2)

∫
dS(k)h(k, s)f(x, k, s) , (5.47a)

G>qc(x, k) = 4mπℏδ(k2 −m2)

∫
dS(k)h(k, s)f̃(x, k, s) , (5.47b)
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where the quantity h(k, s) = 1
2 (1 + γ5/s)Λ

+(k) is known from Eq. (4.80) and the prefactors are in
accordance with earlier definitions, cf. Eq. (3.100). Note that the minus sign in G<qc is needed because
of the definition (5.1b). The gradient contributions on the other hand read in extended phase space

G<∇(x, k) = −4mπℏδ(k2 −m2)
ℏ

8m2
σµνkν∂µ

∫
dS(k)f(x, k, s) , (5.48a)

G>∇(x, k) = 4mπℏδ(k2 −m2)
ℏ

8m2
σµνkν∂µ

∫
dS(k)f̃(x, k, s) , (5.48b)

where we again took care of the minus sign from fermionic statistics.

Structure of the self-energies

Since the self-energies (5.21) contain Green’s functions, we can also split them in the same way as
shown before,

Σ≷(x, k) ≃ Σ≷
qc(x, k) + Σ

≷
∇(x, k) . (5.49)

Here we defined the quasiclassical contribution as

Σ
≷
qc,αβ(x, k) :=

1

2

∫
d4k1
(2πℏ)4

d4k2
(2πℏ)4

d4k′

(2πℏ)4
(2πℏ)4δ(4)(k + k′ − k1 − k2)Mαα′α1α2

Mβ1β2ββ′

×G≷
qc,α1β1

(x, k1)G
≷
qc,α2β2

(x, k2)G
≶
qc,β′α′(x, k

′) , (5.50)

and the gradient part reads

Σ
≷
∇,αβ(x, k) :=

1

2

∫
d4k1
(2πℏ)4

d4k2
(2πℏ)4

d4k′

(2πℏ)4
(2πℏ)4δ(4)(k + k′ − k1 − k2)Mαα′α1α2

Mβ1β2ββ′

×
[
G

≷
∇,α1β1

(x, k1)G
≷
qc,α2β2

(x, k2)G
≶
qc,β′α′(x, k

′)

+G
≷
qc,α1β1

(x, k1)G
≷
∇,α2β2

(x, k2)G
≶
qc,β′α′(x, k

′)

+G
≷
qc,α1β1

(x, k1)G
≷
qc,α2β2

(x, k2)G
≶
∇,β′α′(x, k

′)
]
. (5.51)

Note that we could restrict ourselves to terms that are linear in the gradient contributions to the
Green’s functions, since they are already of first order in ℏ. Employing Eqs. (5.47) and (5.48), we
can express the quasiclassical parts of the lesser and greater self-energies as

Σ<qc,αβ(x, k) =
m3

2

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mαα′α1α2
Mβ1β2ββ′

× hα1β1(k1, s1)hα2β2(k2, s2)hβ′α′(k′, s′)f(x, k1, s1)f(x, k2, s2)f̃(x, k
′, s′) (5.52a)

and

Σ>qc,αβ(x, k) = −
m3

2

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mαα′α1α2
Mβ1β2ββ′

× hα1β1
(k1, s1)hα2β2

(k2, s2)hβ′α′(k′, s′)f̃(x, k1, s1)f̃(x, k2, s2)f(x, k
′, s′) , (5.52b)

respectively. The gradient parts on the other hand take the forms

Σ<∇,αβ(x, k) =
ℏ

8m2

m3

2

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mαα′α1α2
Mβ1β2ββ′

×
{
σµνα1β1

k1,νhα2β2(k2, s2)hβ′α′(k′, s′)
[
∂µf(x, k1, s1)

]
f(x, k2, s2)f̃(x, k

′, s′)

+ hα1β1(k1, s1)σ
µν
α2β2

k2,νhβ′α′(k′, s′)f(x, k1, s1)
[
∂µf(x, k2, s2)

]
f̃(x, k′, s′)

+hα1β1(k1, s1)hα2β2(k2, s2)σ
µν
β′α′k

′
νf(x, k1, s1)f(x, k2, s2)

[
∂µf̃(x, k

′, s′)
]}

, (5.53a)
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as well as

Σ>∇,αβ(x, k) = −
ℏ

8m2

m3

2

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mαα′α1α2
Mβ1β2ββ′

×
{
σµνα1β1

k1,νhα2β2
(k2, s2)hβ′α′(k′, s′)

[
∂µf̃(x, k1, s1)

]
f̃(x, k2, s2)f(x, k

′, s′)

+ hα1β1
(k1, s1)σ

µν
α2β2

k2,νhβ′α′(k′, s′)f̃(x, k1, s1)
[
∂µf̃(x, k2, s2)

]
f(x, k′, s′)

+hα1β1
(k1, s1)hα2β2

(k2, s2)σ
µν
β′α′k

′
ν f̃(x, k1, s1)f̃(x, k2, s2)

[
∂µf(x, k

′, s′)
]}

. (5.53b)

With these expressions, we are now able to take on the Boltzmann equation in a structured manner.

5.4.2 Evaluating the kinetic equation

Considering Eq. (5.41b) in conjunction with the decompositions (5.44) and (5.49), we can split its
right-hand side into four contributions,

4mπℏδ(k2 −m2)k · ∂f(x, k, s) = Iqc(x, k, s) + I∂(x, k, s) + I∇(x, k, s) + IPB(x, k, s) , (5.54)

where we already discarded the off-shell contributions on the left-hand side due to Theorem 1.4 Here,
the first term contains all quasiclassical contributions,

Iqc(x, k, s) :=
1

4
ReTr

{
(1+ γ5/s)(/k +m)

[
Σ<qc(x, k)G

>
qc(x, k)− Σ>qc(x, k)G

<
qc(x, k)

]}
= mReTr

{
h(k, s)

[
Σ<qc(x, k)G

>
qc(x, k)− Σ>qc(x, k)G

<
qc(x, k)

]}
, (5.55)

where the real part arises because of the imaginary unit in the collision term (5.36) and we employed
the definition of h(k, s). Note that Iqc contains parts of zeroth as well as first order in ℏ. Comparing
Iqc to the collision term (5.36), there is a global sign change due to identifying G< with the negative
of the distribution function, cf. Eqs. (5.41). The second term on the right-hand side of Eq. (5.54),
which is of first order in ℏ, denotes the contribution from the derivative contained in the operator /D,

I∂(x, k, s) := −
ℏ
8
ImTr

{
(1+ γ5/s)/∂

[
Σ<qc(x, k)G

>
qc(x, k)− Σ>qc(x, k)G

<
qc(x, k)

]}
, (5.56)

while the third term (which is also of first order in ℏ) collects the gradient contributions from the
propagators inside the collision terms [cf. Eq. (5.44)],

I∇(x, k, s) := mReTr
{
h(k, s)

[
Σ<qc(x, k)G

>
∇(x, k)− Σ>qc(x, k)G

<
∇(x, k)

+Σ<∇(x, k)G>qc(x, k)− Σ>∇(x, k)G<qc(x, k)
]}
. (5.57)

The fourth term finally contains the contributions of the Poisson-brackets,

IPB(x, k, s) :=
mℏ
2

ImTr
{
h(k, s)

[{
Σ<qc(x, k), G

>
qc(x, k)

}
PB −

{
Σ>qc(x, k), G

<
qc(x, k)

}
PB

]}
=
mℏ
2

ImTr
(
h(k, s)

{ [
∂µΣ

<
qc(x, k)

] [
∂µkG

>
qc(x, k)

]
−
[
∂µkΣ

<
qc(x, k)

] [
∂µG

>
qc(x, k)

]
−
[
∂µΣ

>
qc(x, k)

] [
∂µkG

<
qc(x, k)

]
+
[
∂µkΣ

>
qc(x, k)

] [
∂µG

<
qc(x, k)

] })
, (5.58)

where we could neglect all gradient terms, as they would be at least of second order in ℏ. In the
following, we will compute these four contributions, with the result that the quasiclassical one Iqc
gives the local collisions, while the terms I∂ , I∇, and IPB are responsible for the nonlocal parts.

4Actually, when considering the mass-shell equation, one can show that the off-shell terms are zero up to first order in
ℏ, as was done in Ref. [46].
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Quasiclassical terms

The quasiclassical terms are obtained straightforwardly by inserting Eqs. (5.47) and (5.52) into Eq.
(5.55), giving the known form of the local on-shell collision term,

Iqc(x, k, s) = 4mπℏδ(k2 −m2)
1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)W(1/2)

×
(
f1f2f̃

′f̃ − f̃1f̃2f ′f
)
, (5.59)

where we abbreviated

f1 := f(x, k1, s1) , f2 := f(x, k2, s2) , f ′ := f(x, k′, s′) , f := f(x, k, s̄) . (5.60)

Note that, due to the Wigner functions always including one spin-space integral, the distribution
function f does not depend on s, but rather s̄. The transition rate reads

W(1/2) = m4Re [Mαα′α1α2
Mβ1β2ββ′hα1β1

(k1, s1)hα2β2
(k2, s2)hβ′α′(k′, s′)hβγ(k, s̄)hγα(k, s)]

=
m4

2
Mαα′α1α2Mβ1β2ββ′hα1β1(k1, s1)hα2β2(k2, s2)hβ′α′(k′, s′)

× [hβγ(k, s̄)hγα(k, s) + hβγ(k, s)hγα(k, s̄)] , (5.61)

which agrees with our result from the GLW approach (4.97). Here we used that h† = γ0hγ0, together
with the symmetries of M . In particular, besides the antisymmetries upon changes in the first and
second pair of indices due to fermionic statistics, we assume that

γ0αβγ
0
α′β′M∗

ββ′β1β2
γ0β1α1

γ0β2α2
=Mα1α2αα′ , (5.62)

cf. Eq. (4.73).

Gradient terms

Next we take on the gradient contributions I∂ and I∇ to the collision kernel. Upon inserting the
expressions for Σ≷ and G≷, the former becomes

I∂(x, k, s) = 4mπℏδ(k2 −m2)
1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)

× T (a)
µ ∂µ

(
f1f2f̃

′f̃ − f̃1f̃2f ′f
)
, (5.63)

where we defined

T (a)
µ := −ℏm3

8
Im [(1+ γ5/s)γδ(γµ)δαMαα′α1α2

Mβ1β2ββ′

×hα1β1(k1, s1)hα2β2(k2, s2)hβ′α′(k′, s′)hβγ(k, s̄)]

=
iℏm3

16
Mαα′α1α2Mβ1β2ββ′hα1β1(k1, s1)hα2β2(k2, s2)hβ′α′(k′, s′) [h(k, s), γµ]βα . (5.64)

Here we used the symmetries of M in the second step, together with the fact that we can approximate
h(k, s̄) ≃ 1

2Λ
+(k) since the s̄-dependent part of f(x, k, s̄) is at least of first order in ℏ, such that the

neglected terms are of order O(ℏ2). Furthermore, we employed that γ5/s and Λ+ commute. Note that,
comparing to Eq. (4.99d), we have T (a)

µ = − 1
2W(1/2)∆µ.
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The second gradient contribution I∇ becomes

I∇(x, k, s) = 4mπℏδ(k2 −m2)
1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)

×
{
T µν1 k1,ν

[(
∂µf1

)
f2f̃

′f̃ −
(
∂µf̃1

)
f̃2f

′f
]
+ T µν2 k2,ν

[
f1
(
∂µf2

)
f̃ ′f̃ − f̃1

(
∂µf̃2

)
f ′f
]

+ T ′µνk′ν
[
f1f2

(
∂µf̃

′)f̃ − f̃1f̃2(∂µf ′)f]+ T µνkν [f1f2f̃ ′(∂µf̃)− f̃1f̃2f ′ (∂µf)]} ,

(5.65)

with the quantities

T µν1 :=
ℏm2

8
Re
[
hγα(k, s)Mαα′α1α2

Mβ1β2ββ′σµνα1β1
hα2β2

(k2, s2)hβ′α′(k′, s′)hβγ(k, s̄)
]
, (5.66a)

T µν2 :=
ℏm2

8
Re
[
hγα(k, s)Mαα′α1α2Mβ1β2ββ′hα1β1(k1, s1)σ

µν
α2β2

hβ′α′(k′, s′)hβγ(k, s̄)
]
, (5.66b)

T ′µν :=
ℏm2

8
Re
[
hγα(k, s)Mαα′α1α2

Mβ1β2ββ′hα1β1
(k1, s1)hα2β2

(k2, s2)σ
µν
β′α′hβγ(k, s̄)

]
, (5.66c)

T µν :=
ℏm2

8
Re
[
hγα(k, s)Mαα′α1α2Mβ1β2ββ′hα1β1(k1, s1)hα2β2(k2, s2)hβ′α′(k′, s′)σµνβγ

]
. (5.66d)

In order to simplify these expressions, we note that

σµνk1,ν = im
[
γµ,Λ+(k1)

]
, σµνk2,ν = im

[
γµ,Λ+(k2)

]
, σµνk′ν = im

[
γµ,Λ+(k′)

]
. (5.67)

Since the contributions of the distribution functions that are proportional to s1, s2, and s′ are of first
order in ℏ, we may replace

σµνk1,ν ≃ im [γµ, h(k1, s1)] , σµνk2,ν ≃ im [γµ, h(k2, s2)] , σµνk′ν ≃ im [γµ, h(k′, s′)] (5.68)

inside the collision terms. To simplify Eq. (5.66d), we compute

σµνkνh(k, s) = i (γµ/k − kµ)h(k, s) = imγµh(k, s)− ikµh(k, s) . (5.69)

Inserting these results into Eqs. (5.66) and using the symmetries of M , we obtain

T µν1 k1,ν = − iℏm
3

8
Mαα′α1α2

Mβ1β2ββ′ [h(k1, s1), γ
µ]α1β1

hα2β2
(k2, s2)hβ′α′(k′, s′)hβα(k, s) , (5.70a)

T µν2 k2,ν = − iℏm
3

8
Mαα′α1α2

Mβ1β2ββ′hα1β1
(k1, s1) [h(k2, s2), γ

µ]α2β2
hβ′α′(k′, s′)hβα(k, s) , (5.70b)

T ′µνk′ν = − iℏm
3

8
Mαα′α1α2Mβ1β2ββ′hα1β1(k1, s1)hα2β2(k2, s2) [h(k

′, s′), γµ]β′α′ hβα(k, s) , (5.70c)

T µνkν = − iℏm
3

16
Mαα′α1α2

Mβ1β2ββ′hα1β1
(k1, s1)hα2β2

(k2, s2)hβ′α′(k′, s′) [h(k, s), γµ]βα . (5.70d)

Comparing these expressions to the results (4.99) from the GLW approach, we find

T µν1 k1,ν =W(1/2)∆µ
1 , T µν2 k2,ν =W(1/2)∆µ

2 , T ′µνk′ν =W(1/2)∆′µ , T µνkν =
1

2
W(1/2)∆µ .

(5.71)

Poisson brackets

The final contribution to the collision term is given by the Poisson-bracket terms, where we have to
evaluate spacetime and momentum derivatives acting on the Green’s functions and the self-energies,
cf. Eq. (5.13). In order to compute the momentum derivatives acting on the (quasiclassical) Green’s
functions, we note that

∂µkh(k, s) =
1

4m
(1+ γ5/s)γ

µ , (5.72)
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which yields

∂µkG
<
qc(x, k) ≃ −4mπℏδ(k2 −m2)

∫
dS(k)

1

2

[
γµ

2m
+ Λ+(k)∂µk

]
f(x, k, s) , (5.73a)

∂µkG
>
qc(x, k) ≃ 4mπℏδ(k2 −m2)

∫
dS(k)

1

2

[
γµ

2m
+ Λ+(k)∂µk

]
f̃(x, k, s) , (5.73b)

where we used again that f(x, k, s) is spin-independent and on shell up to terms of order O(ℏ). The
momentum derivatives applied to Σ

≷
qc only act on the momentum-conserving delta functions. As we

already did in the GLW approach, we rewrite them as derivatives with respect to k′ and perform
integration by parts. Then, we find

∂µkΣ
<
qc,αβ(x, k) = −

m3

2

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mαα′α1α2Mβ1β2ββ′

× hα1β1(k1, s1)hα2β2(k2, s2)f1f2
1

2

[
γµ

2m
+ Λ+(k′)∂µk′

]
β′α′

f̃ ′ , (5.74a)

∂µkΣ
>
qc,αβ(x, k) = −

m3

2

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mαα′α1α2
Mβ1β2ββ′

× hα1β1
(k1, s1)hα2β2

(k2, s2)f̃1f̃2
1

2

[
γµ

2m
+ Λ+(k′)∂µk′

]
β′α′

f ′ . (5.74b)

Inserting these expressions into the Poisson-bracket contribution to the collision term (5.58), we
obtain

IPB(x, k, s) = 4mπℏδ(k2 −m2)
1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)

×
{
T (b)
µ

[(
∂µf1f2f̃

′)f̃ − (∂µf̃1f̃2f ′)f]+ T (c)
µ

[
f1f2f̃

′(∂µf̃)− f̃1f̃2f ′(∂µf)]
+ T

[(
∂µf1f2f̃

′)∂µk f̃ − (∂µf̃1f̃2f ′)∂µk f + f1f2
(
∂µk′ f̃

′)∂µf̃ − f̃1f̃2(∂µk′f ′)∂µf]} ,

(5.75)

where we introduced the quantities

T (b)
µ :=

ℏm3

8
Im [hγα(k, s)Mαα′α1α2Mβ1β2ββ′hα1β1(k1, s1)hα2β2(k2, s2)hβ′α′(k′, s′)(γµ)βγ ]

=
iℏm3

16
Mαα′α1α2

Mβ1β2ββ′hα1β1
(k1, s1)hα2β2

(k2, s2)hβ′α′(k′, s′) [h(k, s), γµ]βα ,

= T (a)
µ ≡ −1

2
W(1/2)∆µ , (5.76a)

T (c)
µ :=

ℏm3

8
Im [hβα(k, s)Mαα′α1α2Mβ1β2ββ′hα1β1(k1, s1)hα2β2(k2, s2)(γµ)β′α′ ]

= 0 , (5.76b)

T :=
ℏm4

4
Im [hβα(k, s)Mαα′α1α2

Mβ1β2ββ′hα1β1
(k1, s1)hα2β2

(k2, s2)hβ′α′(k′, s′)]

= 0 . (5.76c)

The fact that both T (c)
µ and T vanish follows after using the symmetries of the vertex M to show that

the expressions in square brackets are purely real.5

5We remark that the statement that those terms are zero is related to the vanishing of the third and fourth contribution
to the nonlocal collision term in the GLW approach, cf. Eqs. (4.93) and (4.94), and generalizes that result to quantum
statistics.
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5.4.3 Summary

After collecting the results from the previous subsection, we find from Eq. (5.54)

k · ∂f(x, k, s) = 1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)W(1/2)

×
{
f1f2f̃

′f̃ − f̃1f̃2f ′f + (∆µ
1 −∆µ)

[(
∂µf1

)
f2f̃

′f̃ −
(
∂µf̃1

)
f̃2f

′f
]

+ (∆µ
2 −∆µ)

[
f1
(
∂µf2

)
f̃ ′f̃ − f̃1

(
∂µf̃2

)
f ′f
]

+ (∆′µ −∆µ)
[
f1f2

(
∂µf̃

′)f̃ − f̃1f̃2(∂µf ′)f]} . (5.77)

When interpreting the quantities of first order in ℏ as the leading terms in a Taylor series, we obtain

k · ∂f(x, k, s) = 1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)W(1/2)

×
[
f(x+∆1 −∆, k1, s1)f(x+∆2 −∆, k2, s2)f̃(x+∆′ −∆, k′, s′)f̃(x, k, s̄)

− f̃(x+∆1 −∆, k1, s1)f̃(x+∆2 −∆, k2, s2)f(x+∆′ −∆, k′, s′)f(x, k, s̄)
]
.

(5.78)

Provided that f̃ = 1− f (cf. Appendix B.2.2), Eq. (5.78) provides the generalization of Eq. (4.96) to
quantum statistics, and reduces to that equation in the limit of classical statistics, where f̃ → 1. All
conclusions that were put forward in the preceding chapter, such as the connection to the case where
there is no dependence on the spin variables, cf. Eq. (4.101), of course remain valid. An important
novel effect that arises when including quantum statistics consists in an altered equilibrium state, as
we will see in Sec. 5.6.

5.5 Vector fields

Finally, we will consider the KB equations for charged massive vector fields, akin to the discussion
in Sec. 4.5. Note that, compared to the earlier definition of the Wigner function for spin-1 fields
(3.146), the Green’s function G<µν is defined with the indices switched, i.e., G<µν ≡ −(ℏ/2)W νµ.

5.5.1 Structure of the equations

The inverse free propagator for Proca fields reads in real space6

−G−1,µν
0 (x) =

(
□+

m2

ℏ2

)
gµν − ∂µ∂ν , (5.79)

such that its Wigner transform is

−ℏ2G−1,µν
0 =

(
−D2 +m2

)
gµν +DµDν , (5.80a)

−ℏ2←−G∗−1,µν
0 =

(
−←−D∗2 +m2

)
gµν +

←−
D∗µ←−D∗ν . (5.80b)

Then, the KB equations (5.26) (with λ =
√
ℏ) read(

−D2 +m2
)
G<µν(x, k) +DµDαG

<αν = −Iµνcoll , (5.81a)(
−D∗2 +m2

)
G<µν(x, k) +D∗νD∗

αG
<µα = −I∗νµcoll , (5.81b)

6Compared to the discussion in Sec. 3.5.1, there is a sign difference. Alternatively, we could have defined the
self-energy in a different way, cf. Ref. [86].
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where we defined

Iµνcoll :=
iℏ
2

[
Σ>µα(x, k)G<α

ν(x, k)− Σ<µα(x, k)G>α
ν(x, k)

]
+

ℏ2

4

[{
Σ>(x, k), G<(x, k)

}µν
PB −

{
Σ<(x, k), G>(x, k)

}µν
PB

]
. (5.82)

Note that (G<)† = G< is hermitian, and the identity (5.14) for the Poisson brackets reads{
G≶(x, k),Σ≷(x, k)

}µν
PB

= −
{
G≶(x, k),Σ≷(x, k)

}∗νµ

PB
. (5.83)

Acting with Dµ (D∗
ν) on the first (second) equation of (5.81), we find the subsidiary conditions

DµG
<µν(x, k) = − 1

m2
DµI

µν
coll , D∗

νG
<µν(x, k) = − 1

m2
DνI

∗νµ
coll , (5.84)

which are complex conjugates of each other. Putting them to use, the KB equations become

(
−D2 +m2

)
G<µν(x, k) = −Iµνcoll +

1

m2
DµDαI

αν
coll , (5.85a)(

−D∗2 +m2
)
G<µν(x, k) = −I∗νµcoll +

1

m2
D∗νD∗

αI
∗αµ
coll . (5.85b)

Comparing these to Eq. (3.149), we can identify

Iµνcoll = −ℏ2
∫

d4ve−
i
ℏk·v

〈
V̂ †ν

(
x+

v

2

)
ρ̂µ
(
x− v

2

)〉
, (5.86)

where the flipped Lorentz indices and the prefactors arise due to the definition of G<µν . From Eqs.
(5.85) we find the mass-shell and Boltzmann equations,(

k2 −m2 − ℏ2

4
□

)
G<µν(x, k) =

1

2

(
Iµνcoll −

1

m2
DµDαI

αν
coll + h.c.

)
, (5.87a)

k · ∂G<µν(x, k) = − i

2ℏ

(
Iµνcoll −

1

m2
DµDαI

αν
coll − h.c.

)
. (5.87b)

In order to translate these expressions into extended phase space, we have to contract them with

Hµν(k, s) =
1

3
Kµν +

i

2
ϵµναβ

kα
m

sβ +
5

8
Kµν
αβs

αsβ , (5.88)

cf. Eq. (4.132). Based on the discussion in Subsec. 3.5.2, we can argue that parts of the terms
on the right-hand sides of Eqs. (5.87) involving Bopp operators acting on the collision integrals do
not contribute in our truncation of the ℏ-gradient expansion. The reason is that the operator Hµν

is orthogonal to the four-momentum, thus projecting out contributions where Dµ is given by its
zeroth-order term kµ. Then, to first order in ℏ we can write the mass-shell and kinetic equations as7

(
k2 −m2

)
f(x, k, s) = −2

ℏ
Re

[
Hµν(k, s)

(
Iµνcoll −

iℏ
2m2

∂µkαI
αν
coll

)]
, (5.89a)

k · ∂f(x, k, s) = − 2

ℏ2
Im

[
Hµν(k, s)

(
Iµνcoll −

iℏ
2m2

∂µkαI
αν
coll

)]
, (5.89b)

where we used the fact that H is hermitian, H∗µν = Hνµ. From this point on, we can proceed as in
the previous section.

7As remarked before, we used that f = HνµWµν = −(2/ℏ)HµνG<µν , where we also employed that κ = −2/ℏ.
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Structure of the Wigner function

Similar to the case of Dirac fields, we have to discuss the structure of the Green’s functions that
appear inside the collision integrals. As before, we can neglect collisional contributions to the Green’s
functions since the resulting terms would be of fourth order in the coupling. Then, their structure is
determined by Eqs. (3.151) with the right-hand sides set to zero. We remind the reader that these
constraints result from the fact that free Proca fields have a vanishing divergence, thus reducing the
number of independent degrees of freedom. When decomposing the Wigner functions as

G<µν(x, k) = EµνfE +KµνfK +
k(µ

2k
F
ν)
S + i

k[µ

2k
F
ν]
A + iϵµναβ

kα
m
Gβ + FµνK , (5.90a)

G>µν(x, k) = Eµν f̃E +Kµν f̃K +
k(µ

2k
F̃
ν)
S + i

k[µ

2k
F̃
ν]
A + iϵµναβ

kα
m
G̃β + F̃µνK , (5.90b)

we can, according to Eqs. (3.159), express the dependent parts up to order O(ℏ) as

fE ≃ 0 , FµS ≃ 0 , FµA ≃
ℏ
m
Kµν∂νfK , (5.91a)

f̃E ≃ 0 , F̃µS ≃ 0 , F̃µA ≃
ℏ
m
Kµν∂ν f̃K . (5.91b)

With these results, we can decompose the Green’s functions into quasiclassical and gradient contribu-
tions,

G≷µν(x, k) ≃ G≷µν
qc (x, k) +G

≷µν
∇ (x, k) , (5.92)

where we defined

G<µνqc (x, k) := KµνfK(x, k) + iϵµναβ
kα
m
Gβ(x, k) + FµνK (x, k) , (5.93a)

G>µνqc (x, k) := Kµν f̃K(x, k) + iϵµναβ
kα
m
G̃β(x, k) + F̃µνK (x, k) , (5.93b)

as well as

G<µν∇ (x, k) :=
iℏ
2m2

k[µ∂ν]fK(x, k) , (5.94a)

G>µν∇ (x, k) :=
iℏ
2m2

k[µ∂ν]f̃K(x, k) . (5.94b)

Here we already employed that we may take all momenta in the kinetic equation to be on shell.
Remembering the definition of hµν from Eq. (4.128),

hµν(k, s) =
1

3
Kµν +

i

2
ϵµναβ

kα
m

sβ +Kµν
αβs

αsβ , (5.95)

we can express the quasiclassical contributions in extended phase space,

G<µνqc (x, k) := −2πℏ2δ(k2 −m2)

∫
dS(k)hνµ(k, s)f(x, k, s) , (5.96a)

G>µνqc (x, k) := −2πℏ2δ(k2 −m2)

∫
dS(k)hνµ(k, s)f̃(x, k, s) , (5.96b)

where we again used that G<µν = −(ℏ/2)W νµ. The gradient contributions on the other hand read

G<µν∇ (x, k) := −2πℏ2δ(k2 −m2)
iℏ
2m2

k[ν∂µ]
1

3

∫
dS(k)f(x, k, s) , (5.97a)

G>µν∇ (x, k) := −2πℏ2δ(k2 −m2)
iℏ
2m2

k[ν∂µ]
1

3

∫
dS(k)f̃(x, k, s) . (5.97b)
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Structure of the self-energies

The results for the structure of the Wigner function can now be inserted into the self-energies to
obtain

Σ≷µν(x, k) ≃ Σ≷µν
qc (x, k) + Σ

≷µν
∇ (x, k) , (5.98)

where we defined (remembering that λ =
√
ℏ)

Σ≷µν
qc (x, k) :=

1

2ℏ3

∫
d4k1
(2πℏ)4

d4k2
(2πℏ)4

d4k′

(2πℏ)4
(2πℏ)4δ(4)(k + k′ − k1 − k2)Mµµ′µ1µ2Mν1ν2νν

′

×G≷
qc,µ1ν1(x, k1)G

≷
qc,µ2ν2(x, k2)G

≶
qc,ν′µ′(x, k

′) , (5.99)

Σ
≷µν
∇ (x, k) :=

1

2ℏ3

∫
d4k1
(2πℏ)4

d4k2
(2πℏ)4

d4k′

(2πℏ)4
(2πℏ)4δ(4)(k + k′ − k1 − k2)Mµµ′µ1µ2Mν1ν2νν

′

×
[
G

≷
∇,µ1ν1

(x, k1)G
≷
qc,µ2ν2(x, k2)G

≶
qc,ν′µ′(x, k

′)

+G≷
qc,µ1ν1(x, k1)G

≷
∇,µ2ν2

(x, k2)G
≶
qc,ν′µ′(x, k

′)

+G≷
qc,µ1ν1(x, k1)G

≷
qc,µ2ν2(x, k2)G

≶
∇,ν′µ′(x, k

′)
]
. (5.100)

These terms can then be translated into extended phase space, with the results

Σ<µνqc (x, k) = − 1

16

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mµµ′µ1µ2Mν1ν2νν
′

× hν1µ1(k1, s1)hν2µ2(k2, s2)hµ′ν′(k′, s′)f(x, k1, s1)f(x, k2, s2)f̃(x, k
′, s′) , (5.101a)

Σ>µνqc (x, k) = − 1

16

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mµµ′µ1µ2Mν1ν2νν
′

× hν1µ1
(k1, s1)hν2µ2

(k2, s2)hµ′ν′(k′, s′)f̃(x, k1, s1)f̃(x, k2, s2)f(x, k
′, s′) , (5.101b)

and

Σ<µν∇ (x, k) = − iℏ
2m2

1

16

1

3

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mµµ′µ1µ2Mν1ν2νν
′

×
{
hν2µ2

(k2, s2)hµ′ν′(k′, s′)
[
k1,[ν1∂µ1]f(x, k1, s1)

]
f(x, k2, s2)f̃(x, k

′, s′)

+ hν1µ1
(k1, s1)hµ′ν′(k′, s′)f(x, k1, s1)

[
k2,[ν2∂µ2]f(x, k2, s2)

]
f̃(x, k′, s′)

+hν1µ1
(k1, s1)hν2µ2

(k2, s2)f(x, k1, s1)f(x, k2, s2)
[
k′[µ′∂ν′]f̃(x, k

′, s′)
]}

, (5.102a)

Σ>µν∇ (x, k) = − iℏ
2m2

1

16

1

3

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mµµ′µ1µ2Mν1ν2νν
′

×
{
hν2µ2

(k2, s2)hµ′ν′(k′, s′)
[
k1,[ν1∂µ1]f̃(x, k1, s1)

]
f̃(x, k2, s2)f(x, k

′, s′)

+ hν1µ1
(k1, s1)hµ′ν′(k′, s′)f̃(x, k1, s1)

[
k2,[ν2∂µ2]f̃(x, k2, s2)

]
f(x, k′, s′)

+hν1µ1
(k1, s1)hν2µ2

(k2, s2)f̃(x, k1, s1)f̃(x, k2, s2)
[
k′[µ′∂ν′]f(x, k

′, s′)
]}

. (5.102b)

With the self-energies and the Wigner functions expressed in this way, we are in a position to compute
the kinetic equation.

5.5.2 Evaluating the kinetic equation

According to Theorem 1, we only need to evaluate the on-shell part of the Boltzmann equation
(5.89b). With the aid of the results of the previous subsection, it can be expressed as

4πℏδ(k2 −m2)k · ∂f(x, k, s) = Iqc(x, k, s) + I∂(x, k, s) + I∇(x, k, s) + IPB(x, k, s) , (5.103)
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which looks very similar to Eq. (5.54). As before, the term Iqc collects the quasiclassical parts of the
collision terms,

Iqc(x, k, s) :=
1

ℏ
Re
{
Hµν(k, s)

[
Σ<µαqc (x, k)G>qc,α

ν(x, k)− Σ>µαqc (x, k)G<qc,α
ν(x, k)

]}
. (5.104)

The action of the derivative on the collision term is captured by I∂ ,

I∂(x, k, s) :=
1

2m2
Im
{
Hµν(k, s)∂

µkα

[
Σ<αβqc (x, k)G>qc,β

ν(x, k)− Σ>αβqc (x, k)G<qc,β
ν(x, k)

]}
, (5.105)

while I∇ contains the gradient terms,

I∇(x, k, s) :=
1

ℏ
Re
{
Hµν(k, s)

[
Σ<µαqc (x, k)G>∇,α

ν(x, k)− Σ>µα∇ (x, k)G<qc,α
ν(x, k)

+Σ<µα∇ (x, k)G>qc,α
ν(x, k)− Σ>µαqc (x, k)G<∇,α

ν(x, k)
]}

. (5.106)

The Poisson-bracket terms are described by IPB,

IPB(x, k, s) :=
1

2
Im
{
Hµν(k, s)

[{
Σ<qc(x, k), G

>
qc(x, k)

}µν
PB −

{
Σ>qc(x, k), G

<
qc(x, k)

}µν
PB

]}
=

1

2
Im
(
Hµν(k, s)

{ [
∂ρΣ

<µα
qc

] [
∂ρkG

>
qc,α

ν
]
−
[
∂ρkΣ

<µα
qc

] [
∂ρG

>
qc,α

ν
]

−
[
∂ρΣ

>µα
qc

] [
∂ρkG

<
qc,α

ν
]
−
[
∂ρkΣ

>µα
qc

] [
∂ρG

<
qc,α

ν
] })

. (5.107)

In the following, we compute these contributions, showing that I∇ and IPB are responsible for the
nonlocal collisions.

Quasiclassical terms

Inserting the quasiclassical Green’s functions and self-energies (5.96) and (5.101), we readily find

Iqc(x, k, s) = 4πℏδ(k2 −m2)
1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)W(1)

×
(
f1f2f̃

′f̃ − f̃1f̃2f ′f
)
, (5.108)

where we used the abbreviations (5.60) and defined

W(1) :=
1

16
Re
[
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)hµ′ν′(k′, s′)Hµ

α(k, s)hαν(k, s̄)
]

=
1

32
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)hµ′ν′(k′, s′)

× [Hµ
α(k, s)hαν(k, s̄) + hµ

α(k, s̄)Hαν(k, s)] . (5.109)

In order to arrive at this expression, we used that h and H are hermitian, as well as the assumed
symmetry of the vertex M∗µµ′µ1µ2 =Mµ1µ2µµ

′
. As expected, it agrees with the local result from the

GLW approach (4.144), with the difference that quantum statistics are included.

Gradient terms

We compute the term I∂ first, obtaining

Iqc(x, k, s) = 4πℏδ(k2 −m2)
1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)W(1)

×T (a)
ρ ∂ρ

(
f1f2f̃

′f̃ − f̃1f̃2f ′f
)
, (5.110)
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where we defined

T (a)
ρ :=

ℏ
2m2

1

16
Im
[
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)hµ′ν′(k′, s′)kµHρ

α(k, s)hαν(k, s̄)
]

≃ ℏ
2m2

1

16

1

3
Im
[
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)hµ′ν′(k′, s′)kµHρν(k, s)

]
= − iℏ

64m2

1

3
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)hµ′ν′(k′, s′)

× [Hρν(k, s)kµ −Hµρ(k, s)kν ] . (5.111)

Here we used the fact that hµν(k, s̄) can be replaced by 1
3K

µν , since the distribution function f(x, k, s̄)
is spin-independent at zeroth order in ℏ. Comparing to Eqs. (4.145), we see that T

(a)
ρ = − 1

2W(1)∆ρ.

The contribution I∇ can be evaluated to

I∇(x, k, s) = 4πℏδ(k2 −m2)
1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)

×
{

T ρ
1

[(
∂ρf1

)
f2f̃

′f̃ −
(
∂ρf̃1

)
f̃2f

′f
]
+ T ρ

2

[
f1
(
∂ρf2

)
f̃ ′f̃ − f̃1

(
∂ρf̃2

)
f ′f
]

+ T ′ρ
[
f1f2

(
∂ρf̃

′)f̃ − f̃1f̃2(∂ρf ′)f]+ T ρ
[
f1f2f̃

′(∂ρf̃)− f̃1f̃2f ′ (∂ρf)]} , (5.112)

with the tensors

T ρ
1 := − ℏ

32m2

1

3
Im
[
Mµµ′µ1µ2Mν1ν2νν

′
k1,[ν1δ

ρ
µ1]
hν2µ2

(k2, s2)hµ′ν′(k′, s′)Hµ
α(k, s)hαν(k, s̄)

]
,

(5.113a)

T ρ
2 := − ℏ

32m2

1

3
Im
[
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1(k1, s1)k2,[ν2δ

ρ
µ2]
hµ′ν′(k′, s′)Hµ

α(k, s)hαν(k, s̄)
]
,

(5.113b)

T ′ρ := − ℏ
32m2

1

3
Im
[
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)k

′
[µ′δ

ρ
ν′]Hµ

α(k, s)hαν(k, s̄)
]
,

(5.113c)

T ρ := − ℏ
32m2

1

3
Im
[
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)hµ′ν′(k′, s′)Hµ

α(k, s)k[αδ
ρ
ν]

]
.

(5.113d)

In order to simplify these expressions, we use the fact that the components of f1, f2, f ′, and f that
depend on the spin variables are at least of order O(ℏ). Then we may replace

1

3
k1,[ν1δ

ρ
µ1]

=
1

3
k1,[ν1K

ρ
1,µ1]

≃ k1,[ν1hρ1,µ1]
(k1, s1) , (5.114)

and similar for the cases dependent on k2 and k′. Furthermore, for the same reason we can approximate
hµν(k, s̄) ≃ 1

3K
µν in Eqs. (5.113a)–(5.113c). Lastly, in Eq. (5.113d) we utilize that H is orthogonal

to the four-momentum. With these results and the symmetries of M , we find

T ρ
1 =

iℏ
32m2

1

3
Mµµ′µ1µ2Mν1ν2νν

′
hν2µ2

(k2, s2)hµ′ν′(k′, s′)Hµν(k, s)

× [hρµ1
(k1, s1)k1,ν1 − k1,µ1

hν1
ρ(k1, s1)] , (5.115a)

T ρ
2 =

iℏ
32m2

1

3
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hµ′ν′(k′, s′)Hµν(k, s)

× [hρµ2(k2, s2)k2,ν2 − k2,µ2hν2
ρ(k2, s2)] , (5.115b)

T ′ρ =
iℏ

32m2

1

3
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)Hµν(k, s)

×
[
hρν′(k′, s′)k′µ′ − k′ν′hµ′

ρ(k′, s′)
]
, (5.115c)

T ρ =
iℏ

64m2

1

3
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)hµ′ν′(k′, s′)

× [Hρ
ν(k, s)kµ − kνHµ

ρ(k, s)] . (5.115d)
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Comparing to the shifts (4.145), we find

T ρ
1 =W(1)∆ρ

1 , T ρ
2 =W(1)∆ρ

2 , T ′ρ =W(1)∆′ρ , T ρ =
1

2
W(1)∆ρ . (5.116)

Poisson brackets

In order to evaluate IPB, we first need to compute the momentum derivatives acting on the Green’s
functions and self-energies. For this we note that, since we may approximate the Green’s functions
on the right-hand sides of the Boltzmann equation as being spin-independent, we can evaluate the
momentum-derivative acting on the quantities h approximately as

∂ρkh
µν(k, s) ≃ 1

3
∂ρkK

µν = − 1

3m2
k(µgν)ρ . (5.117)

We then obtain from Eqs. (5.96)

∂ρkG
<µν
qc (x, k) ≃ −2πℏ2δ(k2 −m2)

∫
dS(k)

1

3

(
−k

(ν

m2
gµ)ρ +Kνµ∂ρk

)
f(x, k, s) , (5.118a)

∂ρkG
>µν
qc (x, k) ≃ −2πℏ2δ(k2 −m2)

∫
dS(k)

1

3

(
−k

(ν

m2
gµ)ρ +Kνµ∂ρk

)
f̃(x, k, s) , (5.118b)

where we could neglect the off-shell contributions since they are of higher order in either ℏ or the coupling
constant. The momentum derivatives on the self-energies, which act only on the momentum-conserving
delta function, are again rewritten as k′-derivatives, giving

∂ρkΣ
<µν
qc (x, k) ≃ 1

16

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mµµ′µ1µ2Mν1ν2νν
′

× hν1µ1(k1, s1)hν2µ2(k2, s2)f1f2
1

3

(
−k

′(ν

m2
gµ)ρ +K ′νµ∂ρk′

)
f̃ ′ , (5.119a)

∂ρkΣ
>µν
qc (x, k) ≃ 1

16

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)Mµµ′µ1µ2Mν1ν2νν
′

× hν1µ1(k1, s1)hν2µ2(k2, s2)f̃1f̃2
1

3

(
−k

′(ν

m2
gµ)ρ +K ′νµ∂ρk′

)
f ′ . (5.119b)

We compute the contribution as

IPB(x, k, s) = 4πℏδ(k2 −m2)
1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)

×
{

T (b)
ρ

[(
∂ρf1f2f̃

′)f̃ − (∂ρf̃1f̃2f ′)f]+ T (c)
ρ

[
f1f2f̃

′(∂ρf̃)− f̃1f̃2f ′(∂ρf)]
+ T

[(
∂ρf1f2f̃

′)∂ρk f̃ − (∂ρf̃1f̃2f ′)∂ρkf + f1f2
(
∂ρk′ f̃

′)∂ρf̃ − f̃1f̃2(∂ρk′f ′)∂ρf]} ,

(5.120)

where we defined

T (b)
ρ := − ℏ

32m2

1

3
Im
[
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)hµ′ν′(k′, s′)Hµ

α(k, s)k(αgν)ρ

]
= − iℏ

64m2

1

3
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)hµ′ν′(k′, s′)

× [Hρν(k, s)kµ − kνHµρ(k, s)] , (5.121a)

T (c)
ρ := − ℏ

32m2

1

3
Im
[
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)k

′
(ν′gµ′)ρHµν(k, s)

]
= 0 , (5.121b)

T :=
ℏ

32m2

1

3
Im
[
Mµµ′µ1µ2Mν1ν2νν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)hµ′ν′(k′, s′)Hµν(k, s)

]
= 0 . (5.121c)
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As expected, we find T
(b)
ρ = − 1

2W(1)∆ρ.

5.5.3 Summary

Collecting our results, the kinetic equation becomes

k · ∂f(x, k, s) = 1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)W(1)

×
{
f1f2f̃

′f̃ − f̃1f̃2f ′f + (∆µ
1 −∆µ)

[(
∂µf1

)
f2f̃

′f̃ −
(
∂µf̃1

)
f̃2f

′f
]

+ (∆µ
2 −∆µ)

[
f1
(
∂µf2

)
f̃ ′f̃ − f̃1

(
∂µf̃2

)
f ′f
]

+ (∆′µ −∆µ)
[
f1f2

(
∂µf̃

′)f̃ − f̃1f̃2(∂µf ′)f]} , (5.122)

or, in a more compact form,

k · ∂f(x, k, s) = 1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)W(1)

×
[
f(x+∆1 −∆, k1, s1)f(x+∆2 −∆, k2, s2)f̃(x+∆′ −∆, k′, s′)f̃(x, k, s̄)

− f̃(x+∆1 −∆, k1, s1)f̃(x+∆2 −∆, k2, s2)f(x+∆′ −∆, k′, s′)f(x, k, s̄)
]
.

(5.123)

As in the scalar case, we have f̃ = 1+ f , which tells us that this equation generalizes the result (4.143)
obtained in the GLW approach to quantum statistics, and reduces to it if we take the limit f̃ → 1.

5.6 Equilibrium

With the collision terms for particles of spins 0, 1/2, and 1 at hand, we are in a position to compute
equilibrium. In principle, the discussion of Sec. 4.6, in particular the concept of using a weak equivalence
principle to redefine the transition rates in order to be able to use the conservation of the total angular
momentum, remains valid, so we do not repeat it here. The most important modification to the case
of classical statistics lies in the form of the equilibrium distribution function: in order to be able to
use the summational invariance of charge, four-momentum, and total angular momentum, we have to
demand that the distribution function takes on the following form,

feq(x, k, s) := {exp[g(x, k, s)] + a}−1
, (5.124)

where g(x, k, s) consists of summational invariants. In the case of bosonic fields, such as the Klein-
Gordon or Proca ones, we have to set a = −1, leading to a distribution function of Bose-Einstein
type. On the other hand, for Dirac fields which follow fermionic statistics, it holds that a = 1, which
yields a Fermi-Dirac distribution function. In order to recover the form of the distribution function
for classical particles that was introduced in Sec. 4.6, we simply have to set a = 0.

Since the conclusions of that section are still valid, we find that, in order for the collision term to
vanish, it has to hold that

∂(µβ0,ν) = 0 , ∂µα0 = 0 , Ω0,µν = ϖµν ≡ −
1

2
∂[µβ0,ν] , (5.125)

showing that, when defined in the usual way, local implies global equilibrium as soon as the particles
have a nonvanishing spin. When moving on now to derive hydrodynamics from quantum kinetic theory,
we will argue that this statement can be somewhat relaxed, provided that suitable conditions are
fulfilled.
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Chapter 6

Dissipative spin hydrodynamics

After having computed the kinetic equations for the on-shell single-particle distribution function
in extended phase space, f(x, k, s), we will now return to the problem of developing dissipative
hydrodynamics with spin that was initially posed in Chapter 2.

6.1 Relevant scales and local equilibrium

At the end of Chapters 4 and 5, we found that, for particles with nonzero spin, local and global
equilibrium coincide, a fact that hinged on the spacetime shifts ∆1, ∆2, ∆′, and ∆ appearing in the
collision integral. This statement is rather contrary to the usual way of deriving hydrodynamics from
kinetic theory, where, in local equilibrium, the Lagrange multipliers α0(x) and β0(x) are arbitrary
functions of spacetime [43, 115, 153], which is consistent with the way we introduced hydrodynamics
in Chapter 2. As we shall discuss now, it is possible to transfer the concept of this kind of local
equilibrium to spin hydrodynamics as well, namely by considering the different scales that are involved
in the problem. When constructing hydrodynamics from kinetic theory, there are three characteristic
length scales one has to consider: the effective range of the interaction ℓint, which should be a lot
smaller than the mean free path λmfp of the particles. Furthermore, the hydrodynamic length scale
Lhydro, i.e., the scale over which macroscopic quantities vary considerably, should be much larger than
the mean free path in order for the hydrodynamic limit (where collisions take place so frequently
that local equilibrium in the usual sense is reached quickly) to be valid. In the case of kinetic theory
with spin, a fourth scale enters through the spacetime shifts, which are of the order of the Compton
wavelength λC [as evidenced by the factor ℏ/m in Eqs. (4.99) and (4.145)] and should therefore be at
most of the order of the interaction length scale in order for the quasiparticle picture (and thus kinetic
theory) to work. In total we then have the following ordering of scales,

∆ ≲ ℓint ≪ λmfp ≪ Lhydro . (6.1)

From these scales, we may construct two dimensionless quantities: first, the usual Knudsen number
[cf. Eq. (2.66)]

Kn :=
λmfp

Lhydro
, (6.2)

which controls the applicability of the hydrodynamic limit. Second, we can define a “quantum Knudsen
number”

κ :=
∆

Lhydro
≪ Kn , (6.3)

where the inequality follows from the ordering of scales (6.1). Note that, in principle, one could assign
another scale ℓvort ∼ |ω|−1 to the vorticity [82, 83, 159], which is different from the other hydrodynamic
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gradients since it can be present even in global equilibrium, but for simplicity we will not do so here,
i.e., we will assume that ℓvort ∼ Lhydro.

Taking into account these dimensionless quantities, it becomes clear that the terms in the second and
third lines of Eq. (4.160), which are responsible for the equivalence of local and global equilibrium, are
much smaller than the usual hydrodynamic corrections. Thus, we may redefine the necessary condition
on the local-equilibrium distribution function feq to be

C[feq](x, k, s) ∼ O(κ) , (6.4)

such that the collision term does not have to vanish exactly, but rather be sufficiently small. This
definition also ensures that the local-equilibrium distribution function only needs to make the local
part of the collision term vanish. Then, the local-equilibrium distribution function is given by

feq(x, k, s) =

{
exp

[
−α0(x) + βµ0 (x)kµ − σ

ℏ
2
Ω0,µν(x)Σ

µν
s

]
+ a

}−1

, (6.5)

where the Lagrange multipliers α0, β0, and Ω0 are now arbitrary functions of spacetime, in line with
the usual formulation of hydrodynamics. At this point we reiterate that Eq. (6.5) is to be understood
in a perturbative way, i.e., in practical calculations we have to use the form

feq(x, k, s) = f0k(x)

[
1 + f̃0k(x)σ

ℏ
2
Ω0,µν(x)Σ

µν
s

]
+O(ℏ2) , (6.6a)

f0k(x) := {exp [−α0(x) + βµ0 (x)kµ] + a}−1
. (6.6b)

Without loss of generality we may split the full one-particle distribution function into equilibrium and
dissipative contributions,

f(x, k, s) = feq(x, k, s) + δfks . (6.7)

In order for dissipative hydrodynamics to be a viable approximation, we will require that the inverse
Reynolds numbers, which have been introduced in Sec. 2.3, are small, Re−1 ≪ 1. In terms of the
distribution function, we have

Re−1 ∼ δf

feq
. (6.8)

However, we have to distinguish between different inverse Reynolds numbers. Since we may expect
the effects of spin to be small, the quantities that originate from the parts of the distribution function
which are linear or bilinear in the spin vector s should be smaller than the usual dissipative corrections.
In the following sections, we will derive hydrodynamic equations up to second order in both Knudsen
and inverse Reynolds numbers.

6.2 The method of moments

While the equilibrium distribution function (6.5) is known, we do not know the functional form of the
deviation δfks. Following Refs. [51, 83], we will employ the so-called method of moments (which is
essentially a multipole expansion in momentum space) to isolate the parts of δfks that are important
for hydrodynamics.

6.2.1 Expansion of the single-particle distribution function

First, without loss of generality, we may write the deviation from equilibrium as

δfks = f0kf̃0k
(
ϕk − sµζ

µ
k + sαsβK

αβ
µν ξ

µν
k

)
, (6.9)
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where ϕk, ζk, and ξk are functions of the momentum only. Note that this does not constitute an
approximation since, for particles of spin j ≤ 1, the distribution function in extended phase space
depends on at most two powers of the spin vector.1 These functions may then be further expanded as

ϕk =

∞∑
ℓ=0

λµ1···µℓk⟨µ1
· · · kµℓ⟩ , (6.10a)

ζµk =

∞∑
ℓ=0

ηµ,µ1···µℓk⟨µ1
· · · kµℓ⟩ , (6.10b)

ξµνk =

∞∑
ℓ=0

ϑµν,µ1···µℓk⟨µ1
· · · kµℓ⟩ , (6.10c)

where the tensors λ, η, and ϑ are functions of the energy in the fluid-rest frame, Ek, only. Equations
(6.10) constitute expansions in terms of the set of irreducible tensors2

1, k⟨µ⟩, k⟨µkν⟩, k⟨µkνkλ⟩, · · · , (6.11)

which form a complete and orthogonal basis. Specifically, for any function F depending on Ek only,
we have the orthogonality relation∫

dKk⟨µ1 · · · kµn⟩k⟨ν1 · · · kνm⟩F (Ek) =
m!δmn

(2m+ 1)!!
∆µ1···µm
ν1···νm

∫
dK

(
m2 − E2

k

)m
F (Ek) . (6.12)

The tensors introduced in Eqs. (6.10) can be further expressed as

λµ1···µℓ =

∞∑
n=0

cµ1···µℓ
n P

(0,ℓ)
kn , (6.13a)

ηµ,µ1···µℓ =

∞∑
n=0

dµ,µ1···µℓ
n P

(1,ℓ)
kn , (6.13b)

ϑµν,µ1···µℓ =

∞∑
n=0

eµν,µ1···µℓ
n P

(2,ℓ)
kn , (6.13c)

where the quantities P (j,ℓ)
kn are polynomials in energy fulfilling∫

dKω(ℓ)P
(j,ℓ)
km P

(j,ℓ)
kn = δmn , ω(ℓ) := g

W (ℓ)

(2ℓ+ 1)!!
(m2 − E2

k)
ℓf0kf̃0k . (6.14)

In the massless limit, the P (j,ℓ)
kn are given by associated Laguerre polynomials. From demanding that

P
(j,ℓ)
k0 = 1, we find the normalization to be

W (ℓ) =
(−1)ℓ
J2ℓ,ℓ

, where Jnq :=
∂Inq
∂α0

, (6.15)

and

Inq(α0, β0) :=
(−1)q

(2q + 1)!!

∫
dΓEn−2q

k (m2 − E2
k)
qf0k . (6.16)

The thermodynamic integrals Inq defined above are ubiquitous in the following calculations, and we
show how to evaluate them analytically for Boltzmann statistics in Appendix F.2. Employing the

1If one would want to analyze higher-spin particles, higher powers of s have to be included. Analogously, for spin-1/2
particles, we have simply ξk = 0, while for spin-0 particles only ϕk is nonzero.

2Irreducibility is to be understood with respect to the little group of the four-velocity uµ, i.e., the subgroup of
Lorentz transformations that leave the four-velocity invariant. For massive particles, this group is isomorphic to the
rotation group SO(3); the decomposition into irreducible tensors is thus equivalent to an expansion in terms of spherical
harmonics [43].
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orthogonality relation (6.12) as well as the spin-space integrals (3.167), we can express the tensors
introduced in Eqs. (6.13) as integrals over δfks,

cµ1···µℓ
n =

W (ℓ)

ℓ!

∫
dΓP

(0,ℓ)
kn k⟨µ1 · · · kµℓ⟩δfks , (6.17a)

dµ,µ1···µℓ
n =

g

2

W (ℓ)

ℓ!

∫
dΓP

(1,ℓ)
kn sµk⟨µ1 · · · kµℓ⟩δfks , (6.17b)

eµν,µ1···µℓ
n =

5g

8

W (ℓ)

ℓ!

∫
dΓKµν

αβs
αsβP

(2,ℓ)
kn k⟨µ1 · · · kµℓ⟩δfks . (6.17c)

Subsequently, we define the set of so-called irreducible moments of δfks,

ρµ1···µℓ
r :=

∫
dΓErkk

⟨µ1 · · · kµℓ⟩δfks , (6.18a)

τµ,µ1···µℓ
r :=

∫
dΓErks

µk⟨µ1 · · · kµℓ⟩δfks , (6.18b)

ψµν,µ1···µℓ
r :=

∫
dΓErkK

µν
αβs

αsβk⟨µ1 · · · kµℓ⟩δfks , (6.18c)

which will constitute the dynamical objects of our theory. The polynomials P (j,ℓ)
kn can be expanded in

powers of energy as

P
(j,ℓ)
kn =

n∑
r∈S(j)ℓ

a(j,ℓ)nr Erk , (6.19)

where the coefficients a(j,ℓ)nr are determined by Gram-Schmidt orthonormalization [51]. Explicitly, we
show how to construct them in Appendix F.3.
By inserting Eq. (6.19) into Eqs. (6.17), we are then able to express the functions ϕk, ζk, and ξk
through the irreducible moments,

ϕk =

∞∑
ℓ=0

∑
n∈S(0)ℓ

H(0,ℓ)
kn ρµ1···µℓ

n k⟨µ1
· · · kµℓ⟩ , (6.20a)

ζµk =

∞∑
ℓ=0

∑
n∈S(1)ℓ

H(1,ℓ)
kn τµ,µ1···µℓ

n k⟨µ1
· · · kµℓ⟩ , (6.20b)

ξµνk =

∞∑
ℓ=0

∑
n∈S(2)ℓ

H(2,ℓ)
kn ψµν,µ1···µℓ

n k⟨µ1
· · · kµℓ⟩ , (6.20c)

where we introduced

H(j,ℓ)
kn := g̃(j)

W (ℓ)

ℓ!

∑
m∈S(j)ℓ

P
(j,ℓ)
km a(j,ℓ)mn , g̃(j) :=


1 , j = 0 ,

g/2 , j = 1 ,

5g/8 , j = 2 .

(6.21)

The quantity S(j)ℓ denotes the set of moments of spin-rank j and tensor-rank ℓ that are included in the
employed basis,3 and thus quantifies the truncation that is used for practical calculations. To obtain
exact results, the size of the basis should be infinite and thus S(j)ℓ → N0.

3For comparison with, e.g., Ref. [51] it should be noted that sums running from 0 to Nℓ appearing in this reference
correspond to S(0)ℓ = {0, 1, · · · , Nℓ}.
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Note that, when combining Eqs. (6.9), (6.18), and (6.20), we can express any moment in terms of all
others with the same tensor-rank in momentum and spin,

ρµ1···µℓ
r =

∑
n∈S(0)ℓ

F (0,ℓ)
−r,nρ

µ1···µℓ
n , (6.22a)

τµ,µ1···µℓ
r =

∑
n∈S(1)ℓ

F (1,ℓ)
−r,nτ

µ,µ1···µℓ
n , (6.22b)

ψµν,µ1···µℓ
r =

∑
n∈S(2)ℓ

F (2,ℓ)
−r,nψ

µν,µ1···µℓ
n . (6.22c)

Here we introduced the thermodynamic integrals

F (j,ℓ)
rn :=

1

g̃(j)
ℓ!

(2ℓ+ 1)!!

∫
dΓf0kf̃0kE

−r
k H

(j,ℓ)
kn

(
m2 − E2

k

)ℓ
. (6.23)

The expressions (6.22) are exact if the irreducible moment on the left-hand side is included in the basis,
and an approximation in the case that it is not. In particular, Eqs. (6.22) can be used to approximate
moments with r < 0.

Lastly, we remark that not all components of the irreducible moments of nonzero spin-rank [cf. Eqs.
(6.18b) and (6.18c)] are independent due to the spin vector fulfilling k · s = 0. To see this, consider the
projection of the moments of spin-rank one onto the four-velocity,

uµτ
µ,µ1···µℓ
r = −

∫
dΓEr−1

k sµk
⟨µ⟩k⟨µ1 · · · kµℓ⟩δfks . (6.24)

The expression above shows that the component of τµ,µ1···µℓ
r that is parallel to the fluid four-velocity

in its first index is not an independent quantity; a similar reasoning also holds for the components of
ψµν,µ1···µℓ
r parallel to uµ in any of the first two indices. In order to explicitly remove these dependent

components, we make use of the fact that s and ζk are orthogonal to the four-momentum and write

sµζ
µ
k = sµ (∆

µ
ν + uµuν) ζ

ν
k = sµ

(
∆µ

ν +
k⟨µ⟩k⟨ν⟩
E2

k

)
ζ
⟨ν⟩
k ≡ sµΞ

µ
νζ

⟨ν⟩
k , (6.25)

where we defined

Ξµν := ∆µν +
k⟨µ⟩k⟨ν⟩

E2
k

. (6.26)

Similarly, we can rewrite
sαsβK

αβ
µν ξ

µν
k = sαsβK

αβ
γδ Ξ

γδ
µνξ

⟨µν⟩
k , (6.27)

where we introduced accordingly

Ξµναβ :=
1

2
(ΞµαΞ

ν
β + ΞναΞ

µ
β)−

1

Ξ2
ΞµγΞνγΞ

δ
αΞδβ , (6.28)

with Ξ2 := ΞµνΞµν = 2 +m4/E4
k. Using this method to only retain the independent components of

the irreducible moments, the expansion of the deviation of the single-particle distribution function
from local equilibrium assumes the following form,

δfks = f0kf̃0k

∞∑
ℓ=0

k⟨µ1
· · · kµℓ⟩

 ∑
n∈S(0)ℓ

H(0,ℓ)
kn ρµ1···µℓ

n − sµΞµν
∑
n∈S(1)ℓ

H(1,ℓ)
kn τ ⟨ν⟩,µ1···µℓ

n

+sαsβK
αβ
γδ Ξ

γδ
µν

∑
n∈S(2)ℓ

H(2,ℓ)
kn ψ⟨µν⟩,µ1···µℓ

n

 . (6.29)

Up to this point, as long as all irreducible moments are included, no approximation has been made, i.e.,
knowing the evolution of all irreducible moments is equivalent to solving the full Boltzmann equation.
However, in order to arrive at a finite set of equations of motion describing the hydrodynamic degrees
of freedom, we need to establish a connection between the kinetic expressions of the conserved currents
and the irreducible moments.
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6.2.2 Conserved currents and ideal spin hydrodynamics

In this thesis, we consider the modified GLW pseudogauge, i.e., Eq. (3.60) for spin 0, Eqs. (3.127) and
(3.128) for spin 1/2, and Eqs. (3.195) and (3.196) for spin 1. Supplementing the energy-momentum
and spin tensors listed in those equations by an expression for the particle-number current, cf. Eq.
(3.54), we have up to order O(ℏ)

Nµ(x) =

∫
dΓkµf(x, k, s) , (6.30)

Tµν(x) =

∫
dΓkµkνf(x, k, s) , (6.31)

Sλµν(x) = σ

∫
dΓkλΣµνs f(x, k, s) . (6.32)

Note that the spin-0 case, where the spin tensor vanishes, is included in this formulation. Considering
the definitions of the irreducible moments (6.18), we can express the particle-number density and the
diffusion current as

n0 = uµN
µ
0 = I10 , (6.33a)

nµ = ∆µνδNν = ρµ0 . (6.33b)

The matching condition (2.50b) lets the dissipative part of the particle-number density vanish,

δn = uµδN
µ = ρ1 = 0 . (6.34)

The components of the energy-momentum tensor read

ε0 = uµuνT
µν
0 = I20 , (6.35a)

P0 = −1

3
∆µνT

µν
0 = I21 , (6.35b)

Π = −1

3
∆µνδT

µν = −m
2

3
ρ0 , (6.35c)

πµν = ∆µν
αβδT

αβ = ρµν0 . (6.35d)

Here, we already used the matching conditions (2.50a) and (2.52), which imply that

δε = uµuνδT
µν = ρ2 = 0 , (6.36)

hµ = ∆µαuβδTαβ = ρµ1 = 0 . (6.37)

Since the variables characterizing local equilibrium in kinetic theory are α0 and β0, it is advisable to
rewrite the equations of motion for ε0 and n0 (2.54) in terms of these quantities. By employing the
relations

ε̇0 = J20α̇0 − J30β̇0 , ṅ0 = J10α̇0 − J20β̇0 , (6.38)

we find

α̇0 =
1

D20
{−J30 (n0θ + ∂µn

µ) + J20 [(ε0 + P0 +Π) θ − πµνσµν ]} , (6.39a)

β̇0 =
1

D20
{−J20 (n0θ + ∂µn

µ) + J10 [(ε0 + P0 +Π) θ − πµνσµν ]} , (6.39b)

u̇µ =
1

ε0 + P0
(Fµ +∇µΠ−Πu̇µ + πµν u̇ν −∆µν∇απνα) , (6.39c)

where we defined
Dnq := Jn+1,qJn−1,q − J2

nq . (6.40)

At this point, we remark that the relation4

Fµ =
n0
β0
Iµ − ε0 + P0

β0
∇µβ0 (6.41)

4We remind the reader that Fµ := ∇µP0, Iµ := ∇µα0.
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holds.

In the more involved case of the spin tensor, we first insert the local-equilibrium distribution function
(6.6a) into Eq. (6.32) to obtain

Sλµν0 =
2σ2ℏ
gm2

[
uλu[µκ

ν]
0 (m2J10 − J30 + J31) + uλϵµναβuαω0,β(m

2J10 + 2J31)

−u[µϵν]λαβuαω0,βJ31 +∆λ[µκ
ν]
0 J31

]
=

2σ2ℏ
gm2

[
−2uλu[µκν]0 J31 + uλϵµναβuαω0,β(J30 − J31)

−u[µϵν]λαβuαω0,βJ31 +∆λ[µκ
ν]
0 J31

]
, (6.42)

where we used the fact that integrals of an odd number of spin vectors over spin space vanish, and
decomposed the spin potential according to Eq. (2.73). Furthermore, we employed that m2J10 =
J30 − 3J31. Comparing this expression to the more general one (2.75), we find the following explicit
expressions for the quantities A0, · · · , E0 in terms of thermodynamic integrals,

A0 ≡
2σ2ℏ
g

J10 , B0 ≡
2σ2ℏ
gm2

J30 , C0 = D0 = E0 ≡ −
2σ2ℏ
gm2

J31 . (6.43)

Making use of the definitions of the irreducible moments of spin-rank one [cf. Eq. (6.18b)], the
matching condition (2.78) yields

uλδS
λµν = − σ

m
ϵµναβ (uατ2,β + τ1,β,α) = 0 , (6.44)

from which it follows that
τ
[µ,ν]
1 = u[µτ

ν]
2 . (6.45)

Note that only the antisymmetric part of the moment of spin- and momentum-rank one is determined
by τµ2 , while the symmetric part remains unconstrained. Then, the dissipative part of the spin tensor
takes the form

δSλµν = − σ
m
ϵµναβ

[
1

2
uατ1,(⟨β⟩,

⟨λ⟩) +
1

3
∆λ

α

(
m2τ0,β − τ2,β

)
+ τ0,β,α

λ

]
. (6.46)

In the following, we will rename the moments that appear in the equation above as5

pµ := τ
⟨µ⟩
0 , nµ := τµ2 , zµν := τ

(⟨µ⟩,⟨ν⟩)
1 , qλµν := τλ,µν0 . (6.47)

It should be noted that these types of moments are connected to certain higher-order ones, as we can
see by employing Eq. (6.24):

uµτ
µ
r = −τµ,r−1µ , (6.48a)

uµτ
µ,ν
r = −τµ,νr−1µ −

1

3

(
m2τ

⟨ν⟩
r−1 − τ

⟨ν⟩
r+1

)
, (6.48b)

uµτ
µ,νλ
r = −τµ,νλr−1 µ −

2

5

(
m2τ

⟨ν,λ⟩
r−1 − τ

⟨ν,λ⟩
r+1

)
. (6.48c)

Inserting Eqs. (6.43) and (6.46) into the equations of motion for the components of Ω0 (2.80), we find
the equation of motion for κ0 to be

4σ2ℏ
gm

J31κ̇
⟨µ⟩
0 =

4σ2ℏ
gm

{
− κµ0

(
K31α̇0 −K41β̇0 +

4

3
J31θ

)
− 1

2
J30ϵ

µναβuν u̇αω0,β

+
1

2
ϵµναβuν [J31∇αω0,β + ω0,β (K31Iα −K41∇αβ0)]

+
1

2
J31 (σ

µν + ωµν)κ0,ν

}
+ σϵµναβuν

[
1

2
(σλα + ωλα)zβ

λ

+
1

3
(∇α − u̇α)(m2pβ − nβ) + (∇λ − u̇λ)qβαλ

]
− m

ℏ
T [µν]uν , (6.49a)

5In contrast to Ref. [82], we define pµ to be orthogonal to the fluid four-velocity.



114 6 Dissipative spin hydrodynamics

whereas the evolution of ω0 is determined by

2σ2ℏ
gm

(J30 − J31)ω̇⟨µ⟩
0 = −2σ2ℏ

gm

{[
(K30 −K31)α̇0 − (K40 −K41)β̇0 +

(
J30 −

1

3
J31

)
θ

]
ωµ0

+ ϵµναβuν [J31∇ακ0,β + κ0,β(K31Iα −K41∇αβ0)− 3J31u̇ακ0,β ]

− J31(σµν + ωµν)ω0,ν

}
− σ

[
1

2
(u̇λ −∇λ)zλµ + uν∆

µ
α(∇λ − u̇λ)q[να]λ

− 1

3

(
σµν + ωµν − 2

3
θ∆µν

)
(m2pν − nν)

]
− m

ℏ
ϵµναβuνTαβ . (6.49b)

Here we introduced the thermodynamic integrals

Knq :=
∂Jnq
∂α0

≡ ∂2Inq
∂α2

0

. (6.50)

Note that the last terms in the equations above are not problematic in the limit of ℏ→ 0, since the
antisymmetric part of the energy-momentum tensor is at least of second order in ℏ.

The system of eleven equations which is given by Eqs. (6.39) and (6.49) specifies the time evolution of
all components of the Lagrange multipliers α0, β

µ
0 , and Ωµν0 , and thus provides the foundation of

ideal spin hydrodynamics. In order to close the system of equations, we need to determine the evolution
of the dissipative quantities Π, nµ, πµν , pµ, zµν , and qλµν . Note that we do not need to consider the
evolution of nµ, since its independent components are determined by the matching condition (6.45).
In particular, using Eq. (6.24), we have

2

3
n⟨µ⟩ = −qνµν −

m2

3
pµ . (6.51)

The antisymmetric part of Tµν

We still need to express the antisymmetric part of the energy-momentum tensor which appears in Eqs.
(6.49) in terms of kinetic quantities. When taking the divergence of the spin tensor, we find

ℏ∂λSλµν = ℏσ
1

2

∫
[dΓ](2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(σ)Σµνs

×
[
f(x+∆1, k1, s1)f(x+∆2, k2, s2)f̃(x+∆′, k′, s′)f̃(x+∆, k, s)

− f̃(x+∆1, k1, s1)f̃(x+∆2, k2, s2)f(x+∆′, k′, s′)f(x+∆, k, s)
]
, (6.52)

where we introduced [dΓ] := dΓdΓ1 dΓ2 dΓ
′. Note that we neglected a term ∼ ∆ ·∂(f1f2f̃ ′f̃ − f̃1f̃2f ′f),

since it is at least of order O(ℏκRe−1). Furthermore, we already employed the weak equivalence
principle, which is applicable due to Σµνs being linear in the spin vector and the assumption (4.155)
on the transition rate. Subsequently, we may use the symmetries of the collision term as well as the
conservation of the total angular momentum (4.152) to write

ℏ∂λSλµν = −1

8

∫
[dΓ](2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(σ)

(
k[ν∆µ] + k′[ν∆′µ] − k[ν1 ∆

µ]
1 − k

[ν
2 ∆

µ]
2

)
×
[
f(x+∆1, k1, s1)f(x+∆2, k2, s2)f̃(x+∆′, k′, s′)f̃(x+∆, k, s)

− f̃(x+∆1, k1, s1)f̃(x+∆2, k2, s2)f(x+∆′, k′, s′)f(x+∆, k, s)
]
. (6.53)

Then, by employing the symmetries of the collision term again, we find a familiar form for the
antisymmetric part of the energy-momentum tensor,

T [µν] =
1

2

∫
[dΓ](2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(σ)∆[µkν] (6.54)

×
[
f(x, k1, s1)f(x, k2, s2)f̃(x, k

′, s′)f̃(x, k, s)− f̃(x, k1, s1)f̃(x, k2, s2)f(x, k′, s′)f(x, k, s)
]
.



6.2 The method of moments 115

Here we did not consider the nonlocal contributions to the distribution functions since expressions
which are quadratic in those shifts go beyond our truncation. Note that, while we derived it here via the
conservation of the total angular momentum, we can also compute T [µν] explicitly, as is demonstrated
in Appendix B.3. After splitting the distribution function into local-equilibrium and dissipative parts
and only considering terms linear in gradients or dissipative quantities, we find

m

ℏ
T [µν] =

1

2

∫
[dΓ](2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(σ)m

ℏ
∆[µkν]f0kf0k′ f̃0k1 f̃0k2

×
[
− σℏ

2m

(
Ω̃0,αβ − ϖ̃αβ

)(
kα1 s

β
1 + kα2 s

β
2 − kαsβ − k′αs′β

)
− sα

(
ζαk1

+ ζαk2
− ζαk − ζαk′

) ]
,

(6.55)

where we defined Ω̃µν := ϵµναβΩαβ . Here, we already multiplied by a factor of m/ℏ ∼ λ−1
C as it appears

in the conservation equations (6.49). Furthermore, since Σµνs is linear in the spin vector, only the
moments τµ,µ1···µℓ

r can contribute.

In order to get a clearer interpretation of Eq. (6.55), we have to ask on which quantities it can depend,
which are constrained by the requirement that T [µν] is an antisymmetric second-rank tensor. We
can see that the only terms dependent on the local-equilibrium quantities that fulfill the required
symmetries are the components of the difference between the spin potential and the thermal vorticity,
i.e.,

u[µ
(
Ω
ν]α
0 −ϖν]α

)
uα and

(
Ω

⟨µ⟩⟨ν⟩
0 −ϖ⟨µ⟩⟨ν⟩

)
. (6.56)

Note that these contributions do not have to be present with the same coefficient. In the dissipative
sector, we have to remember that the moments τµ,µ1···µℓ

r transform as axial vectors in the first Lorentz
index. Then, the only types of tensors that we can build which transform appropriately are the duals
of uατr,β , τn,α,β , and uαtr,β , where tµr := τα,µr α. Thus, we can write the antisymmetric part of the
energy-momentum tensor as

m

ℏ
T [µν] = −Γ(κ)u[µ

(
κ
ν]
0 +ϖν]αuα

)
+ Γ(ω)

(
ϵµναβuαω0,β −ϖ⟨µ⟩⟨ν⟩

)
+ ϵµναβ

uα ∑
n∈S(1)0

γ(0)n τn,β +
∑
n∈S(1)1

γ(1)n τn,⟨α⟩,β + uα
∑
n∈S(1)2

γ(2)n tn,β

 , (6.57)

where we defined the coefficients

Γ(κ) :=
σ

12

∫
[dΓ](2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(σ)∆[µkν]f0kf0k′ f̃0k1 f̃0k2

× uµ∆ρ
νu

σϵρσαβ

(
kα1 s

β
1 + kα2 s

β
2 − kαsβ − k′αs′β

)
, (6.58a)

Γ(ω) := − σ

24

∫
[dΓ](2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(σ)∆[µkν]f0kf0k′ f̃0k1

f̃0k2

×∆ρ
µ∆

σ
ν ϵρσαβ

(
kα1 s

β
1 + kα2 s

β
2 − kαsβ − k′αs′β

)
, (6.58b)

which are related to the components of the spin potential, as well as the quantities

γ(0)n :=
1

6

∫
[dΓ](2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(σ)m

ℏ
∆µkνf0kf0k′ f̃0k1

f̃0k2

× ϵµναβuαΞβγsγ
(
H(1,0)

k1n
+H(1,0)

k2n
−H(1,0)

kn −H(1,0)
k′n

)
, (6.58c)

γ(1)n :=
1

24

∫
[dΓ](2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(σ)m

ℏ
∆µkνf0kf0k′ f̃0k1

f̃0k2

× ϵµναβΞαγsγ
(
H(1,1)

k1n
k
⟨β⟩
1 +H(1,1)

k2n
k
⟨β⟩
2 −H(1,1)

kn k⟨β⟩ −H(1,1)
k′n k′⟨β⟩

)
, (6.58d)

γ(2)n :=
1

10

∫
[dΓ](2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(σ)m

ℏ
∆µkνf0kf0k′ f̃0k1

f̃0k2

× ϵµναβuαΞδγsγ
(
H(1,2)

k1n
k
⟨β
1 k

δ⟩
1 +H(1,2)

k2n
k
⟨β
2 k

δ⟩
2 −H

(1,2)
kn k⟨βkδ⟩ −H(1,2)

k′n k′⟨βk′δ⟩
)
, (6.58e)
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which multiply the respective irreducible moments.
Then, using Eq. (6.41) to replace the gradients of β0 and introducing the vorticity vector ωµ :=
1
2ϵ
µναβuνωαβ , the quantities that appear in the evolution equations for κµ0 and ωµ0 read

−m
ℏ
T [µν]uν = −Γ(κ)

[
κµ0 +

β0
2

(
Fµ

ε0 + P0
+ u̇µ

)]
+

Γ(κ)

2h
Iµ −

∑
n∈S(1)1

γ(1)n wµn , (6.59a)

−m
ℏ
ϵµναβuνTαβ = −Γ(ω) (ωµ0 + β0ω

µ)−
∑
n∈S(1)0

γ(0)n τµn −
∑
n∈S(1)2

γ(2)n tµn , (6.59b)

where we also defined the dual of the irreducible moments of spin-rank one and momentum rank two,

wµr := ϵµναβuντr,α,β . (6.60)

Note that here we explicitly computed the components of the thermal vorticity,

ϖµνuν =
1

2
(β0u̇

µ −∇µβ0) =
β0
2

(
Fµ

ε0 + P0
+ u̇µ

)
− Iµ

2h
, (6.61a)

ϵµναβuνϖαβ = −2β0ωµ , (6.61b)

where we made use of Eq. (6.41). In the following we will define for brevity Γ(I) := (2h)−1.

Summarizing the equations for the spin potential

Putting the considerations on the antisymmetric part of the energy-momentum tensor to use, we may
reformulate Eqs. (6.49) as

4σ2ℏ
gm

J31κ̇
⟨µ⟩
0 + Γ(κ)κµ0 +

∑
n∈S(1)1

γ(1)n wµn

= − β0Γ
(κ)

ε0 + P0
Fµ + Γ(κ)Γ(I)Iµ +

4σ2ℏ
gm

{
− κµ0

(
K31α̇0 −K41β̇0 +

4

3
J31θ

)
− 1

2
ϵµναβuν [J30u̇αω0,β − J31∇αω0,β − ω0,β (K31Iα −K41∇αβ0)] +

1

2
J31 (σ

µν + ωµν)κ0,ν

}
+ σϵµναβuν

[
1

2
(σλα + ωλα)zβ

λ +
1

3
(∇α − u̇α)(m2pβ − nβ) + (∇λ − u̇λ)qβαλ

]
, (6.62a)

2σ2ℏ
gm

(J30 − J31)ω̇⟨µ⟩
0 + Γ(ω)ωµ0 +

∑
n∈S(1)0

γ(0)n τµn +
∑
n∈S(1)2

γ(2)n tµn

= −β0Γ(ω)ωµ − 2σ2ℏ
gm

{[
(K30 −K31)α̇0 − (K40 −K41)β̇0 +

(
J30 −

1

3
J31

)
θ

]
ωµ0

+ ϵµναβuν [J31∇ακ0,β + κ0,β(K31Iα −K41∇αβ0)− 3J31u̇ακ0,β ]− J31(σµν + ωµν)ω0,ν

}
− σ

[
1

2
(u̇λ −∇λ)zλµ + uν∆

µ
α(∇λ − u̇λ)q[να]λ −

1

3

(
σµν + ωµν − 2

3
θ∆µν

)
(m2pν − nν)

]
, (6.62b)

where we used the equation of motion for the four-velocity (6.39c) and neglected nonlinear terms.6
This form of the evolution equations for the components of the spin potential makes it clear that,
provided that Γ(κ) and Γ(ω) are positive, they are of relaxation type. The respective relaxation times

6In principle, since we aim to provide a theory that is accurate to second order in Knudsen and inverse Reynolds
numbers, we should keep these terms. We neglect them for consistency since they constitute nonlinear contributions
emerging from the collision term, which will be omitted also in the following section. However, considering the results of
Ref. [160], they should be included in the future.
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are controlled by the nonlocal part of the collision terms, as is manifest from the coefficients (6.58).
More specific, the relaxation times will be determined by the inverses of Γ(κ) and Γ(ω), implying
that, in line with our expectations, larger nonlocal contributions lead to faster relaxation towards the
respective components of the thermal vorticity. In the limit of local collisions, where ∆→ 0 and thus
Γ(κ),Γ(ω) → 0, the relaxation times become infinite and the components of the spin tensor will follow
wave-type equations [119]. Moreover, since the coefficients Γ(κ) and Γ(ω) originate from the nonlocal
part of the collision term, we expect them to be small, such that the damping of the spin waves is low,
necessitating a dynamical treatment of the spin potential, as opposed to taking it to be equal to the
thermal vorticity. Further research on this point will be undertaken in the future.

Furthermore, some of the dissipative terms in the equations above are of first order in Knudsen and
inverse Reynolds numbers, which will make it necessary to include the equations of motion for ωµ0
and κµ0 in the truncation procedure which we will establish in Sec. 6.3. This is in contrast to the
equations of motion for α0, β0, and uµ, which do not couple to dissipative quantities at first order in
Knudsen and inverse Reynolds numbers. Note that, when setting all terms of second order to zero,
we obtain algebraic relations for the components of the spin potential, which, if dissipative quantities
are set to zero as well, reduce to the appropriate projections of the thermal vorticity.

6.2.3 Tensor polarization

Evidently, in the preceding discussion of the conserved currents, the moments of spin-rank two
(6.18c) did not appear at all, which raises the question of their significance. In order to get a clearer
understanding of what is relevant, we have to remember that the quantities which are measured in
experiment are certain entries of the spin-density matrix ϱ̂(k) of the particles [5, 10, 16, 18]. The vector
polarization of a particle is encoded in the expectation value of the Pauli-Lubanski operator [15]

Sµ(k) := Tr
[
Ŝµϱ̂(k)

]
, (6.63)

where
Ŝµ := − 1

2m
ϵµναβ ĴναP̂β , (6.64)

with Ĵ and P̂ being the total-angular momentum and momentum operators in the relevant representa-
tion, respectively. However, the spin-density matrix of a particle of spin j ≥ 1 has a richer internal
structure, featuring higher-order polarization observables that involve more powers of the Pauli-
Lubanski operator. In particular, the tensor polarization, which constitutes a traceless symmetric
tensor,7 is defined as [15]

Θµν(k) :=
1

2

√
3

2
Tr

{[
Ŝ(µŜν) +

2σ(σ + 1)

3
Kµν

]
ϱ̂(k)

}
. (6.65)

In Appendix C, it is shown that these quantities can be connected to the single-particle distribution
function in the following way,

Sµ(k) =
σ

N(k)

∫
dΣλk

λ

∫
dS(k)sµf(x, k, s) , (6.66)

Θµν(k) =
1

2

√
3

2

1

N(k)

∫
dΣλk

λ

∫
dS(k)Kµν

αβs
αsβf(x, k, s) , (6.67)

where we defined
N(k) :=

∫
dΣγk

γ

∫
dS(k)f(x, k, s) . (6.68)

Thus, the components of the distribution function that are bilinear in the spin vector (i.e., the moments
of spin-rank two) determine the tensor polarization of particles.

7We remark that this type of polarization becomes the linear polarization of light in the massless case.
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When integrating the expressions (6.66) and (6.67), which determine the so-called local polarization,
over momentum space as well, we find the expressions for the global vector and tensor polarization,

S
µ
:=

1

N

∫
dKN(k)Sµ(k) =

σ

N

∫
dΣλ

(
−σℏ
m

∫
dKkλΩ̃µαkαf0kf̃0k + uλτµ1 + τµ,λ0

)
, (6.69)

Θ
µν

:=
1

N

∫
dKN(k)Θµν(k) =

1

2

√
3

2

1

N

∫
dΣλ

(
uλψµν1 + ψµν,λ0

)
, (6.70)

where we introduced

N :=

∫
dKN(k) . (6.71)

Note that, just as the moments of spin-rank one, the irreducible moments of spin-rank two that appear
here are connected to the traces of higher-order ones,

uµψ
µν
r = −ψµν,r−1µ , (6.72a)

uµuνψ
µν
r = ψµν,r−2µν −

1

3
uµuν

(
m2ψµνr−2 − ψµνr

)
, (6.72b)

uµψ
µν,λ
r = −ψµν,λr−1 µ −

1

3

(
m2ψ

ν⟨λ⟩
r−1 − ψ

ν⟨λ⟩
r+1

)
, (6.72c)

uµuνψ
µν,λ
r = ψµν,λr−2 µν +

2

5

(
m2ψ

µ⟨λ⟩,
r−2 µ − ψµ⟨λ⟩,r µ

)
− 1

5
uµuν

(
m2ψµν,λr−2 − ψµν,λr

)
. (6.72d)

6.2.4 General equations of motion

It is clear that, in order to arrive at hydrodynamic equations, we need to know the evolution of the
irreducible moments (6.18). In order to obtain these, we rewrite the Boltzmann equation in extended
phase space as

δḟks = E−1
k C(x, k, s)− ḟeq(x, k, s)− E−1

k k⟨µ⟩∇µfeq(x, k, s)− E−1
k k⟨µ⟩∇µδfks . (6.73)

Then, by acting with a comoving derivative on the definition of the irreducible moments and using Eq.
(6.73), we are able to derive exact evolution equations for them. The explicit calculations are shown in
Appendix D.

Spin-rank zero

As is evident from Eqs. (6.33) and (6.35), the dissipative components of the particle four-current and
the energy-momentum tensor are determined by the moments of spin-rank zero and momentum-rank
zero, one and two. Thus, we compute the equations of motion for these type of moments. Defining the
thermodynamic integrals

Gnm := Jn0Jm0 − Jn−1,0Jm+1,0 , (6.74)

we find for the moment of zeroth rank in momentum after a longer, but straightforward computation

ρ̇r − Cr−1 = α(0)
r θ − G2r

D20
Πθ +

G2r

D20
πµνσµν +

G3r

D20
∂µn

µ + (r − 1)ρµνr−2σµν

+ rρµr−1u̇µ −∇µρµr−1 −
1

3

[
(r + 2)ρr − (r − 1)m2ρr−2

]
θ , (6.75a)

where we made use of the equations of motion for α0 and β0 [cf. Eqs. (6.39a) and (6.39b)] and defined

α(0)
r := (1− r)Ir1 − Ir0 −

1

D20
[G2r(ε0 + P0)−G3rn0] . (6.76a)
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The equation of motion for the moments of momentum-rank one is

ρ̇⟨µ⟩r − C⟨µ⟩
r−1 = α(1)

r Iµ + ρνrω
µ
ν +

1

3
[(r − 1)m2ρµr−2 − (r + 3)ρµr ]θ −∆µ

λ∇νρλνr−1 + rρµνr−1u̇ν

+
1

5

[
(2r − 2)m2ρνr−2 − (2r + 3)ρνr

]
σµν +

1

3

[
m2rρr−1 − (r + 3)ρr+1

]
u̇µ

+
β0Jr+2,1

ε0 + P0
(Πu̇µ −∇µΠ+∆µ

ν∂λπ
λν)− 1

3
∇µ(m2ρr−1 − ρr+1) + (r − 1)ρµνλr−2σλν ,

(6.75b)

where we employed Eq. (6.39c) and introduced

α(1)
r := Jr+1,1 −

n0
ε0 + P0

Jr+2,1 . (6.76b)

Note that the equation of motion has been projected orthogonal to the four-velocity, i.e., we have
ρ̇
⟨µ⟩
r := ∆µ

νu · ∂ρνr . Lastly, the moments of rank two in momentum follow the evolution equation

ρ̇⟨µν⟩r − C⟨µν⟩
r−1 = 2α(2)

r σµν − 2

7

[
(2r + 5)ρλ⟨µr − 2m2(r − 1)ρ

λ⟨µ
r−2

]
σ
ν⟩
λ + 2ρλ⟨µr ων⟩λ

+
2

15
[(r + 4)ρr+2 − (2r + 3)m2ρr + (r − 1)m4ρr−2]σ

µν +
2

5
∇⟨µ

(
ρ
ν⟩
r+1 −m2ρ

ν⟩
r−1

)
− 2

5

[
(r + 5)ρ

⟨µ
r+1 − rm2ρ

⟨µ
r−1

]
u̇ν⟩ − 1

3

[
(r + 4)ρµνr −m2(r − 1)ρµνr−2

]
θ

+ (r − 1)ρµνλρr−2 σλρ −∆µν
αβ∇λρ

αβλ
r−1 + rρµνλr−1u̇λ , (6.75c)

where we defined
α(2)
r := Ir+2,1 + (r − 1)Ir+2,2 . (6.76c)

The second terms on the left-hand sides of Eqs. (6.75) are called generalized irreducible collision terms
and are defined as

C⟨µ1···µℓ⟩
r :=

∫
dΓErkk

⟨µ1 · · · kµℓ⟩C(x, k, s) . (6.77)

Note that in Eqs. (6.75) it appears that no moments of spin rank higher than zero enter; however, we
will see in Subsec 6.3.2 that the generalized collision terms will introduce a coupling to the moments of
spin-rank two.

Spin-rank one

The calculation to obtain the equations of motion for the moments of spin-rank one [cf. Eq. (6.18b)] is
similar to the one for the moments of spin-rank zero. The main difference consists in the fact that the
equilibrium contributions are now given by the terms of first order in ℏ in Eq. (6.5). We find for the
moments of rank one in spin and rank zero in momentum

τ̇ ⟨µ⟩r − C
⟨µ⟩
r−1 =

σℏ
gm

{
2ωµ0

[
Kr+1,0α̇0 −Kr+2,0β̇0 + (Jr+1,0 + rJr+1,1)θ

]
+ Jr+1,0

(
2ω̇

⟨µ⟩
0 − Ω̃

⟨µ⟩ν
0 u̇ν

)
− Jr+1,1∆

µ
λ∇νΩ̃λν0 − Ω̃

⟨µ⟩ν
0 [Kr+1,1Iν −Kr+2,1(∇νβ0 + β0u̇ν)]

}
+ ru̇ντ

⟨µ⟩,ν
r−1

+ (r − 1)σαβτ
⟨µ⟩,αβ
r−2 −∆µ

λ∇ντ
λ,ν
r−1 −

1

3

[
(r + 2)τ ⟨µ⟩r − (r − 1)m2τ

⟨µ⟩
r−2

]
θ . (6.78a)

Comparing the right-hand sides of Eqs. (6.75a) and (6.78a), we see that the only difference in structure
comes from the equilibrium terms, since the contributions that involve the dissipative quantities arise
solely from the rank of the projected momenta that appear. Furthermore, note that we, in contrast



120 6 Dissipative spin hydrodynamics

to Eq. (6.75a), did not insert the evolution equation for α0, β0, and uµ yet for brevity. For the spin
moment of tensor-rank one in momentum we find the equation of motion

τ̇ ⟨µ⟩,⟨ν⟩r − C
⟨µ⟩,⟨ν⟩
r−1 = − σℏ

gm

{
Jr+2,1

˙̃
Ω

⟨µ⟩⟨ν⟩
0 + Jr+2,1∆

µ
ρuλ∇νΩ̃ρλ0 + 2β0Kr+3,2Ω̃

⟨µ⟩λ
0 σνλ

+ 2ωµ0 [Kr+2,1I
ν −Kr+3,1 (∇νβ0 + β0u̇

ν)] + Ω̃
⟨µ⟩⟨ν⟩
0

(
Kr+2,1α̇0 −Kr+3,1β̇0

+
5

3
β0Kr+3,2θ

)}
+ ωνρτ

⟨µ⟩,ρ
r +

1

3

[
(r − 1)m2τ

⟨µ⟩,ν
r−2 − (r + 3)τ ⟨µ⟩,νr

]
θ

+
1

5

[
(2r − 2)m2τ

⟨µ⟩,λ
r−2 − (2r + 3)τ ⟨µ⟩,λr

]
σνλ +

1

3
u̇ν
[
m2rτ

⟨µ⟩
r−1 − (r + 3)τ

⟨µ⟩
r+1

]
− 1

3
∆µ
λ∇ν

(
m2τλr−1 − τλr+1

)
+ ru̇ρτ

⟨µ⟩,νρ
r−1 −∆ν

λ∆
µ
α∇ρτα,λρr−1 + (r − 1)σλρτ

⟨µ⟩,νλρ
r−2 ,

(6.78b)

where we see the same similarities to Eq. (6.75b) that were mentioned in Eq. (6.78a). Finally, for the
spin moment of tensor-rank two in momentum the equation of motion reads

τ̇ ⟨µ⟩,⟨νλ⟩r − C
⟨µ⟩,⟨νλ⟩
r−1 =

2σℏ
gm

{
Ω̃⟨µ⟩⟨ν

[
Kr+3,2I

λ⟩ −Kr+4,2

(
∇λ⟩β0 + β0u̇

λ⟩
)]

+Kr+3,2∆
µ
γ∆

νλ
αβ∇αΩ̃γβ

− 2β0Kr+4,2ω
µ
0 σ

νλ
}
+ ru̇ρτ

⟨µ⟩,νλρ
r−1 +

2

5

[
rm2τ

⟨µ⟩,⟨ν
r−1 − (r + 5)τ

⟨µ⟩,⟨ν
r+1

]
u̇λ⟩

−∆µ
γ∆

νλ
αβ∇ρτγ,αβρr−1 +∆µ

ρ

2

5
∆νλ
αβ∇β

(
τρ,αr+1 −m2τρ,αr−1

)
+

1

3

[
(r − 1)m2τ

⟨µ⟩,νλ
r−2 − (r + 4)τ ⟨µ⟩,νλr

]
θ + (r − 1)σρττ

⟨µ⟩,νλρτ
r−2

+
2

7

[
2(r − 1)m2τ

⟨µ⟩,ρ⟨ν
r−2 − (2r + 5)τ ⟨µ⟩,ρ⟨νr

]
σλ⟩ρ + 2τ ⟨µ⟩,ρ⟨νr ωλ⟩ρ

+
2

15

[
(r − 1)m4τ

⟨µ⟩
r−2 − (2r + 3)m2τ ⟨µ⟩r + (r + 4)τ

⟨µ⟩
r+2

]
σνλ . (6.78c)

The generalized irreducible collision terms appearing on the left-hand sides of Eqs. (6.78) (which we
denoted with a different font to preclude ambiguities) are defined as

C⟨µ⟩,⟨µ1···µℓ⟩
r :=

∫
dΓErks

⟨µ⟩k⟨µ1 · · · kµℓ⟩C(x, k, s) . (6.79)

Spin-rank two

The equations of motion for the irreducible moments of spin-rank two are again obtained by acting with
a comoving derivative on Eq. (6.18c) and using the Boltzmann equation (6.73). For the moments of
tensor-rank zero in momentum we find

ψ̇⟨µν⟩
r − C

⟨µν⟩
r−1 =

1

3

[
(r − 1)m2ψ

⟨µν⟩
r−2 − (r + 2)ψ⟨µν⟩

r

]
θ + ru̇γψ

⟨µν⟩,γ
r−1

−∆µν
αβ∇γψ

αβ,γ
r−1 + (r − 1)ψ

⟨µν⟩,αβ
r−2 σαβ . (6.80a)

Again, we notice the same structures appearing on the right-hand side as in Eqs. (6.75a) and (6.78a).
However, in contrast to the moments of spin-ranks zero and one, there are no terms present that emerge
from local equilibrium, since there is no conserved quantity associated with the tensor polarization.
The equation of motion for the moment of tensor-rank one in momentum reads

ψ̇⟨µν⟩,⟨λ⟩
r − C

⟨µν⟩,⟨λ⟩
r−1 =

1

3

[
m2rψ

⟨µν⟩
r−1 − (r + 3)ψ

⟨µν⟩
r+1

]
u̇λ − 1

3
∆µν
αβ∇λ

(
m2ψαβr−1 − ψαβr+1

)
+ ψ⟨µν⟩,α

r ωλα +
1

3

[
(r − 1)m2ψ

⟨µν⟩,λ
r−2 − (r + 3)ψ⟨µν⟩,λ

r

]
θ

+
1

5

[
(2r − 2)m2ψ

⟨µν⟩,α
r−2 − (2r + 3)ψ⟨µν⟩,α

r

]
σα

λ

+ ru̇αψ
⟨µν⟩,λα
r−1 −∆µν

αβ∆
λ
γ∇δψαβ,γδr−1 + (r − 1)ψ

⟨µν⟩,λαβ
r−2 σαβ , (6.80b)
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while the one for momentum-rank two is given by

ψ̇⟨µν⟩,⟨λα⟩
r − C

⟨µν⟩,⟨λα⟩
r−1 =

2

5

[
m2rψ

⟨µν⟩,⟨λ
r−1 − (r + 5)ψ

⟨µν⟩,⟨λ
r+1

]
u̇α⟩ − 2

5
∆µν
ρσ∆

λα
βγ∇γ

[
m2ψρσ,βr−1 − ψρσ,βr+1

]
+ 2ψ⟨µν⟩,β⟨λ

r ω
α⟩
β +

1

3

[
m2(r − 1)ψ

⟨µν⟩,λα
r−2 − (r + 4)ψ⟨µν⟩,λα

r

]
θ

+
2

7

[
2m2(r − 1)ψ

⟨µν⟩,β⟨λ
r−2 − (2r + 5)ψ⟨µν⟩,β⟨λ

r

]
σ
α⟩
β

+
2

15
σλα

[
m4(r − 1)ψ

⟨µν⟩
r−2 −m2(2r + 3)ψ⟨µν⟩

r + (r + 4)ψ
⟨µν⟩
r+2

]
+ rψ

⟨µν⟩,λαβ
r−1 u̇β −∆µν

ρσ∆
λα
βγ∇δψρσ,βγδr−1 + (r − 1)ψ

⟨µν⟩,λαβγ
r−2 σβγ . (6.80c)

For reasons that will become clear later, we furthermore need the equations of motion for the moments
of tensor-ranks three and four in momentum, which read

ψ̇⟨µν⟩,⟨λαβ⟩
r − C

⟨µν⟩,⟨λαβ⟩
r−1 =

1

3

[
(r − 1)m2ψ

⟨µν⟩,λαβ
r−2 − (r + 5)ψ⟨µν⟩,λαβ

r

]
θ + 3ψ⟨µν⟩,κ⟨λα

r ωβ⟩κ

+
6

35

[
(r − 1)m4ψ

⟨µν⟩,⟨λ
r−2 − (2r + 5)m2ψ⟨µν⟩,⟨λ

r + (r + 6)ψ
⟨µν⟩,⟨λ
r+2

]
σαβ⟩

+
1

3

[
m2(2r − 2)ψ

⟨µν⟩,κ⟨λα
r−2 − (2r + 7)ψ⟨µν⟩,κ⟨λα

r

]
σβ⟩κ + ru̇κψ

⟨µν⟩,κλαβ
r−1

− 3

7
∆µν
γδ∆

λαβ
κζη∇κ

(
m2ψγδ,ζηr−1 − ψγδ,ζηr+1

)
−∆µν

γδ∆
λαβ
κζη∇ρψ

γδ,κζηρ
r−1

+
3

7

[
m2rψ

⟨µν⟩,⟨λα
r−1 − (r + 7)ψ

⟨µν⟩,⟨λα
r+1

]
u̇β⟩ + (r − 1)σγδψ

⟨µν⟩,λαβγδ
r−2 ,

(6.80d)

and

ψ̇⟨µν⟩,⟨λαβγ⟩
r − C

⟨µν⟩,⟨λαβγ⟩
r−1 =

1

3

[
(r − 1)m2ψ

⟨µν⟩,λαβγ
r−2 − (r + 6)ψ⟨µν⟩,λαβγ

r

]
θ + 4ψ⟨µν⟩,κ⟨λαβ

r ωγ⟩κ

+
4

21

[
(r − 1)m4ψ

⟨µν⟩,⟨λα
r−2 − (2r + 7)m2ψ⟨µν⟩,⟨λα

r + (r + 8)ψ
⟨µν⟩,⟨λα
r+2

]
σβγ⟩

+
4

11

[
m2(2r − 2)ψ

⟨µν⟩,κ⟨λαβ
r−2 − (2r + 9)ψ⟨µν⟩,κ⟨λαβ

r

]
σγ⟩κ

+ ru̇κψ
⟨µν⟩,κλαβγ
r−1 − 4

9
∆µν
ξδ∆

λαβγ
κζηρ ∇κ

(
m2ψξδ,ζηρr−1 − ψξδ,ζηρr+1

)
−∆µν

ξδ∆
λαβγ
κζηρ ∇σψ

ξδ,κζηρσ
r−1 +

4

9

[
m2rψ

⟨µν⟩,⟨λαβ
r−1 − (r + 9)ψ

⟨µν⟩,⟨λαβ
r+1

]
u̇γ⟩

+ (r − 1)σδρψ
⟨µν⟩,λαβγδρ
r−2 , (6.80e)

respectively. Note that these equations are equivalent to the ones presented in Ref. [161] for moments
of spin-rank zero. In Eqs. (6.80), the generalized irreducible collision terms are given by

C⟨µν⟩,⟨µ1···µℓ⟩
r :=

∫
dΓErkK

⟨µν⟩
αβ sαsβk⟨µ1 · · · kµℓ⟩C(x, k, s) . (6.81)

6.3 Closing the system of equations

The equations of motion (6.75), (6.78), and (6.80) are exact (besides the approximations made in
deriving the Boltzmann equation), but do not form a closed system of equations. This can be
straightforwardly seen by the fact that the evolution of the moment of tensor-rank ℓ in momentum
depends on the moments of tensor-rank ℓ+ 1 and ℓ+ 2. Furthermore, a moment of rank r in energy
couples to moments of energy-rank r − 1 and r − 2 as well. Thus, one has to find a way to sensibly
truncate and close this system of equations, which we will do by keeping terms up to second order in
Knudsen and inverse Reynolds numbers.
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6.3.1 IReD: Basic idea

We explain the scheme that we will use by first considering the example of a fluid made of spin-0
particles, where the distribution function does not depend on the spin variable and the moments
τµ,µ1···µℓ
r and ψµν,µ1···µℓ

r vanish. Then, one can express the generalized irreducible collision terms (6.77)
in terms of the irreducible moments as [51]

C
⟨µ1···µℓ⟩
r−1 = −

∑
n∈S(0)ℓ

A(ℓ)
rnρ

µ1···µℓ
n +O(Re−2) , (6.82)

where A(ℓ) is a matrix whose dimension is equal to the number of elements in the basis S(0)ℓ . Note that
here the second terms on the right-hand side denote nonlinear contributions to the collision term that
are at least quadratic in inverse Reynolds numbers. Then, the moment equations (6.75) take the
form of a system of coupled relaxation-type equations. One possible way to truncate the system, which
we denote “DNMR approach” and is detailed in Ref. [51], consists of diagonalizing the matrices A(ℓ)

in order to find the slowest eigenmodes, i.e., the eigenvectors of A(ℓ) that correspond to the smallest
eigenvalues.8 Subsequently, one can re-express these eigenvectors in terms of irreducible moments
and, neglecting terms of third order in Knudsen and inverse Reynolds numbers, close the moment
equations in terms of the fluid-dynamical ones, i.e., ρ0, ρ

µ
0 , and ρµν0 .

In this thesis, however, we will use a different approach, which has its nonrelativistic origins in works by
Struchtrup [48] and has recently been employed for deriving second-order dissipative hydrodynamics
with multiple conserved charges [49]. In this approach, one first multiplies the moment equations (6.75)
with the inverse of the linearized collision matrix, τ (ℓ) := (A(ℓ))−1, such that they take the form

∑
n∈S(0)0

τ (0)rn ρ̇n + ρr =
3

m2
ζrθ +O(KnRe−1,Re−2) , (6.83a)

∑
n∈S(0)1

τ (1)rn ρ̇
⟨µ⟩
n + ρµr = κrI

µ +O(KnRe−1,Re−2) , (6.83b)

∑
n∈S(0)2

τ (2)rn ρ̇
⟨µν⟩
n + ρµνr = 2ηrσ

µν +O(KnRe−1,Re−2) , (6.83c)

where we defined the Navier-Stokes values

ζr :=
m2

3

∑
n∈S(0)0

τ (0)rn α
(0)
n , κr :=

∑
n∈S(0)1

τ (1)rn α
(1)
n , ηr :=

∑
n∈S(0)2

τ (2)rn α
(2)
n . (6.84)

Noting that the first terms on the left-hand sides of Eqs. (6.83) are of order O(KnRe−1), we find the
asymptotic matching conditions for the moments,

ρr = R(0)
rn ρn + h.o.t. , (6.85a)

ρµr = R(1)
rn ρ

µ
n + h.o.t. , (6.85b)

ρµνr = R(2)
rn ρ

µν
n + h.o.t. , (6.85c)

where we defined

R(0)
rn :=

ζr
ζn

, R(1)
rn :=

κr
κn

, R(2)
rn :=

ηr
ηn

(6.86)

8One has to pick the smallest eigenvalue of A(ℓ) since the relaxation times τ that appear in an equation of the type
τ ρ̇+ ρ = · · · are related to the inverse of A(ℓ), such that the smallest eigenvalue gives rise to the longest relaxation time.
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and abbreviated the terms of higher orders in Kn and Re−1 as “h.o.t.” (higher-order terms). Choosing
n = 0 in the equations above, we are able to express any moment in terms of the hydrodynamic
quantities,

ρr = −
3

m2
R(0)
r0 Π+ h.o.t. , (6.87a)

ρµr = R(1)
r0 n

µ + h.o.t. , (6.87b)

ρµνr = R(2)
r0 π

µν + h.o.t. . (6.87c)

These relations can then be used to replace all moments in Eqs. (6.83) evaluated at r = 0 to obtain
hydrodynamic equations of the form

τΠΠ̇ + Π = −ζ0θ + J +R , (6.88a)

τnṅ
⟨µ⟩ + nµ = κ0I

µ + J µ +Rµ , (6.88b)

τππ̇
⟨µν⟩ + πµν = 2η0σ

µν + J µν +Rµν , (6.88c)

where the relaxation times are given by

τΠ :=
∑
n∈S(0)0

τ
(0)
0n R

(0)
n0 , τn :=

∑
n∈S(0)1

τ
(1)
0n R

(1)
n0 , τπ :=

∑
n∈S(0)2

τ
(2)
0n R

(2)
n0 (6.89)

and the second-order terms on the right-hand side have been introduced in Eqs. (2.69) and (2.71).

We note that this method, which has been termed Inverse-Reynolds Dominance (IReD) approach
[50] or order-of-magnitude approximation [49], is equivalent to the DNMR approach up to second
order in Kn and Re−1, as has been shown in Ref. [50]. However, a major advantage compared to the
DNMR method is that no terms of second order in the Knudsen number appear in the equations of
motion. These terms, which are written in the most general form in Eqs. (2.70), can potentially render
the equations parabolic (and thus acausal), and are consequently omitted in practical applications.
However, in the IReD approach, the effect of these terms, which is potentially large [160], is resummed
into the (hyperbolic) terms of first order in both Knudsen and inverse Reynolds numbers [cf. Eqs.
(2.69)], manifesting itself in different expressions for the transport coefficients [50]. Furthermore, we
note that, in contrast to the results of the DNMR method, the values of the transport coefficients in
the IReD approach are compatible with the constraints imposed from a phenomenological expression
for the entropy to second order such that the second law of thermodynamics is fulfilled [52].

Thus, assuming that Knudsen and inverse Reynolds numbers are of the same order of magnitude,
in order to stay accurate to second order also in practical applications this method is preferable over
the usual DNMR prescription. Indeed, in Ref. [162], the DNMR and IReD approximations were
considered in the context of an exactly solvable system of coupled relaxation equations akin to the
ones arising from kinetic theory, and it was found that IReD is able to stay accurate in a wide range
of situations. In comparison, the accuracy of DNMR depends on how much the slowest microscopic
timescale dominates the macroscopic dynamics. Furthermore, the results of that reference confirm
that the performance of DNMR is impeded by neglecting the terms of second order in the Knudsen
number.9

6.3.2 Generalized irreducible collision terms

In order to develop spin hydrodynamics for particles up to spin 1, we will now apply the truncation
prescription outlined for spin-0 systems in the previous subsection to the moment equations (6.75),

9We remark that a similar picture emerges when considering the results of Ref. [163], where the heat-flow problem
was solved with the DNMR approach. In particular, the “21/37” approach introduced there, which works rather well, is
similar in spirit to IReD, although more moments are made dynamical.
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(6.78), and (6.80). In order to see which moments couple to each other, we first have to evaluate Eqs.
(6.77), (6.79), and (6.81) for the relevant ranks in momentum.

Inserting Eq. (6.7) into the generic form of the collision integral developed in Chapter 5 and linearizing
the resulting expression in the deviation from equilibrium δfks, we find

C(x, k, s) = C0(x, k, s) + C̄(x, k, s) . (6.90)

Here, the first term collects the nonzero parts of the collision term that depend only on the local-
equilibrium distribution function,

C0(x, k, s) :=
1

2

∫
dΓ1 dΓ2 dΓ

′(2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(σ)f0kf0k′ f̃0k1
f̃0k2

×
[
− σℏ

2m

(
Ω̃0,µν − ϖ̃µν

)
(kµ1 s

ν
1 + kµ2 s

ν
2 − kµsν − k′µs′ν)

+ (∂µα0) (∆
µ
1 +∆µ

2 −∆µ −∆′µ)− 1

2
(∆µ

1k
ν
1 +∆µ

2k
ν
2 −∆µkν −∆′µk′ν) ∂(µβ0,ν)

]
.

(6.91)

Note that this term is merely the part of the collision term that we neglected while defining local
equilibrium at the beginning of this section, cf. Eq. (6.4).
The second term in Eq. (6.90) on the other hand describes the contributions from the deviations from
equilibrium,

C̄(x, k, s) :=
1

2

∫
dΓ1 dΓ2 dΓ

′ dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)W(σ)

× f0kf0k′ f̃0k1
f̃0k2

[
ϕk1

+ ϕk2
− ϕk − ϕk′ −

(
s1,µζ

µ
k1

+ s2,µζ
µ
k2
− s̄µζµk − s′µζ

µ
k′

)
+s1,αs1,βK

αβ
1,µνξ

µν
k1

+ s2,αs2,βK
αβ
2,µνξ

µν
k2
− s̄αs̄βK

αβ
µν ξ

µν
k − s′αs

′
βK

′αβ
µν ξ

µν
k′

]
. (6.92)

Note that in both equations above we again neglected terms of order O(κRe−1) as well as terms of
second order in inverse Reynolds numbers. While the former contribution will give corrections to the
contributions (2.69), the latter one leads to terms in the hydrodynamic equations that are nonlinear
in the dissipative currents, cf. Eq. (2.71). The coefficients in front of these terms do not necessarily
need to be small, as shown in Ref. [160]. However, due to the complexity of computing the nonlinear
contributions of the collision integrals, we postpone their analysis to future work.

In the following, we will evaluate the generalized irreducible collision integrals, which always feature
integrations over both momentum and spin space. To simplify the notation, we introduce the
nonvanishing integrals over spin space involving the transition rate,

M :=
1

2
(2πℏ)4δ(4)(k + k′ − k1 − k2)

∫
[dS] dS̄(k)W(σ) , (6.93a)

N µν
(sisj)

:=
1

2
(2πℏ)4δ(4)(k + k′ − k1 − k2)

∫
[dS] dS̄(k)W(σ)sµi s

ν
j , (6.93b)

N µν
(s)

:=
1

2
(2πℏ)4δ(4)(k + k′ − k1 − k2)

∫
[dS] dS̄(k)W(σ)Kµν

αβs
αsβ , (6.93c)

N µν,αβ
(sisj)

:=
1

2
(2πℏ)4δ(4)(k + k′ − k1 − k2)

∫
[dS] dS̄(k)W(σ)Kµν

i,ρσs
ρ
i s
σ
i K

αβ
j,ζηs

ζ
js
η
j , (6.93d)

Mµν
(sisj)

:= Ξνj αN µα
(sisj)

, (6.93e)

Mµν
(s)

:= Ξµνj,γδN
γδ
(s) , (6.93f)

Mµν,αβ
(sisj)

:= Ξαβj,γδN
µν,γδ
(sisj)

. (6.93g)

In these expressions, si ∈ {s1, s2, s′, s̄, s}, and the momentum ki is determined by the associated spin
vector, i.e., k1 by s1, k2 by s2, k′ by s′, and k by s and s̄. Similarly, Ξj is the tensor Ξ introduced in
Eq. (6.28) with the momentum being kj .
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Spin-rank zero

Inserting the moment expansion (6.29), Eq. (6.77) becomes

C
⟨µ1···µℓ⟩
r−1 =

∫
[dK] Er−1

k k⟨µ1 · · · kµℓ⟩f0kf0k′ f̃0k1 f̃0k2

∞∑
ℓ′=0

[ ∑
n∈S(0)

ℓ′

M
(
H(0,ℓ′)

k1n
k⟨1,ν1 · · · k1,νℓ′ ⟩

+H(0,ℓ′)
k2n

k⟨2,ν1 · · · k2,νℓ′ ⟩ −H
(0,ℓ′)
k′n k′⟨ν1 · · · k

′
ν′
ℓ⟩ −H

(0,ℓ′)
kn k⟨ν1 · · · kνℓ′ ⟩

)
ρν1···νℓ′n

+
∑
n∈S(2)

ℓ′

(
M(s1)ρσH

(2,ℓ′)
k1n

k⟨1,ν1 · · · k1,νℓ′ ⟩ +M(s2)ρσH
(2,ℓ′)
k2n

k⟨2,ν1 · · · k2,νℓ′ ⟩

−M(s′)ρσH(2,ℓ′)
k′n k′⟨ν1 · · · k

′
νℓ′ ⟩ −M(s̄)ρσH(2,ℓ′)

kn k⟨ν1 · · · kνℓ′ ⟩
)
ψ⟨ρσ⟩,ν1···νℓ′
n

]

≡ −
∞∑
ℓ′=0

 ∑
n∈S(0)

ℓ′

(Arn)µ1···µℓ

ν1···νℓ′ ρ
ν1···νℓ′
n +

∑
n∈S(2)

ℓ′

(Arn)
µ1···µℓ

ρσ,ν1···νℓ′ ψ
⟨ρσ⟩,ν1···νℓ′
n

 . (6.94)

Here we used that, when considering interactions that do not violate parity, all integrals over the
transition rate weighted with an odd number of spin vectors vanish, cf. Eq. (4.155). Furthermore, we
defined

(Arn)µ1···µℓ

ν1···νℓ′ := −
∫

[dK] Er−1
k k⟨µ1 · · · kµℓ⟩f0kf0k′ f̃0k1

f̃0k2
M
(
H(0,ℓ′)

k1n
k⟨1,ν1 · · · k1,νℓ′ ⟩

+H(0,ℓ′)
k2n

k⟨2,ν1 · · · k2,νℓ′ ⟩ −H
(0,ℓ′)
k′n k′⟨ν1 · · · k

′
νℓ′ ⟩ −H

(0,ℓ′)
kn k⟨ν1 · · · kνℓ′ ⟩

)
, (6.95a)

(Arn)
µ1···µℓ

ρσ,ν1···νℓ′ := −
∫

[dK] Er−1
k k⟨µ1 · · · kµℓ⟩f0kf0k′ f̃0k1

f̃0k2

×
(
M(s1)ρσH

(2,ℓ′)
k1n

k⟨1,ν1 · · · k1,νℓ′ ⟩ +M(s2)ρσH
(2,ℓ′)
k2n

k⟨2,ν1 · · · k2,νℓ′ ⟩

−M(s′)ρσH(2,ℓ′)
k′n k′⟨ν1 · · · k

′
νℓ′ ⟩ −M(s̄)ρσH(2,ℓ′)

kn k⟨ν1 · · · kνℓ′ ⟩
)
. (6.95b)

Considering the irreducible moments fulfilling the required symmetries, we find the irreducible collision
terms of spin-rank zero to be

Cr−1 = −
∑
n∈S(0)0

A(0)
rn ρn −

∑
n∈S(2)2

A(0,2)
rn pn , (6.96a)

C
⟨µ⟩
r−1 = −

∑
n∈S(0)1

A(1)
rn ρ

µ
n −

∑
n∈S(2)1

A(1,1)
rn pµn −

∑
n∈S(2)3

A(1,3)
rn qµn , (6.96b)

C
⟨µν⟩
r−1 = −

∑
n∈S(0)2

A(2)
rn ρ

µν
n −

∑
n∈S(2)0

A(2,0)
rn ψ⟨µν⟩

n −
∑
n∈S(2)2

A(2,2)
rn pµνn −

∑
n∈S(2)4

A(2,4)
rn qµνn . (6.96c)

Here, we introduced for brevity the partial traces of moments of spin-rank two that transform as
scalars, vectors, and traceless symmetric tensors, respectively:10

pn := ψ⟨µν⟩,
n µν , pµn := ψ⟨µα⟩,

n α , qµn := ψ⟨αβ⟩,µ
n αβ , pµνn := ψ⟨αβ⟩,γ

n α∆
µν
βγ , qµνn := ψ⟨αβ⟩,µν

n αβ .
(6.97)

In Eqs. (6.96), the coefficients Arn determining the coupling of the moments of spin-rank zero to
themselves read

A(ℓ)
rn :=

1

2ℓ+ 1
∆ν1···νℓ
µ1···µℓ

(Arn)µ1···µℓ
ν1···νℓ , (6.98)

10We remark at this point that the equations of motion for these moments can be obtained by taking the appropriate
traces of the moments of spin-rank two and momentum-rank one to four, cf. Eqs. (6.80).
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while the quantities Arn that control the coupling of the moments of spin-rank two to the ones of
spin-rank zero are given by

A(0,2)
rn :=

1

5
∆ρσ,ν1ν2(Arn)ρσ,ν1ν2 , A(1,1)

rn :=
1

5
∆ρ
µ∆

σν1(Arn)
µ
ρσ,ν1 ,

A(1,3)
rn :=

1

7
∆ν1
µ ∆ρσ,ν2ν3(Arn)

µ
ρσ,ν1ν2ν3 , A(2,0)

rn :=
1

5
∆ρσ
µν(Arn)

µν
ρσ ,

A(2,2)
rn :=

12

35
∆ρα
µν∆α

σ,ν1ν2(Arn)
µν
ρσ,ν1ν2 , A(2,4)

rn :=
1

9
∆ν1ν2
µν ∆ρσ,ν3ν4(Arn)

µν
ρσ,ν1ν2ν3ν4 . (6.99)

Evidently, there is a coupling between the moments of spin-ranks zero and two through the collision
terms.11 The moments of spin-rank one on the other hand do not appear because of their transformation
properties under parity. Furthermore, note that the terms C0 do not contribute to the equations above,
since there always appears an odd number of spin vectors in these integrals.

Spin-rank one

In the case of the irreducible moments of spin-rank one, there are two contributions, one from the
equilibrium terms (6.91), and one from the terms explicitly involving δfks (6.92). We can immediately
write down the generalized irreducible collision integrals as

C
⟨µ⟩,⟨µ1···µℓ⟩
r−1 = −

∞∑
ℓ′=0

∑
n∈S(1)

ℓ′

(Brn)µ,µ1···µℓ
ν,ν1···νℓ′ τ

⟨ν⟩,ν1···νℓ′
n + C

⟨µ⟩,⟨µ1···µℓ⟩
0,r−1 , (6.100)

where we defined

(Brn)µ,µ1···µℓ

ν,ν1···νℓ′ :=
∫

[dK] Er−1
k k⟨µ1 · · · kµℓ⟩f0kf0k′ f̃0k1 f̃0k2

×
(
Mµ

(ss1)ν
H(1,ℓ′)

k1n
k⟨1,ν1 · · · k1,νℓ′ ⟩ +M

µ
(ss2)ν

H(1,ℓ′)
k2n

k⟨2,ν1 · · · k2,νℓ′ ⟩

−Mµ
(ss′)νH

(1,ℓ′)
k′n k′⟨ν1 · · · k

′
νℓ′ ⟩ −M

µ
(ss̄)νH

(1,ℓ′)
kn k⟨ν1 · · · kνℓ′ ⟩

)
, (6.101)

and collected the terms coming from the local-equilibrium distribution function in

C
⟨µ⟩,⟨µ1···µℓ⟩
0,r−1 :=

∫
dΓEr−1

k s⟨µ⟩k⟨µ1 · · · kµℓ⟩C0(x, k, s) . (6.102)

Note that, in our power-counting, there are no first-order terms on the right-hand sides of Eqs.
(6.78), such that the Navier-Stokes values of the moments of spin-rank one will be provided by the
generalized irreducible collision terms (6.102). Since we are interested in keeping only the irreducible
moments which are hydrodynamically important, i.e., whose Navier-Stokes values are of first order
in the Knudsen number, we only evaluate a subset of the collision integrals corresponding to these
moments. Given the vectors and tensors at our disposal, there is only a limited number of quantities
of first order in Kn which are orthogonal to the four-velocity and transform as an axial vector in one
index, namely an axial vector, two antisymmetric tensors, and a rank-three tensor, i.e.,(

Ω̃µν0 − ϖ̃µν
)
uν ≡ 2ωµ0 + 2β0ω

µ , Ω̃
⟨µ⟩⟨ν⟩
0 − ϖ̃⟨µ⟩⟨ν⟩ , ϵµναβuαIβ , and σρ

⟨νϵλ⟩µαρuα .

Orienting on the equations of motion for the spin potential (6.62), we reformulate the antisymmetric
tensors that may appear as Navier-Stokes values equivalently as vectors, namely

Iµ and ϵµναβuν(Ω̃αβ − ϖ̃αβ) ≡ 2κµ0 + β0

(
2Fµ

ε0 + P0
− Iµ

β0h

)
,

where we used the equation of motion for the fluid four-velocity and neglected nonlinear terms, in
accordance with our earlier approximation to the collision terms. Accordingly, we can anticipate that

11We remark that a coupling of this form has also been obtained in Ref. [73].
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only the antisymmetric components of the moments τµ,νr will have nonvanishing Navier-Stokes
values, such that we may equivalently consider the moments wµr defined in Eq. (6.60). Furthermore,
the symmetries of the Navier-Stokes values suggest to decompose the moments of tensor-rank two
in momentum according to

τ ⟨µ⟩,νλr =
3

5
∆µ⟨νtλ⟩r −

2

3
tr,ρ

⟨λϵν⟩µαρuα + τ ⟨µ,νλ⟩r , (6.103)

with
tµr = τα,µr α , tµνr := τr,α,β

⟨µϵν⟩αβρuρ . (6.104)

Then, after defining

Cµw,r−1 := ϵµναβuνCr−1,α,β , Cµνt,r−1 := Cr−1,α,β
⟨µϵν⟩αβρuρ , (6.105)

the relevant collision integrals are

C
⟨µ⟩
r−1 = 2g(0)r (ωµ0 + β0ω

µ)−
∑
n∈S(1)0

B(0)rn τ ⟨µ⟩n −
∑
n∈S(1)2

B(0,2)rn tµn , (6.106a)

Cα,µr−1α = 2g(2)r (ωµ0 + β0ω
µ)−

∑
n∈S(1)0

B(2,0)rn τ ⟨µ⟩n −
∑
n∈S(1)2

B(2)rn tµn , (6.106b)

Cµw,r−1 = 2g(κ)r

(
κµ0 +

β0F
µ

ε0 + P0

)
+ g(I)r Iµ −

∑
n∈S(1)1

B(1)rn wµn , (6.106c)

Cµνt,r−1 = h(2)r β0σ
µν −

∑
n∈S(1)2

B(2)rn tµνn , (6.106d)

with the terms Brn defined as

B(0)rn :=
1

3
∆ν
µ(Brn)µν , B(0,2)rn :=

1

5
∆ν1
µ ∆ν2ν(Brn)

µ
ν,ν1ν2 ,

B(2,0)rn :=
1

3
∆ν
µ∆αβ(Brn)α,µβν , B(2)rn :=

1

5
∆ν1
µ ∆ν2ν∆αβ(Brn)α,µβν,ν1ν2 ,

B(1)rn :=
1

6
∆[ν
µ∆

ν1]
µ1

(Brn)µ,µ1
ν,ν1 , B(2)rn :=

1

15
∆ν
α∆

ν1ν2
βγ (Brn)α,βγν,ν1ν2 . (6.107)

Furthermore, we defined g(I)r := g
(α)
r − g(κ)r /h and introduced the coefficients

g(0)r :=
σℏ
12m

∫
[dK]Er−1

k f0kf0k′ f̃0k1
f̃0k2

gαβ

(
Ek1
Nαβ

(ss1)
+ Ek2

Nαβ
(ss2)

− EkNαβ
(ss) − Ek′Nαβ

(ss′)

)
,

(6.108a)

g(2)r :=
σℏ
12m

∫
[dK]Er−1

k f0kf0k′ f̃0k1 f̃0k2k⟨αkβ⟩
(
Ek1Nαβ

(ss1)
+ Ek2Nαβ

(ss2)
− EkNαβ

(ss) − Ek′Nαβ
(ss′)

)
,

(6.108b)

g(κ)r :=
σℏ
12m

∫
[dK]Er−1

k f0kf0k′ f̃0k1
f̃0k2

k[⟨α⟩
(
k1,βN ⟨β⟩]α

(ss1)
+ k2,βN ⟨β⟩]α

(ss2)
− kβN ⟨β⟩]α

(ss) − k′βN
⟨β⟩]α
(ss′)

)
,

(6.108c)

g(α)r :=
1

6

∫
[dΓ]Er−1

k (2πℏ)4δ(4)(k + k′ − k1 − k2)W̃ (σ)f0kf0k′ f̃0k1
f̃0k2

× ϵµναβuνsαkβ
(
∆1,µ +∆2,µ −∆µ −∆′

µ

)
, (6.108d)

h(2)r := − 1

10

∫
[dΓ]Er−1

k (2πℏ)4δ(4)(k1 + k2 − k − k′)W̃(σ)f0kf0k′ f̃0k1
f̃0k2

k⟨βk
ζ⟩ϵηαβγsαuγ

×
(
∆1,⟨ζk1,η⟩ +∆2,⟨ζk2,η⟩ −∆⟨ζkη⟩ −∆′

⟨ζk
′
η⟩

)
, (6.108e)

which will determine the Navier-Stokes values of the components of the spin tensor. From these
equations, we can see that the irreducible moments of spin-rank one do not feature a coupling to
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moments of spin-ranks zero or two, but couple among themselves. Furthermore, it is apparent that
the symmetric moments of tensor-rank one in momentum are, in our power-counting, not among the
quantities which are hydrodynamically important in the sense that they do not have Navier-Stokes
values which are of first order in the Knudsen number. The same holds true for the completely
traceless component of the irreducible moment of spin-rank one and momentum-rank three, cf. Eq.
(6.103).

Spin-rank two

In the case of the generalized irreducible collision terms of spin-rank two, Eq. (6.81), we can already
anticipate that the equilibrium-type terms (6.91) will vanish. Then, we can write

C
⟨µν⟩,⟨µ1···µℓ⟩
r−1 = −

∞∑
ℓ′=0

 ∑
n∈S(2)

ℓ′

(Drn)µν,µ1···µℓ

ρσ,ν1···νℓ′ ψ
⟨ρσ⟩,ν1···νℓ′
n +

∑
n∈S(0)

ℓ′

(Drn)
µν,µ1···µℓ

ν1···νℓ′ ρν1···νℓ′n

 , (6.109)

where we introduced

(Drn)µν,µ1···µℓ

ρσ,ν1···νℓ′ := −
∫

[dK] Er−1
k k⟨µ1 · · · kµℓ⟩f0kf0k′ f̃0k1 f̃0k2

×
(
Mµν

(ss1)ρσ
H(2,ℓ′)

k1n
k⟨1,ν1 · · · k1,νℓ′ ⟩ +M

µν
(ss2)ρσ

H(2,ℓ′)
k2n

k⟨2,ν1 · · · k2,νℓ′ ⟩

−Mµν
(ss′)ρσH

(2,ℓ′)
k′n k′⟨ν1 · · · k

′
νℓ′ ⟩ −M

µν
(ss̄)ρσH

(2,ℓ′)
kn k⟨ν1 · · · kνℓ′ ⟩

)
, (6.110a)

(Drn)
µν,µ1···µℓ

ν1···νℓ′ := −
∫

[dK] Er−1
k k⟨µ1 · · · kµℓ⟩f0kf0k′ f̃0k1

f̃0k2
N µν

(s)

(
H(0,ℓ′)

k1n
k⟨1,ν1 · · · k1,νℓ′ ⟩

+H(0,ℓ′)
k2n

k⟨2,ν1 · · · k2,νℓ′ ⟩ −H
(0,ℓ′)
k′n k′⟨ν1 · · · k

′
νℓ′ ⟩ −H

(0,ℓ′)
kn k⟨ν1 · · · kνℓ′ ⟩

)
. (6.110b)

Since the equations of motion for the irreducible moments of spin-rank two (6.80) do not feature terms
of first order in Knudsen or inverse Reynolds numbers on the right-hand side, contributions of this
order can only arise from the generalized irreducible collision integrals (6.81). The previous discussion
of the possible tensor structures appearing in these terms makes it clear that the terms responsible
for these first-order contributions are the ones involving the moments of spin-rank zero. However,
there one only needs to take into account the moments up to tensor-rank two in momentum, since the
Navier-Stokes values of higher-order moments are also not of first order, cf. Eqs. (6.75). Thus, the
generalized irreducible collision integrals of spin-rank two which contain first-order contributions read

C
⟨µν⟩
r−1 = −

∑
n∈S(2)0

D(0)
rn ψ

⟨µν⟩
n −

∑
n∈S(2)2

D(0,2)
rn pµνn −

∑
n∈S(2)4

D(0,4)
rn qµνn −

∑
n∈S(0)2

D(0,2)
rn ρµνn , (6.111a)

Cµνp,r−1 = −
∑
n∈S(2)0

D(2,0)
rn ψ⟨µν⟩

n −
∑
n∈S(2)2

D(2)
rn p

µν
n −

∑
n∈S(2)4

D(2,4)
rn qµνn −

∑
n∈S(0)2

D(2,2)
rn ρµνn , (6.111b)

Cµνq,r−1 = −
∑
n∈S(2)0

D(4,0)
rn ψ⟨µν⟩

n −
∑
n∈S(2)2

D(4,2)
rn pµνn −

∑
n∈S(2)4

D(4)
rn q

µν
n −

∑
n∈S(0)2

D(4,2)
rn ρµνn , (6.111c)

Cµp,r−1 = −
∑
n∈S(2)1

D(1)
rn p

µ
n −

∑
n∈S(2)3

D(1,3)
rn qµn −

∑
n∈S(0)1

D(1,1)
rn ρµn , (6.111d)

Cµq,r−1 = −
∑
n∈S(2)1

D(3,1)
rn pµn −

∑
n∈S(2)3

D(3)
rn q

µ
n −

∑
n∈S(0)1

D(3,1)
rn ρµn , (6.111e)

Cp,r−1 = −
∑
n∈S(2)2

D(2)

rn pn −
∑
n∈S(0)0

D(2,0)
rn ρn , (6.111f)
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where the quantities pn and qn have been introduced in Eq. (6.97), and we defined the corresponding
collision terms as

Cp,r−1 := Cαβ,r−1αβ , Cµp,r−1 := C
⟨µα⟩,
r−1 α , Cµq,r−1 := Cαβ,µr−1 αβ ,

Cµνp,r−1 := C
⟨αβ⟩,γ
r−1 α∆

µν
βγ , Cµνq,r−1 := Cαβ,µνr−1 αβ . (6.112)

The coefficients Drn appearing in Eqs. (6.111) that determine the coupling between the moments of
spin-rank two read

D(0)
rn :=

1

5
∆ρσ
µν(Drn)µνρσ , D(0,2)

rn :=
12

35
∆ρα
µν∆α

σ,ν1ν2(Drn)µνρσ,ν1ν2 ,

D(0,4)
rn :=

1

9
∆ν1ν2
µν ∆ρσ,ν3ν4(Drn)µνρσ,ν1ν2ν3ν4 , D(2,0)

rn :=
1

5
∆ρσ
βγ∆αδ(Drn)αβ,γδρσ ,

D(2)
rn :=

12

35
∆ρζ
βγ∆ζ

σ,ν1ν2∆αδ(Drn)αβ,γδρσ,ν1ν2 , D(2,4)
rn :=

1

9
∆ν1ν2
βγ ∆ρσ,ν3ν4∆αδ(Drn)αβ,γδρσ,ν1ν2ν3ν4 ,

D(4,0)
rn :=

1

5
∆ρσ
γδ∆αβ,µν(Drn)αβ,γδµνρσ , D(4,2)

rn :=
12

35
∆ρζ
γδ∆ζ

σ,ν1ν2∆αβ,µν(Drn)αβ,γδµνρσ,ν1ν2 ,

D(4)
rn :=

1

9
∆ν1ν2
γδ ∆ρσ,ν3ν4∆αβ,µν(Drn)αβ,γδµνρσ,ν1ν2ν3ν4 , D(1)

rn :=
1

5
∆ρ
µ∆

σν1∆αβ(Drn)α,µβρσ,ν1 ,

D(1,3)
rn :=

1

7
∆ν1
µ ∆σρ,ν2ν3∆αβ(Drn)α,µβρσ,ν1ν2ν3 , D(3,1)

rn :=
1

5
∆ρ
µ∆

σν1∆αβ,γδ(Drn)αβ,µγδρσ,ν1 ,

D(3)
rn :=

1

7
∆ν1
µ ∆σρ,ν2ν3∆αβ,γδ(Drn)αβ,µγδρσ,ν1ν2ν3 , D(2)

rn :=
1

5
∆ρσ,ν1ν2∆αβ,µν(Drn)αβ,µνρσ,ν1ν2 , (6.113)

while the quantities Drn which characterize the coupling of the moments of spin-rank zero to the ones
of second rank in spin are given by

D(0,2)
rn :=

1

5
∆ν1ν2
µν (Drn)

µν
ν1ν2 , D(2,2)

rn :=
1

5
∆ν1ν2
βγ (Drn)

αβ,γδ
ν1ν2 ∆αδ ,

D(4,2)
rn :=

1

5
∆ν1ν2
γδ ∆αβ,µν(Drn)

αβ,γδµν
ν1ν2 , D(1,1)

rn :=
1

3
∆ν1
µ ∆αβ(Drn)

αµ,β
ν1 ,

D(3,1)
rn :=

1

3
∆ν1
µ ∆αβ,γδ(Drn)

αβ,µγδ
ν1 , D(2,0)

rn := ∆αβ,γδ(Drn)
αβ,γδ . (6.114)

6.3.3 Obtaining the Navier-Stokes relations

Spin-ranks zero and two

From the discussion in the previous subsection, it has become clear that the equations of motion for the
irreducible moments of spin-ranks zero and two are coupled and must thus be solved together. When
considering the relevant scalar moments (i.e., ρr and pr), we can write the system of Eqs. (6.75a) and
(the contraction of) (6.80c) as

∑
n

(
A(0) A(0,2)

D(2,0) D(2)

)
rn

(
ρ
p

)
n

≃
(
α(0)

0

)
r

θ , (6.115)

where the omitted terms are at least of second order in Kn and Re−1 and we used the form of the
collision terms Cr−1 and Cp,r−1, cf. Eqs. (6.96a) and (6.111f). From this point on, we omit the sets
that characterize the truncation for notational simplicity (they are implicitly contained in the size
of the linearized collision matrices). After inverting the matrix on the left-hand side of the equation
above [excluding the rows and columns corresponding to ρ1 and ρ2, which vanish due to the matching
conditions (6.34) and (6.36)],(

τ
(ρ)
S τ

(ρp)
S

τ
(pρ)
S τ

(p)
S

)
rn

:=

(
A(0) A(0,2)

D(2,0) D(2)

)−1

rn

, (6.116)
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we find the Navier-Stokes solutions

ρr ≃
3

m2
ζrθ , pr ≃

3

m2
χrθ , (6.117)

where we introduced

ζr :=
m2

3

∑
n

τ
(ρ)
S,rnα

(0)
n , χr :=

m2

3

∑
n

τ
(pρ)
S,rnα

(0)
n . (6.118)

Similarly, Eqs. (6.75b) and the respective traces of Eqs. (6.80b) and (6.80d) yield

∑
n

 A(1) A(1,1) A(1,3)

D(1,1) D(1) D(1,3)

D(3,1) D(3,1) D(3)


rn

ρµpµ
qµ


n

≃

α(1)

0
0


r

Iµ , (6.119)

which, after defining the inverse τ
(ρ)
V τ

(ρp)
V τ

(ρq)
V

τ
(pρ)
V τ

(p)
V τ

(pq)
V

τ
(qρ)
V τ

(qp)
V τ

(q)
V


rn

:=

 A(1) A(1,1) A(1,3)

D(1,1) D(1) D(1,3)

D(3,1) D(3,1) D(3)

−1

rn

, (6.120)

where the row and column corresponding to ρµ1 is excluded due to the matching condition (6.37), gives
the Navier-Stokes values

ρµr ≃ κrIµ , pµr ≃ φ(1)
r Iµ , qµr ≃ φ(3)

r Iµ , (6.121)

where

κr :=
∑
n

τ
(ρ)
V,rnα

(1)
n , φ(1)

r :=
∑
n

τ
(pρ)
V,rnα

(1)
n , φ(3)

r :=
∑
n

τ
(qρ)
V,rnα

(1)
n . (6.122)

Finally, the equations for the tensor-valued quantities, i.e., Eqs. (6.75c) and (6.80a) together with
appropriate traces of Eqs. (6.80c) and (6.80e) read to first order

∑
n


A(2) A(2,0) A(2,2) A(2,4)

D(0,2) D(0) D(0,2) D(0,4)

D(2,2) D(2,0) D(2) D(2,4)

D(4,2) D(4,0) D(4,2) D(4)


rn


ρµν

ψ⟨µν⟩

pµν

qµν


n

≃


2α(2)

0
0
0


r

σµν , (6.123)

We define the inverse matrix
τ
(ρ)
T τ

(ρψ)
T τ

(ρp)
T τ

(ρq)
T

τ
(ψρ)
T τ

(ψ)
T τ

(ψp)
T τ

(ψq)
T

τ
(pρ)
T τ

(pψ)
T τ

(p)
T τ

(pq)
T

τ
(qρ)
T τ

(qψ)
T τ

(qp)
T τ

(q)
T


rn

:=


A(2) A(2,0) A(2,2) A(2,4)

D(0,2) D(0) D(0,2) D(0,4)

D(2,2) D(2,0) D(2) D(2,4)

D(4,2) D(4,0) D(4,2) D(4)


−1

rn

(6.124)

and obtain the Navier-Stokes values of the tensorial moments

ρµνr ≃ 2ηrσ
µν , ψ⟨µν⟩

r ≃ 2ξ(0)r σµν , pµνr ≃ 2ξ(2)r σµν , qµνr ≃ 2ξ(4)r σµν , (6.125)

where the coefficients are defined as

ηr :=
∑
n

τ
(ρ)
T,rnα

(2)
n , ξ(0)r :=

∑
n

τ
(ψρ)
T,rnα

(2)
n , ξ(2)r :=

∑
n

τ
(pρ)
T,rnα

(2)
n , ξ(4)r :=

∑
n

τ
(qρ)
T,rnα

(2)
n .

(6.126)
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Spin-rank one

In the case of the relevant irreducible moments of spin-rank one, we have to consider the moment
equations (6.78) in conjunction with the equations of motion for the components of the spin potential
(6.62), since the latter are of relaxation type as well. Then, in the Navier-Stokes limit we have the
following system of equations for the axial-vector valued quantities,

∑
n

 δn0 γ
(0)
n /Γ(ω) γ

(2)
n /Γ(ω)

−2g(0)r δn0 B(0)rn B(0,2)rn

−2g(2)r δn0 B(2,0)rn B(2)rn


 ωµ0
τ
⟨µ⟩
n

tµn

 ≃
 −12g

(0)
r

2g
(2)
r

β0ω
µ , (6.127)

where we used the expressions (6.106). Inverting the matrix T
(ω)
A T⃗

(ωτ)
A T⃗

(ωt)
A

T⃗
(τω)
A T

(τ)
A T

(τt)
A

T⃗
(tω)
A T

(tτ)
A T

(t)
A


rn

:=

 1 γ⃗(0)/Γ(ω) γ⃗(2)/Γ(ω)

−2g⃗ (0) B(0) B(0,2)
−2g⃗ (2) B(2,0) B(2)

−1

rn

, (6.128)

where g⃗ (j) := (g
(j)
0 , · · · , g(j)r ), and analogous for γ⃗(j) and T⃗

(j)
A , we find the Navier-Stokes relations

ωµ0 ≃ −e(ω)ωµ , τ ⟨µ⟩r ≃ e(0)r ωµ , tµr ≃ e(2)r ωµ , (6.129)

where we introduced

e(ω) := β0

[
T
(ω)
A − 2

∑
n

(
T
(ωτ)
A,n g

(0)
n + T

(ωt)
A,n g

(2)
n

)]
, (6.130a)

e(0)r := β0

[
−T(τω)

A,r + 2
∑
n

(
T
(τ)
A,rng

(0)
n + T

(τt)
A,rng

(2)
n

)]
, (6.130b)

e(2)r := β0

[
−T(tω)

A,r + 2
∑
n

(
T
(tτ)
A,rng

(0)
n + T

(t)
A,rng

(2)
n

)]
. (6.130c)

The vector-valued moments wµr have to be combined with the component κµ0 of the spin potential,
yielding ∑

n

(
δn0 γ

(1)
n /Γ(κ)

−2g(κ)r δn0 B(1)rn

)(
κµ

wµn

)
≃
( −1
2g

(κ)
r

)
β0F

µ

ε0 + P0
+

(
Γ(I)

g
(I)
r

)
Iµ . (6.131)

We then invert the collision matrix(
T
(κ)
V T⃗

(κw)
V

T⃗
(wκ)
V T

(w)
V

)
rn

:=

(
1 γ⃗(1)/Γ(κ)

−2g⃗ (κ) B(1)
)−1

rn

, (6.132)

and find the Navier-Stokes values

κµ0 ≃ −a(κ)Fµ + b(κ)Iµ , wµr ≃ a(1)r Fµ + b(1)r Iµ . (6.133)

Here we defined

a(κ) :=
β0

ε0 + P0

(
T
(κ)
V − 2

∑
n

T
(κw)
V,n g(κ)n

)
, b(κ) := T

(κ)
V Γ(I) +

∑
n

T
(κw)
V,n g(κ)n , (6.134a)

a(1)r :=
β0

ε0 + P0

(
−T(wκ)

V,r + 2
∑
n

T
(w)
V,rng

(κ)
n

)
, b(1)r := T

(wκ)
V,r Γ(I) + 2

∑
n

T
(w)
V,rng

(I)
n . (6.134b)

The equations determining the Navier-Stokes values of the tensor-valued moments, which are not
connected with any component of the spin potential, read∑

n

B(2)rn tµνn ≃ h(2)r β0σ
µν , (6.135)
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With the inverse
T
(t)
T,rn :=

(
B(2)

)−1

rn
, (6.136)

we find the Navier-Stokes values
tµνr ≃ d(2)r σµν , (6.137)

where we introduced
d(2)r := β0

∑
n

T
(t)
T,rnh

(2)
n . (6.138)

It is important to note that, as in the case of the moments of spin-rank zero, when inverting the matrix
in Eq. (6.127), one has to exclude the rows and columns corresponding to the moment τ ⟨µ⟩2 ≡ n⟨µ⟩,
since it is fixed by the matching condition (6.51).

6.3.4 The choice of closure

The Navier-Stokes relations (6.117), (6.121), (6.125), (6.129), (6.133), and (6.137) are crucial, as
they can now be employed as shown in Subsec. 6.3.1 to close the equations of motion of a given
tensor-rank in spin and momentum in terms of any moment that fulfills the required symmetries. The
final question to answer consists in the choice of moments that are used to describe the system.

Spin-rank zero

The choice of moments of spin-rank zero is obvious, since we are aiming to describe the dynamics
of the energy-momentum tensor and particle four-current. Thus, we choose Π, nµ, and πµν as the
dynamical quantities, and find the asymptotic matching conditions

ρr ≃ −
3

m2
R(0)
r0 Π , ρµr ≃ R(1)

r0 n
µ , ρµνr ≃ R(2)

r0 π
µν , (6.139)

where
R(0)
r0 :=

ζr
ζ0
, R(1)

r0 :=
κr
κ0

, R(2)
r0 :=

ηr
η0

. (6.140)

Note that we can extend these relations to moments with r < 0 by defining

R(ℓ)
−r,0 :=

∑
n

F (0,ℓ)
rn R(ℓ)

n0 , (6.141)

cf. Eqs. (6.22).

Spin-rank one

Similarly, in the case of the moments of spin-rank one we may choose the moments that appear in
the spin tensor, i.e., Eq. (6.46). These moments are expected to yield the most important dynamics
since the spin tensor in our chosen pseudogauge is conserved in the absence of interactions or in
global equilibrium, whereas, e.g., the canonical spin tensor is not conserved even in these cases. This
consideration fixes the choice of closure for the moments of momentum-ranks zero and two, but not
for those of momentum-rank one, since just their antisymmetric part is hydrodynamically important,
whereas only the symmetric part of τµ,ν1 appears in the spin tensor. We then choose to close the system
for these moments in terms of τµ,ν0 , since this quantity appears in the global vector polarization (6.69).
Restricting ourselves to the hydrodynamically important moments that have Navier-Stokes values
of first order and defining qµ := tµ0 , wµ := wµ0 , as well as tµν := tµν0 , we find the asymptotic matching
conditions to be

τ ⟨µ⟩r ≃ Q(10)
r0 pµ , tµr ≃ Q(12)

r0 qµ , wµr ≃ Q(11)
r0 wµ +Q(κ)

r κµ0 , tµνr ≃ Q(22)
r0 tµν , (6.142)
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where we defined

Q(10)
r0 :=

1

e
(0)
0

[
e(0)r (1− δr2)−

3

2
e
(2)
0 δr2

]
− m2

2
δr2 , Q(12)

r0 :=
e
(2)
r

e
(2)
0

, Q(22)
r0 :=

d
(2)
r

d
(2)
0

, (6.143a)

as well as

Q(11)
r0 :=

a(κ)b
(1)
r + a

(1)
r b(κ)

a(κ)b
(1)
0 + a

(1)
0 b(κ)

, Q(κ)
r :=

a
(1)
0 b

(1)
r − a

(1)
r b

(1)
0

a(κ)b
(1)
0 + a

(1)
0 b(κ)

. (6.143b)

Note that the moments wµr cannot be expressed only in terms of wµ, which is a consequence of two
Navier-Stokes values appearing, namely Fµ and Iµ.12 In order to make Eq. (6.142) hold for any
r, we had to include the case r = 2, where the matching condition (6.51) has to be obeyed, which
is the reason for the peculiar form of Q(10)

r0 . These relations are again extended to include r < 0 by
introducing

Q(1ℓ)
−r,0 :=

∑
n

F (1,ℓ)
rn Q(1ℓ)

n0 , Q(2ℓ)
−r,0 :=

∑
n

F (1,ℓ)
rn Q(2ℓ)

n0 , Q(κ)
−r,0 :=

∑
n

F (1,1)
rn Q(κ)

n0 . (6.144)

Using Eqs. (6.48), this asymptotic matching allows us to express the components of the moments
τµ,µ1···µℓ
r that are parallel to the fluid four-velocity in the first index as

uµτ
µ,ν
r ≃ X (10)

r pµ + X (12)
r qµ , (6.145a)

uµτ
µ
r ≃ uµτµ,µ1···µℓ

r ≃ 0 for ℓ ≥ 2 , (6.145b)

where we defined

X (10)
r := −1

3

(
m2Q(10)

r−1,0 −Q
(10)
r+1,0

)
, X (12)

r := −Q(12)
r−1,0 . (6.146)

Note that we already made use of the fact that the symmetrized components of the moments of
spin- and momentum-rank one that are orthogonal to uµ are to be neglected since they do not have
Navier-Stokes values of first order.

Spin-rank two

Lastly, the moments of spin-rank two are different, since they do not appear in any conserved quantity.
One way to close the system of equations there would be to choose the moments that appear in
the global tensor polarization (6.70), i.e., ψµν1 and ψµν,λ0 . However, in this work we go in a different
direction by returning to the original problem that second-order hydrodynamics was introduced to
solve, namely the acausality (and thus instability) of the relativistic Navier-Stokes theory. This
acausality is rooted in the fact that inserting the Navier-Stokes solutions for dissipative quantities
into the respective conservation laws leads to parabolic equations. However, since the moments of
second rank in spin do not appear in any conservation law, this problem never arises there, which
is why we simply stick with the Navier-Stokes solutions [i.e., Eqs. (6.115), (6.119), and (6.123)]
for these moments. Notice that, up to second order in Kn and Re−1, we can relate the moments of
spin-rank two to the bulk viscous pressure, the particle diffusion current, and the shear-stress tensor
via

pr ≃ −
3

m2
T (00)
r0 Π , pµr ≃ T (11)

r0 nµ , qµr ≃ T (13)
r0 nµ ,

ψ⟨µν⟩
r ≃ T (20)

r0 πµν , pµνr ≃ T (22)
r0 πµν , qµνr ≃ T (24)

r0 πµν , (6.147)

where

T (00)
r0 :=

χr
ζ0

, T (11)
r0 :=

φ
(1)
r

κ0
, T (13)

r0 :=
φ
(3)
r

κ0
,

T (20)
r0 :=

ξ
(0)
r

η0
, T (22)

r0 :=
ξ
(2)
r

η0
, T (24)

r0 :=
ξ
(4)
r

η0
. (6.148)

12In order to relate (κµ
0 , w

µ
r ) to (κµ

0 ,w
µ), one has to solve a matrix equation, leading to both κµ

0 and wµ appearing.
This is very similar to the case when multiple conserved charges are present, cf. Ref. [49].
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Equations (6.147) can be extended to r < 0 via

T (mℓ)
−r,0 :=

∑
n

F (2,ℓ)
rn T (mℓ)

n0 . (6.149)

Evidently, there is a large number of possibilities to construct these kind of relations; one could also, e.g.,
relate the moments pµr and qµr (or their tensorial analogues), which would introduce an ambiguity in the
second-order terms of their respective evolution equations. By considering only the Navier-Stokes
limit of the moments of spin-rank two, we circumvent these ambiguities, and may simply use Eqs.
(6.147) to replace the moments of spin-rank two in the evolution equations for Π, nµ, and πµν , thus
closing the system in terms of quantities appearing in the energy-momentum tensor and the particle
four-current. Nonetheless, as we shall see in the following section, due to the evolution equations of
the moments of spin-rank zero and two being coupled, we do need the second-order equations (6.80),
as they will be responsible for corrections to the second-order transport coefficients appearing in the
equations of motion for Π, nµ, and πµν .

Finally, we remark that this asymptotic matching permits us to write down explicit expressions for the
components of the irreducible moments of spin-rank two that are parallel to the fluid four-velocity,
which read

uµψ
µ⟨ν⟩
r ≃ Υ(01)

r nν , (6.150a)

uµuνψ
µν
r ≃ −

3

m2
Υ(00)
r Π , (6.150b)

uµψ
µ⟨ν⟩,λ
r ≃ Υ(12)

r πνλ − 1

m2
∆νλΥ(10)

r Π , (6.150c)

uµuνψ
µν,λ
r ≃ Υ(11)

r nλ , (6.150d)

uµψ
µ⟨ν⟩,λα
r ≃ 3

5
Υ(21)
r ∆ν⟨λnα⟩ , (6.150e)

uµuνψ
µν,λα
r ≃ Υ(22)

r πλα , (6.150f)

uµψ
µ⟨ν⟩,λαβ
r ≃ 5

7
Υ(32)
r ∆ν⟨λπαβ⟩ , (6.150g)

uµuνψ
µν,λαβ
r ≃ uµψµν,λαβγr ≃ 0 . (6.150h)

Here we defined the coefficients

Υ(01)
r := −T (11)

r−1,0 , (6.151a)

Υ(00)
r :=

∑
n

(E(00))−1
rn T (00)

n−2,0 ≡ −Υ
(10)
r−1 , (6.151b)

Υ(12)
r :=

1

3

(
T (20)
r+1,0 −m2T (20)

r−1,0

)
− T (22)

r−1,0 , (6.151c)

Υ(11)
r :=

∑
n

(E(11))−1
rn

[
T (13)
n−2,0 +

2

5

(
m2T (11)

n−2,0 − T
(11)
n0

)]
, (6.151d)

Υ(21)
r :=

2

5

(
T (11)
r+1,0 −m2T (11)

r−1,0

)
− T (13)

r−1,0 , (6.151e)

Υ(22)
r :=

∑
n

(E(22))−1
rn

[
T (24)
n−2,0 +

4

7

(
m2T (22)

n−2,0 − T
(22)
n0

)
+

2

15

(
m4T (20)

n−2,0 − 2m2T (20)
n,0 + T (20)

n+2,0

)]
,

(6.151f)

Υ(32)
r :=

3

7

(
T (22)
r+1,0 −m2T (22)

r−1,0

)
− T (24)

r−1,0 , (6.151g)

which contain the matrices

E(00)rn :=
1

3

(
2δrn +m2F (2,0)

2−r,n

)
, (6.152a)

E(11)rn :=
1

5

(
4δrn +m2F (2,1)

2−r,n

)
, (6.152b)

E(22)rn :=
1

7

(
6δrn +m2F (2,2)

2−r,n

)
. (6.152c)
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These expressions follow from Eqs. (6.72) and the asymptotic matching conditions (6.147). Furthermore,
we used the relation between the original moments ψ⟨µν⟩,µ1···µℓ

r and their scalar-,vector-, and tensor-
valued traces,

ψ⟨µν⟩,λ
r ≃ 3

5
∆λ⟨µpν⟩r , (6.153a)

ψ⟨µν⟩,λα
r ≃ 1

5
∆µν,λαpr +

12

7
∆γδ∆

λα,γ⟨µpν⟩δr , (6.153b)

ψ⟨µν⟩,λαβ
r ≃ 3

7
∆µν,γδ∆λαβ

γδρ q
ρ
r , (6.153c)

ψ⟨µν⟩,λαβγ
r ≃ 5

9
∆µν,ρσ∆λαβγ

ρσζη q
ζη
r , (6.153d)

where terms of second order in Kn and Re−1 have been omitted.

A note on pseudogauge dependence

Before we go on to write down the final hydrodynamic equations, let us come back to the issue
of pseudogauge dependence raised in Chapter 3. A priori, kinetic theory does not know about
pseudogauges, since the conservation laws, which are built on collisional invariants, are independent
of any such choice. Nevertheless, the pseudogauge choice does enter in the hydrodynamic theory
that we are constructing, and this happens through the choice of closure which we discussed above.
Even though we may separate the moments according to whether their Navier-Stokes values are
of first order in Kn, the question in terms of which moments to close the system remains open. The
way we answered it simply consisted of keeping the moments that appear in the conserved currents,
which is a pseudogauge-dependent statement. However, since to second order in Kn and Re−1 the
asymptotic matching, i.e., Eqs. (6.139), (6.142), and (6.147), can be done to relate any two moments
that transform in the same way, all possible closures of the system of equations should be equivalent.
This statement is valid provided that we are in the appropriate hydrodynamic regime and that the
transport coefficients are completely resummed, i.e., that the size of all bases is taken to infinity,
S(j)ℓ → N0 ∀ ℓ, j.

6.4 Hydrodynamic equations

Now that we have obtained the asymptotic matching conditions (6.139), (6.142), and (6.147), we can
follow the procedure outlined in Subsec. 6.3.1 to close the system of equations.

6.4.1 Energy-momentum tensor and particle four-current

We start by outlining the procedure on how to obtain the hydrodynamic equation for the bulk viscous
pressure, with details relegated to Appendix E. The full system of equations for ρr and pr reads(

ρ̇r
ṗr

)
+
∑
n

(
A(0) A(0,2)

D(2,0) D(2)

)
rn

(
ρ
p

)
n

=

(
α(0)

0

)
r

θ + · · · , (6.154)

where the dots denote terms of second order in Kn and Re−1 which we do not write explicitly here,
but are shown in Appendix E. We then invert the collision matrix as shown in the previous section,
which lets the equation for the bulk viscous pressure (given by the first row of the resulting vector
equation) become ∑

n

(
τ
(ρ)
S,0nρ̇n + τ

(ρp)
S,0nṗn

)
− 3

m2
Π =

3

m2
ζ0θ + · · · . (6.155)
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Employing now the asymptotic matching conditions (6.139) and (6.147), we find a relaxation-type
equation

τΠΠ̇ + Π = −ζ0θ − ℓΠn∇ · n− τΠnn · F − δΠΠΠθ − λΠnn · I + λΠππ
µνσµν , (6.156)

where the transport coefficients are listed in Appendix E. Note that no potentially problematic terms
of second order in the Knudsen number appear (denoted by K in Ref. [51]), which is an effect of
performing the asymptotic matching in the IReD way, i.e., by relating only terms of first order in the
inverse Reynolds number. Furthermore, due to the replacements (6.147) we are able to absorb the
effect of the moments of spin-rank two into a modification of the transport coefficients without altering
the form of the relaxation equations. At this point, we remark that the modification of the shear
viscosity was already noted in Ref. [73], where it was referred to as a deviation from the “isotropic
viscosity”.

The same logic is applied to the system of equations for the moments ρµr , pµr , and qµr , yielding the
following equation of motion for the particle diffusion current,

τnṅ
⟨µ⟩ + nµ = κ0I

µ − λnωnνωνµ − δnnnµθ − ℓnΠ∇µΠ+ ℓnπ∆
µν∇λπλν + τnΠΠF

µ

− τnππµνFν − λnnnνσνµ + λnΠΠI
µ − λnππµνIν , (6.157)

with the coefficients listed again in Appendix E. Lastly, we apply the procedure outlined above to the
system of equations for ρµνr , ψ⟨µν⟩

r , pµνr , and qµνr , obtaining

τππ̇
⟨µν⟩ + πµν = 2η0σ

µν + λπωπλ
⟨µων⟩λ − δπππµνθ − τπππλ⟨µσν⟩λ + λπΠΠσ

µν

− τπnn⟨µF ν⟩ + ℓπn∇⟨µnν⟩ + λπnn
⟨µIν⟩ . (6.158)

The system of equations (6.156)–(6.158), together with the evolution equations for the equilibrium
quantities α0, β0, and uµ, cf. Eqs. (6.39), governs the time evolution of all components of the
energy-momentum tensor and the particle four-current of the system up to first order in ℏ and second
order in Kn and Re−1. Remarkably, these equations are formally identical to their spin-0 counterparts
given in Ref. [50], with the feedback effects from the dynamically generated tensor polarization in the
system encoded in a modification of the transport coefficients. Furthermore, it is apparent that the
degrees of freedom contained in the spin tensor do not influence the standard hydrodynamic quantities,
which is due to our assumption that the interaction conserves parity in combination with the restriction
to first order in the Planck constant. Lastly, we remark that in principle there should appear terms
of second order in inverse Reynolds numbers in Eqs. (6.156)–(6.158), which we neglected when
linearizing the collision terms. These contributions can in principle be calculated in the same way as
the coefficients of order O(KnRe−1), although they are rather difficult to compute explicitly [160] and
are thus left for future work.

6.4.2 Spin tensor

As is evident by our analysis of their Navier-Stokes limit (6.127), the equations of motion for the
axial vectors ωµ0 , p⟨µ⟩, and tµ are coupled and have to be treated in the same way as illustrated in the
subsection above. The resulting set of equations is then given by

τωω̇
⟨µ⟩
0 + τωpṗ

⟨µ⟩ + τωqq̇
⟨µ⟩ + ωµ0

= −e(ω)ωµ + Kωθθω
µ
0 + Kωθpθp

µ + Kωθqθq
µ + Kωσσ

µνω0,ν + Kωσpσ
µνpν + Kωσqσ

µνqν + Kωtt
µνων

+ ϵµναβuν

(
hωw∇αwβ + hωκ∇ακ0,β + KωIwIαwβ + KωFwFαwβ + KωIκIακ0,β + KωFκFακ0,β

)
,

(6.159a)
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τpṗ
⟨µ⟩ + τpqq̇

⟨µ⟩ + τpωω̇
⟨µ⟩
0 + pµ

= e
(0)
0 ωµ + Kpθθp

µ + Kpθqθq
µ + Kpθωθω

µ
0 + Kpσσ

µνpν + Kpσqσ
µνqν + Kpσωσ

µνω0,ν + Kptt
µνων

+ ϵµναβuν

(
hpw∇αwβ + hpκ∇ακ0,β + KpIwIαwβ + KpFwFαwβ + KpIκIακ0,β + KpFκFακ0,β

)
,

(6.159b)

and

τqq̇
⟨µ⟩ + τqωω̇

⟨µ⟩
0 + τqpṗ

⟨µ⟩ + qµ

= e
(2)
0 ωµ + Kqθθq

µ + Kqθωθω
µ
0 + Kqθpθp

µ + Kqσσ
µνqν + Kqσωσ

µνω0,ν + Kqσpσ
µνpν + Kqtt

µνων

+ ϵµναβuν

(
hqw∇αwβ + hqκ∇ακ0,β + KqIwIαwβ + KqFwFαwβ + KqIκIακ0,β + KqFκFακ0,β

)
,

(6.159c)

with the explicit expressions for the coefficients relegated to Appendix E. The vectorial quantities κµ0
and wµ follow the equations

τκκ̇
⟨µ⟩
0 + τκwẇ

⟨µ⟩ + κµ0

= −a(κ)Fµ + b(κ)Iµ + Kκθθκ
µ
0 + Kκθwθw

µ + Kκσσ
µνκ0,ν + Kκσwσ

µνwν + Kκωω
µνκ0,ν + Kκωwω

µνwν

+ hκt∆
µ
λ∇νtνλ + KκItt

µνIν + KκF tt
µνFν + ϵµναβuν

(
hκω∇αω0,β + hκp∇αpβ + hκq∇αqβ

+ KκIωIαω0,β + KκIpIαpβ + KκIqIαqβ + KκFωFαω0,β + KκFpFαpβ + KκFqFαqβ

)
, (6.160a)

and

τwẇ
⟨µ⟩ + τwκκ̇

⟨µ⟩
0 +wµ

= a
(1)
0 Fµ + b

(1)
0 Iµ + Kwθθw

µ + Kwθκθκ
µ
0 + Kwσσ

µνwν + Kwσκσ
µνκ0,ν + Kwωω

µνwν + Kwωκω
µνκ0,ν

+ hwt∆
µ
λ∇νtνλ + KwItt

µνIν + KwF tt
µνFν + ϵµναβuν

(
hwω∇αω0,β + hwp∇αpβ + hwq∇αqβ

+ KwIωIαω0,β + KwIpIαpβ + KwIqIαqβ + KwFωFαω0,β + KwFpFαpβ + KwFqFαqβ

)
, (6.160b)

respectively. The equation for the traceless symmetric tensor tµν on the other hand is simpler to obtain
and reads

τt ṫ
⟨µν⟩ + tµν = d

(2)
0 σµν + Ktθθt

µν + htw∇⟨µwν⟩ + htκ∇⟨µκν⟩0 + KtIwI
⟨µwν⟩ + KtFwF

⟨µwν⟩

+ KtIκI
⟨µκν⟩0 + KtFκF

⟨µκν⟩0 + Ktωωω
⟨µ
0 ω

ν⟩ + Ktωpp
⟨µων⟩ + Ktωqq

⟨µων⟩

+ σα
⟨µϵν⟩αβγuβ (Ktσωω0,γ + Ktσppγ + Ktσqqγ) . (6.161)

The equations of motion (6.159)–(6.161) provide the time evolution of all degrees of freedom of the spin
tensor, both equilibrium (ωµ0 , κ

µ
0 ) and dissipative (pµ, qµ,wµ, tµν) ones.13 Also here there should in

principle appear both terms that are nonlinear in the moments pµ, qµ,wµ, and tµν , as well as terms of
second order containing the usual dissipative quantities Π, nµ, and πµν , and fluid-dynamical gradients.
These contributions, as the nonlinear ones in the previous subsection, were neglected due to linearizing
the collision integrals.

6.5 Polarization observables

By now we have achieved our main goal of determining the equations of motion of all components of
Nµ, Tµν , and Sλµν which are hydrodynamically important in the sense that they have Navier-Stokes
solutions of order O(Kn). What is left to do is to relate the observables that are measured in experiment
to these quantities.

13When counting the number of independent degrees of freedom, we find that the spin tensor consists of 3+3=6 ideal
and 3+3+3+5=14 dissipative quantities, yielding a total of 20 components. This is lower than the theoretically possible
24 independent degrees of freedom, and has its roots in our kinetic description of the spin tensor.



138 6 Dissipative spin hydrodynamics

6.5.1 Pauli-Lubanski pseudovector

In order to obtain the local polarization in terms of hydrodynamic quantities, we need to evaluate
Eq. (6.66). Inserting the local-equilibrium distribution function (6.6a) as well as the expansion of the
deviation from equilibrium in terms of irreducible moments (6.29) and truncating the expansion such
that only quantities with first-order Navier-Stokes values are retained, we find

Sµ(k) =
σ

N(k)

∫
dΣλk

λf0kf̃0k

{
− ℏσ
m

Ω̃µα0 kα + 2KµγΞγν

[
x
(0)
p pν + x

(0)
q qν

+ ϵναβδkαuβ

(
x
(1)
w wδ + x(1)κ κ0,δ

)
+ x

(2)
q k⟨νkα⟩qα + x

(2)
t k⟨αkβ⟩tρ

αϵβνδρuδ

]}
, (6.162)

where we defined the coefficients

x
(0)
p :=

∑
n̸=2

H(1,0)
kn Q

(10)
n0 −

m2

2
H(1,0)

k2 , (6.163a)

x
(0)
q := −3

2
H(1,0)

k2 , (6.163b)

x(1)w :=
1

2

∑
n

H(1,1)
kn Q

(11)
n0 , (6.163c)

x(1)κ :=
1

2

∑
n

H(1,1)
kn Q(κ)

n , (6.163d)

x
(2)
q :=

3

5

∑
n

H(1,2)
kn Q

(12)
n0 , (6.163e)

x
(2)
t := −2

3

∑
n

H(1,2)
kn Q

(22)
n0 (6.163f)

and also used the asymptotic matching (6.142). Note that this expression is only accurate up to first
order in Knudsen and inverse Reynolds numbers due to the usage of the asymptotic matching. The
expression (6.162) determines the local polarization, i.e., it retains the dependence on momentum space.
If instead we are interested in the global polarization, we have to consider the integrated expression
(6.69), which yields

S
µ
=

σ

N

∫
dΣλ

{
− 2ℏσ
gm

(
uλωµ0 J20 + uµωλ0J21 − ϵµλαβuακ0,βJ21

)
+Q(10)

10 uλpµ − uµ
[
1

3

(
m2Q(10)

−1,0 −Q
(10)
10

)
pλ +Q(12)

−1,0q
λ

]
+

1

2
ϵµλαβuαwβ

}
. (6.164)

where we employed that Ω̃µν0 = −2u[µων]0 +2ϵµναβuακ0,β . It is instructive to compute these expressions
in the Navier-Stokes limit as well to be able to relate the polarization to gradients of the standard
hydrodyamical variables. We find for the local polarization

SµNS(k) =
σ

N(k)

∫
dΣλk

λf0kf̃0k

{
− 2ℏσ

m

[
e(ω)u[µων] + ϵµναβuα

(
b(κ)Iβ − a(κ)Fβ

)]
kν

+ 2KµγΞγν

[(
x
(0)
p e

(0)
0 + x

(0)
q e

(2)
0

)
ων +

(
x
(1)
w b

(1)
0 + x(1)κ b(κ)

)
ϵναβδkαuβIδ

+
(
x
(1)
w a

(1)
0 − x(1)κ a(κ)

)
ϵναβδkαuβFδ + x

(2)
q e

(2)
0 k⟨νkα⟩ωα + x

(2)
t d

(2)
0 k⟨αkβ⟩σρ

αϵβνδρuδ

]}
.

(6.165)

Note that there appears a term proportional to the shear tensor, which is similar, although not identical,
to the one found in Ref. [11]. In the aforementioned reference, this type of term was found to be vital
to match the experimental data on the local polarization. The answer to the question whether the
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shear contribution in Eq. (6.165) is able to do the same is left for future work. The global polarization
on the other hand reads in the Navier-Stokes limit

S
µ

NS =
σ

N

∫
dΣλ

{
2ℏσ
gm

[
e(ω)

(
J20u

λωµ + J21u
µωλ

)
− J21ϵµλαβuα

(
a(κ)Fβ − b(κ)Iβ

)]
+Q(10)

10 e
(0)
0 uλωµ
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3

(
m2Q(10)

−1,0 −Q
(10)
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e
(0)
0 +Q(12)

−1,0e
(2)
0

]
ωλ +

1

2
ϵµλαβuα

(
a
(1)
0 Fβ + b

(1)
0 Iβ

)}
. (6.166)

Here, the shear-dependent term from the local polarization has vanished upon performing the integration
and thus only contributes to the local, but not the global polarization.

6.5.2 Alignment

In order to compute the tensor polarization, we now have to evaluate Eq. (6.67). Notably, there will be
no contributions from local equilibrium in this expression, since feq(x, k, s) is at most of first order in
the spin vector. Inserting the expansion of the deviation from local equilibrium (6.29) and truncating
the sums such that only quantities with Navier-Stokes values of first order are kept, we arrive at the
following expression:

Θµν(k) =
4

5

√
3

2

1

N(k)

∫
dΣλk

λf0kf̃0kK
µν
ρσΞ

ρσ
αβ

[
y(1)π παβ + y(2)π ∆αβ

γδ k
⟨γkρ⟩π

ρδ + y(3)π k⟨αkβkγkδ⟩πγδ

+ y(1)n k⟨αnβ⟩ + y(2)n k⟨αkβkγ⟩nγ + yΠk
⟨αkβ⟩Π

]
. (6.167)

Here, the asymptotic matching (6.147) was used in conjunction with Eqs. (6.153) and we defined the
coefficients

y(1)π :=
∑
n

H(2,0)
kn T

(20)
n0 , (6.168a)

y(2)π :=
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7

∑
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H(2,2)
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(22)
n0 , (6.168b)
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∑
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kn T

(24)
n0 , (6.168c)
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∑
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kn T
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n0 , (6.168d)
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∑
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H(2,3)
kn T

(13)
n0 , (6.168e)

yΠ := − 3

5m2

∑
n

H(2,2)
kn T

(00)
n0 . (6.168f)

Equation (6.167) clarifies that all dissipative currents that are present in the energy-momentum tensor
and the particle four-current contribute to the tensor polarization of the system. In order to relate this
to the quantity that is measured in experiment (which is called alignment), we have to consider the
00-element of the spin-density matrix. As is shown in Appendix C, the alignment is given by

ϱ00(k) =
1

3
−
√

2

3
ϵ(0)µ (k)ϵ(0)ν (k)Θµν(k) , (6.169)

where ϵ(λ)µ(k) denotes the polarization vector of a spin-1 particle with momentum k and spin-projection
λ onto a given quantization axis, such that, in the particle-rest frame where k⋆ = (m, 0, 0, 0), we
have ϵ(0)µ(k⋆) ≡ (0, 0, 0, 1)µ when choosing the z-axis. The value of ϱ00 = 1/3 corresponds to the
unpolarized case, whereas the second term ∼ Θzz(k⋆) determines the degree of tensor polarization.
Note that, in our expression (6.67), the fluid-dynamical gradients enter at first order, even though they
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will be multiplied by (potentially small) viscosities ζ0, η0, and conductivity κ0. This is in contrast to
quark-coalescence models (see, e.g., Refs. [24, 26, 27]), where the tensor polarization of a vector meson
is built from the (vector) polarizations of its constituent quarks. In that case, the resulting polarization
has to be of second order, since the quark polarization is mainly induced by vorticity.14 Whether the
expression (6.169) is able to reproduce the large values of the alignment observed in experiment [18]
will be the subject of future work.

Lastly, the global tensor polarization is given by Eq. (6.70). Making use of the expressions (6.150), we
can express it to first order in Kn and Re−1 as

Θ
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√
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2
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∫
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∆ν)λΥ
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0 Π+Υ
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0 πν)λ

)
+ T (20)

10 πµνuλ
]
. (6.170)

A simple application

To get a clearer understanding of what our theory tells about the alignment of vector mesons, let
us consider the basic case treated in Ref. [28], where the effects of the bulk viscous pressure and
the particle diffusion are neglected to study the effect of the shear stress on the tensor polarization.
Choosing the simplest possible truncation, we set

S(0)0 = S(0)1 = S(2)1 = S(2)2 = S(2)3 = S(2)4 = ∅ , S(0)2 = {0} , S(2)0 = {1} . (6.171)

Then, Eq. (6.169) becomes

ϱ00(k) =
1

3
− 4

15

∫
dΣαk

αξ β0f0kH(2,0)
k1 ϵ

(0)
β ϵ
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γ Kβγ
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ρσπ

ρσ∫
dΣαkαf0k

(
1− 3H(0,0)

k0 Π/m2 +H(0,2)
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) , (6.172)

where we defined

ξ := − 1

β0

D(0,2)
10

D(0)
11

≡ 1

β0
T (20)
10 . (6.173)

Note that this coefficient is the only quan-
tity in Eq. (6.172) that depends on the
microscopic interactions of the particles,
and can be computed via a method sum-
marized in Appendix F.4. In the case of
a four-point interaction, this coefficient
is of the order of a percent, cf. Fig. 6.1.
However, one should keep in mind that
this result assumes a fluid that is made
solely out of a single species of spin-1 par-
ticles, and thus the numerical value may
change when developing a theory that
incorporates the coupled dynamics of a
more realistic system consisting of both
spin-1/2 and spin-1 particles.
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mβ0
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Figure 6.1: The coefficient ξ for the case of a four-point
interaction, L̂int ∼ (V̂ † · V̂ )2.

14It is easy to see this from a symmetry perspective: Θµν is a symmetric traceless second-rank tensor, and the only
way to build such an object from vorticities is by combining two of them, e.g., ω⟨µων⟩.



Chapter 7

Conclusion and outlook

After finishing the program of constructing dissipative spin hydrodynamics from quantum field theory,
let us briefly review the steps needed to achieve this goal and comment on tasks that can be undertaken
in the future.

7.1 Summary

In Chapter 1 of this thesis, we initially posed the question how a fluid comprised of particles with spin
behaves. As was elaborated in Chapter 2, fluids are characterized by the fact that their microscopic
and macroscopic scales are sufficiently separated, such that it is expected that the dynamics of the
system can be sufficiently well described by the quantities appearing in the conserved currents. In
the case of fluids consisting of particles with nonzero spin, the conservation law for the total angular
momentum has to be included explicitly since it does not follow immediately from the conservation of
the energy-momentum tensor, which can acquire an antisymmetric part. This, in turn, necessitates
including the components of the spin tensor as additional hydrodynamic degrees of freedom, both in
the ideal and the dissipative case.

Since the goal was to derive a theory of relativistic dissipative spin hydrodynamics, it proved necessary
to provide a description of the dissipative degrees of freedom that went beyond usual Navier-Stokes
theory in order to avoid acausal and thus unstable behavior. To provide this description, we employed
the formalism of quantum kinetic theory, which describes the behavior of quantum fields in the limit
that the wavepackets are localized enough to treat them as quasiparticles. In Chapter 3 we computed
the conserved currents given by the underlying quantum field theories for particles of spins 0, 1/2,
and 1, and connected them to phase-space integrals over the Wigner function, which constitutes a
quantum field-theoretical generalization of the classical single-particle distribution function. However,
the conserved currents are not uniquely defined, but only up to pseudogauge transformations, which
leave the conservation laws and the total charges invariant. The standard canonical currents have
the drawback that the energy-momentum tensor is in general not symmetric even in the case of
free fields, which implies that the spin tensor is also not conserved in that case. For our purposes,
we chose the modified GLW pseudogauge, which features the property that the energy-momentum
tensor is symmetric in the case of free fields and in global equilibrium, and thus provides an intuitive
representation of the currents in phase space.

In Chapter 4, we computed the collision terms appearing in the kinetic equations for the Wigner
functions. Employing the GLW method outlined in Ref. [43], we computed both local and nonlocal
collision terms. It turned out that, to first order in ℏ, Klein-Gordon fields do not feature nonlocalities,
in contrast to Dirac and Proca fields. This aligns with the intuitive picture of orbital angular
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momentum and spin being exchanged in a collision which does not take place in a single spacetime
point. The shifts that specify how far the particles are displaced from the center of momentum have
been calculated in a covariant form, showing that there does not exist a “no-jump frame” where the
collisions are local, except in the case where the shifts were identically zero to begin with.
Chapter 5 repeated this calculation, but in the approach pioneered by Kadanoff and Baym, which
is based on the Dyson-Schwinger equations on the Keldysh contour. While the method seems
different at first glance, we were able to demonstrate that, as long as the same approximations as in
the GLW approach are made, the KB approach leads to the same collision terms, with the important
modification that quantum-statistical effects are retained. Taking these into account enabled us to
show that, in equilibrium, the distribution function has to be of Bose-Einstein or Fermi-Dirac
form, depending on whether the particles are bosons or fermions, respectively.
In both approaches, in order for the collision term to vanish exactly, we found that the conditions
have to be those of global equilibrium, i.e., the four-temperature has to be a Killing vector and
the chemical potential over temperature has to be constant. This is at odds with the concept of
local equilibrium known from standard fluid dynamics, and constitutes an effect of including nonlocal
collisions.

In order to formulate a theory of spin hydrodynamics that reduces to the familiar hydrodynamic form
if spin effects are excluded, we modified the definition of local equilibrium in Chapter 6, allowing the
collision term to be nonzero, provided that the corrections originate only from nonlocal terms, which
are comparatively small. With this definition of local equilibrium, we separated the dissipative parts of
the distribution function, and applied a generalization of the method of moments that included both
its dependence on momentum as well as on spin.
After having derived the equations of motion for all irreducible moments, we had to close the system
with an appropriate truncation to extract the dynamics of the hydrodynamic degrees of freedom. This
closure was then achieved via a suitable application of the IReD method, which expresses all moments
solely in terms of the dissipative quantities of interest. In this way, we obtained equations of motion
for all components of the energy-momentum tensor and the particle four-current. Interestingly, the
degrees of freedom connected to the tensor polarization of the particles couple to these quantities,
modifying the resulting transport coefficients.
We furthermore showed that, in addition to the six degrees of freedom characterizing the ideal part of
the spin tensor, 14 dissipative quantities (two axial vectors, one vector, and one traceless symmetric
tensor) feature Navier-Stokes values of first order and are thus hydrodynamically important. Because
the spin tensor is not conserved, all of these quantities follow relaxation-type dynamics. While the
relaxation of the dissipative quantities to their Navier-Stokes values is determined by local collisions
and can be attributed to particles moving with the fluid that tends to isotropize, the spin potential
relaxes to the thermal vorticity on a timescale determined by the nonlocal contributions to the collision
term.
Lastly, we employed these results to derive formulae for the observables related to polarization, namely
the Pauli-Lubanski vector and the alignment, expressed solely in terms of hydrodynamic fields.
With these expressions, it is then possible to relate the microscopic properties of polarization to
the macroscopic conserved currents, which are governed by hydrodynamics. The result for the local
polarization shows a dependence on the shear tensor, which has already been observed in earlier studies,
albeit in slightly different form, and has proven crucial to explain the measurements. The formula
for the alignment on the other hand shows that, in this framework based on quantum kinetic theory
that takes the vector mesons as the fundamental degrees of freedom, the tensor polarization of spin-1
particles is a purely dissipative effect that depends on the magnitude of the shear-stress tensor, the
bulk viscous pressure, and the diffusion current.

7.2 Future perspectives

There are various ways to build on the work done in this thesis. First, the formulae which determine
the polarization and alignment of particles should be tested in hydrodynamic simulations of heavy-ion
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collisions to see if they are able to describe the data. In particular, whether or not the expression for
the alignment is able to explain the large measured signal for ϕ mesons lets one assess the viability of
a hydrodynamic treatment for vector mesons inside the QGP.

Since we have provided explicit expressions for all resummed transport coefficients, one can compute
them to arbitrary precision. This is especially important when considering the linearized theory, since
in order for it to be symmetric hyperbolic, certain relations between transport coefficients have to be
fulfilled. In the case of ultrarelativistic (spinless) fluid dynamics, these conditions have been found not
to be valid in the DNMR truncation, whereas the IReD approach preserves them, given that the size
of the basis is sent to infinity [52]. Thus, it is important to check whether or not the IReD approach
taken in this work also features this desirable property.

In order to improve our understanding of the QGP with quarks and gluons as the fundamental degrees
of freedom, the work done here for spin-1 particles can be extended to cover the case of originally
massless gluons. This will introduce complications related to gauge symmetry, as well as the non-abelian
nature of the particles. Nevertheless, most of the methods presented here should be applicable with
suitable modifications. Following this line, a coupled theory including both fermions and bosons would
be of interest. Steps towards this goal have already been undertaken in, e.g., Ref. [86], and our results
on the dynamics of the spin degrees of freedom in the presence of nonlocal collisions can be used to
extend it.

Finally, the effects of electromagnetic fields were not treated in this work, even though some studies
on their inclusion have been done, cf. Refs. [28, 54, 55]. In order to treat them properly, the effects
of the (in GLW language) “pure-spin exchange” terms, or equivalently (in KB language) “mean-field
self-energy” have to be included, since they lead to the emergence of Vlasov-type terms in the kinetic
equation. The formulation of such a theory of spin-magnetohydrodynamics would be desirable as well,
since, especially in the early stages of heavy-ion collisions, the magnetic fields can be very strong.
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Appendix A

Cancellation of off-shell terms

This appendix contains the proof of Theorem 1, which is valid for general fields as we introduced them
in Subsec. 3.2.2. In addition to possible constraint equations, any field fulfills the Klein-Gordon
equation (

□+
m2

ℏ2

)
φ̂ = ρ̂ , (A.1)

where ρ̂ is a general source term depending on the interaction Lagrangian.

Stating the ingredients

For a more compact presentation, let us recapitulate the basic objects introduced in the main text.
The Wigner function is defined in accordance with Eq. (3.31)

W (x, k) = κ

∫
d4ve−

i
ℏk·v⟨: φ̂+φ̂− :⟩ . (A.2)

We remind the reader of the notation

φ̂ :=

{
φ̂† , j integer ,
φ̂†γ0 , j half-integer ,

(A.3)

from which it follows that the Wigner function fulfills W̃ =W ∗, where

W̃ :=

{
WT , j integer ,
γ0WTγ0 , j half-integer .

(A.4)

Acting with the Bopp operator Dµ := kµ + iℏ
2 ∂

µ on the Wigner function gives

DµW (x, k) = iℏκ
∫

d4ve−
i
ℏk·v⟨φ̂+∂

µφ̂−⟩ , (A.5)

D∗µW (x, k) = −iℏκ
∫

d4ve−
i
ℏk·v/ℏ⟨(∂µφ̂+)φ̂−⟩ . (A.6)

General proof

Applying a combination of Bopp operators such that the left-hand side of Eq. (A.1) is reproduced
under the integral, we find

(D2 −m2)W (x, k) = −ℏ2κ
∫

d4ve−
i
ℏk·v⟨φ̂+ρ̂−⟩ =: ℏC(x, k) . (A.7a)
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We can repeat the same procedure now with the complex conjugated Bopp operators to obtain

(D∗2 −m2)C(x, k) = ℏ3κ
∫

d4ve−
i
ℏk·v⟨ρ̂+ρ̂−⟩ =: ℏZ(x, k) . (A.7b)

Note that, as for the Wigner function, we again have Z̃ = Z∗. Applying the “tilde”-operator to Eqs.
(A.7) and using the relations for Z and W , we can isolate the real and imaginary parts, i.e.,

(D2 −m2)ReW =
ℏ
2
(C + C̃) , (A.8a)

(D2 −m2)iImW =
ℏ
2
(C − C̃) , (A.8b)

(D∗2 −m2)
1

2
(C + C̃) = ℏReZ , (A.8c)

(D∗2 −m2)
1

2
(C − C̃) = iℏImZ . (A.8d)

Here we suppressed the arguments (x, k) for brevity and used that

ReW =
1

2
(W + W̃ ) , iImW =

1

2
(W − W̃ ) , (A.9)

and similarly for Z. At this point we remark that

D2 = k2 + iℏk · ∂ − ℏ2

4
□ , D∗2 = k2 − iℏk · ∂ − ℏ2

4
□ . (A.10)

Abbreviating

CS :=
1

2
(C + C̃) , CA :=

1

2
(C − C̃) , (A.11)

we obtain the real and imaginary parts of Eqs. (A.8) as

(
k2 −m2 − ℏ2

4
□

)
ReW = ℏReCS , (A.12a)

k · ∂ReW = ImCS , (A.12b)(
k2 −m2 − ℏ2

4
□

)
ImW = ℏImCA , (A.12c)

−k · ∂ImW = ReCA , (A.12d)(
k2 −m2 − ℏ2

4
□

)
ReCS + ℏk · ∂ImCS = ℏReZ , (A.12e)(

k2 −m2 − ℏ2

4
□

)
ImCS − ℏk · ∂ReCS = 0 , (A.12f)(

k2 −m2 − ℏ2

4
□

)
ReCA + ℏk · ∂ImCA = 0 , (A.12g)(

k2 −m2 − ℏ2

4
□

)
ImCA − ℏk · ∂ReCA = ℏImZ . (A.12h)

We now expand all quantities as power series in ℏ, e.g.,

W =

∞∑
j=0

ℏjW (j) . (A.13)
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Then, Eqs. (A.12a), (A.12c), (A.12f) and (A.12g) become mass-shell like equations,(
k2 −m2

)
ReW (j) = ReC

(j−1)
S +

□
4
ReW (j−2) , (A.14a)(

k2 −m2
)
ImW (j) = ImC

(j−1)
A +

□
4
ImW (j−2) , (A.14b)(

k2 −m2
)
ImC

(j)
S = k · ∂ReC(j−1)

S +
□
4
ImC

(j−2)
S , (A.14c)(

k2 −m2
)
ReC

(j)
A = −k · ∂ImC

(j−1)
A +

□
4
ReC

(j−2)
A , (A.14d)

while Eqs. (A.12b) and (A.12d) become kinetic equations,

k · ∂ReW (j) = ImC
(j)
S , (A.15a)

k · ∂ImW (j) = −ReC(j)
A . (A.15b)

In these expressions it is understood that quantities formally of negative order in ℏ are set to zero.
Comparing this equation to the formulation in Eq. (4.28), we can identify

C ≡ ImCS − iReCA . (A.16)

Splitting the Wigner function and the collision kernel into on- and off-shell parts,

W (j) = δ(k2 −m2)W
(j)
on-shell +W

(j)
off-shell , (A.17)

C
(j)
S = δ(k2 −m2)C

(j)
S,on-shell + C

(j)
S,off-shell , (A.18)

C
(j)
A = δ(k2 −m2)C

(j)
A,on-shell + C

(j)
A,off-shell , (A.19)

we obtain the off-shell components from Eqs. (A.14) as

ReW
(j)
off-shell = (k2 −m2)−1

[
ReC

(j−1)
S +

□
4
ReW (j−2)

]
, (A.20a)

ImW
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off-shell = (k2 −m2)−1

[
ImC
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□
4
ImW (j−2)

]
, (A.20b)

ImC
(j)
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4
ImC
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ReC
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−k · ∂ImC

(j−1)
A +

□
4
ReC

(j−2)
A

]
. (A.20d)

Then, the off-shell parts on the left-hand sides of Eqs. (A.15) at order j read

k · ∂ReW (j)
off-shell = (k2 −m2)−1

[
k · ∂ReC(j−1)

S +
□
4
ImC

(j−2)
S

]
, (A.21a)

k · ∂ImW
(j)
off-shell = (k2 −m2)−1

[
k · ∂ImC

(j−1)
A − □

4
ReC

(j−2)
A

]
, (A.21b)

where we used Eqs. (A.15) at order j − 2. Comparing to Eqs. (A.20c) and (A.20d), we find

k · ∂ReW (j)
off-shell = ImC

(j)
S,off-shell , (A.22a)

k · ∂ImW
(j)
off-shell = −ReC

(j)
A,off-shell , (A.22b)

implying that the off-shell terms cancel in the Boltzmann equation to any order in ℏ. Thus, we can
write

k · ∂ReW (j)
on-shell = ImC

(j)
S,on-shell , (A.23a)

k · ∂ImW
(j)
on-shell = −ReC

(j)
A,on-shell , (A.23b)

where the restriction to the mass shell is understood. This proves our theorem.
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Appendix B

Notes on the collision integrals

In this appendix, we present calculations on the GLW and the KB approaches that concern the
computation of the collision integrals. In the GLW approach, we will relate the “in”-Wigner function
to the full one, and show that both can be identified up to first order in ℏ and to lowest order in the
density, neglecting contributions of collisional origin inside the collision integrals themselves. In the
KB approach, we will compute the self-energy in the T-matrix approximation, which has been shown
to fall in the class of approximations to the self-energy that preserve the macroscopic conservation laws.
Furthermore, we will show that the functions f̃ in the KB approach incorporate quantum statistics.
Lastly, we will explicitly compute the antisymmetric part of the energy-momentum tensor in the GLW
pseudogauge.

B.1 GLW: The Wigner function and its “in”-counterpart

Here we will show that, to lowest order in the density, the Wigner function is equal to its “in”-
counterpart.

We start by restating the observation from Eq. (4.25), namely that the Wigner function can be
written as the following Fock-space average,

W ab(x, k) =
〈
e

i
ℏ P̂ ·xΨ̂ab(k)e−

i
ℏ P̂ ·x

〉
, (B.1)

where
Ψ̂ab(k) := κ

∫
d4ve−

i
ℏk·vφ̂

b
(v
2

)
φ̂a
(
−v
2

)
. (B.2)

Since the “in”-states are eigenstates of the total momentum, we may replace e−
i
ℏ P̂ ·x |kn;σn⟩in =∏n

j=1 e
− i

ℏkj ·x |kn;σn⟩in. Rethinking the steps that led to Eq. (4.23), we find

W ab(x, k) =

∞∑
n=0

1

n!

∫
d4x̄n

∫
d4k̄n

(2πℏ)4n
Ψabn,a1b1···anbn(x̄

n; k̄n|k)
n∏
j=1

W
ajbj
in (x+ x̄j , k̄j) , (B.3)

where

Ψabn,a1b1···anbn(x̄
n; k̄n|k) :=

(
1

κλ2η2

)n ∫
d4un

(2πℏ)4n
∑
σn,σ′n in

⟪k̄n − un

2
;σn

∣∣∣∣ Ψ̂ab(k) ∣∣∣∣k̄n +
un

2
;σ′n⟫

in

×

 n∏
j=1

e
i
ℏuj ·x̄jUbj

(
k̄j −

uj
2
, σj

)
Uaj

(
k̄j +

uj
2
, σ′
j

) . (B.4)
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Following Ref. [43], we compute Ψabn for n = 0, 1.

In the case n = 0, inserting Eq. (4.16) and making use of the completeness of the “out”-states, we
obtain

Ψab0 (0|k) = κ

∞∑
m=0

1

2mm!

∑
σm

∫
dKm ⟨0| φ̂b (0) |km;σm⟩out

× out⟨km;σm|φ̂a (0) |0⟩ (2πℏ)4δ(4)
(
k +

m∑
ℓ=1

kℓ

)
, (B.5)

where we employed the fact that the “out”-states are eigenstates of the momentum as well. Since the
zeroth component of the momentum is always positive, the delta function vanishes, such that

Ψab0 (0|k) = 0 . (B.6)

Similarly, the n = 1 case yields

Ψab1,cd(x; p|k) =
1

κλ2η2

∫
d4u

(2πℏ)4
∑
σ,σ′

e
i
ℏu·xUd

(
p− u

2
, σ
)
U c

(
p+

u

2
, σ′
)

×
[
in

〈
p− u

2
;σ
∣∣∣Ψ̂ab ∣∣∣p+ u

2
;σ′
〉
in
−

in

〈
p− u

2
;σ
∣∣∣ p+ u

2
;σ′
〉
in

〈
0

∣∣∣∣Ψ̂ab∣∣∣∣0〉] .
Note that the second term vanishes for the same reasons as Ψab0 . Inserting a complete set of “out”-states
again, we have

Ψab1,cd(x; p|k) =
1

λ2η2

∫
d4u

(2πℏ)4
∑
σ,σ′

e
i
ℏu·xUd

(
p− u

2
, σ
)
U c

(
p+

u

2
, σ′
)

×
∞∑
m=0

1

2mm!

∑
σm

∫
dP ′m

in

〈
p− u

2
;σ
∣∣∣φ̂b(0)∣∣∣∣p′m;σm

〉
out

×
out

〈
p′m;σm

∣∣∣∣φ̂a(0) ∣∣∣p+ u

2
;σ′
〉
in
(2πℏ)4δ(4)

(
k +

m∑
ℓ=1

p′ℓ − p
)
. (B.7)

Using the fact that the one-particle “in”- or “out”-states are orthogonal, we find that [using Eq. (4.8)]〈
0

∣∣∣∣φ̂a(0) ∣∣∣p+ u

2
;σ′
〉
in
= λUa

(
p+

u

2
, σ′
)
, (B.8)

which may be used to obtain an explicit expression for the m = 0-term in Eq. (B.7). The other terms
in the respective sum require that

p2 = (k + p′)2 = 2m2 + 2k · p′ ≥ 4m2 ,

which implies including the possibility of creating particles with masses larger than twice the mass
of the original one. This possibility we will neglect, such that only the m = 0 term in Eq. (B.7)
contributes, yielding

Ψab1,cd(x; p|k) =
1

η2

∫
d4u

(2πℏ)4
∑
σ,σ′

e
i
ℏu·xUd

(
p− u

2
, σ
)
U c

(
p+

u

2
, σ′
)

× U b
(
p− u

2
, σ
)
Ua
(
p+

u

2
, σ′
)
(2πℏ)4δ(4) (k − p) . (B.9)

Truncating the sum in Eq. (B.3) after the first term (higher orders would lead to nonlinear dependencies
of W ab on W ab

in , which are of higher order in the density) and expanding the “in”-Wigner function
around x, we obtain

W ab(x, k) =
1

η2

∫
d4u

∑
σ,σ′

Ud

(
k − u

2
, σ
)
U c

(
k +

u

2
, σ′
)
U
b
(
k − u

2
, σ
)
Ua
(
k +

u

2
, σ′
)

×
{
W cd

in (x, k)δ(4)(u)− iℏ
[
∂ρuδ

(4)(u)
]
∂ρW

cd
in (x, k)

}
. (B.10)

At this point, we differentiate between particles of different spin.
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Spin 0

In the case of scalar particles, we have η ≡ 1 and U ≡ 1, such that the second contribution in Eq.
(B.10) becomes a vanishing boundary term. Then we simply find

W (x, k) =Win(x, k) , (B.11)

allowing us to identify the Wigner function and its “in”-counterpart inside the collision integral.

Spin 1/2

For Dirac particles, η ≡ 2m and U ≡ u, where u is the usual basis spinor fulfilling the orthogonality
and completeness relations (4.56). Then, the Wigner function becomes

Wαβ(x, k) = Λ+
αγ(k)Win,γδ(x, k)Λ

+
δβ(k)

− iℏ
∫

d4uΛ+
αγ

(
k +

u

2

)
Λ+
δβ

(
k − u

2

) [
∂ρuδ

(4)(u)
]
∂ρW

γδ
in (x, k) . (B.12)

We then integrate by parts in the second term and employ

∂ρuΛ
+
(
k +

u

2

)
=

1

4m
γρ , (B.13)

such that

Wαβ(x, k) = Λ+
αγ(k)Win,γδ(x, k)Λ

+
δβ(k) +

iℏ
4m

[
γραγΛ

+
δβ(k)− Λ+

αγ(k)γ
ρ
δβ

]
∂ρWin,γδ(x, k) . (B.14)

Subsequently, we use that, by virtue of Eqs. (3.79) and (3.80), the structure of the “in”-Wigner
function in Dirac space is given by

Win(x, k) =
1

2
Λ+(k) [Fin(x, k) + γ5γ · Ain(x, k)] +

ℏ
8m2

σµνkν∂µFin(x, k) . (B.15)

Employing that, because Aµin is orthogonal to the four-momentum, Λ+(k) and γ5γ · Ain commute, we
find (neglecting terms of second order in ℏ)

Wαβ(x, k) =
1

2
Λ+(k) [Fin(x, k) + γ5γ · Ain(x, k)] +

iℏ
8m

[
γµαγΛ

+
γβ(k)− Λ+

αδ(k)γ
µ
δβ

]
∂µFin(x, k)

=
1

2
Λ+(k) [Fin(x, k) + γ5γ · Ain(x, k)] +

ℏ
8m2

σµνkν∂µFin(x, k)

≡Win,αβ(x, k) , (B.16)

where we used Eq. (4.78). As expected, W and Win are equivalent up to terms of higher order in the
density and ℏ.

Spin 1

In the case of Proca fields, we have η ≡ −1 and U ≡ ϵ, where the polarization vectors ϵ fulfill the
orthogonality and completeness relations (4.103). Using these, Eq. (B.10) becomes

Wµν = Kµ
αK

ν
βW

αβ
in (x, k)− iℏ

∫
d4u

(
K − U

2

)µ
α

(
K +

U

2

)ν
β

[
∂ρuδ

(4)(u)
]
∂ρW

αβ
in (x, k) , (B.17)

where we defined (
K ± U

2

)µν
:= gµν − (k ± u)−2

(
k ± u

2

)µ (
k ± u

2

)ν
. (B.18)
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Integrating by parts and using

∂ρu

(
K ± U

2

)µν ∣∣∣∣
u=0

= ∓k−2

(
1

2
gρ(µkν) − kρkµkν

k2

)
(B.19)

as well as the fact that k · ∂Wµν
in (x, k) = 0, we can evaluate the second term in Eq. (B.17) to get

Wµν(x, k) = Kµ
αK

ν
βW

αβ
in (x, k) + iℏ∂u

[(
K − U

2

)µ
α

(
K +

U

2

)ν
β

]
u=0

∂ρW
αβ
in (x, k)

= Kµ
αK

ν
βW

αβ
in (x, k) +

iℏ
2
k−2

(
∂(µkα)K

ν
β − ∂(νkβ)Kµ

α

)
Wαβ

in (x, k) .

Remembering that kµW
µν
S,in ∼ O(ℏ2) and kµW

µν
A,in = (iℏ/2)∂νfK,in +O(ℏ2), cf. Eqs. (3.159), we may

rewrite this expression up to first order in ℏ as

Wµν(x, k) = Kµ
αK

ν
βW

αβ
in (x, k) +

iℏ
2

k[µ

k2
∂ν]fK,in(x, k) ≡Wµν

in (x, k) . (B.20)

Manifestly, we may again identify the Wigner function with its “in”-counterpart to this order.

B.2 KB: Self-energy and quantum statistics

B.2.1 Approximating the self-energy

In this part of the appendix, we motivate the form of the diagrams considered in Fig. 5.2, and show
how to compute them.

Notes on deriving the self-energy

The self-energy appearing in the KB equations has to be approximated in some way, as computing it
exactly is usually impossible. As has been shown by Baym in Ref. [164], an approximation preserves
the macroscopic conservation laws if it is “Φ-derivable”, i.e., if there exists a functional Φ such that1

ΣABab (x1, x2) =
δΦ[G]

δGAB,ab(x1, x2)
. (B.21)

The Φ-functional that we consider is given by the set of closed two-particle irreducible (2PI) diagrams in
Fig. B.1, where the plus and minus signs are for fermions and bosons, respectively. The combinatorial
prefactors become unity when taking the derivative with respect to the Green’s function. Note
that, as mentioned before, we do not consider the Hartree-Fock contributions, which renormalize
the energy and momentum of the particles and provide a self-consistent Vlasov-type term in the
kinetic equation. In order to include these contributions, we would have to consider an additional
“double-bubble” like diagram in the Φ-functional (together with the corresponding exchange term due
to boson or fermion exchange symmetry) [135].

1In Ref. [165] it has been shown that the conservation laws are even obeyed exactly, i.e., not only to the order in
the coupling that defines the truncation of the self-energy. This also holds when the (ℏ-)gradient approximation is
implemented consistently.
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Φ = 1
4 ± 1

4

Figure B.1: The Φ-functional consisting of closed 2PI diagrams. Note that the Hartree-Fock
contributions are omitted.

y′x′

x2x1

G≶

G≷

G≷
Σ≷ = ±

y′x′

x2x1

G≷ G≷

G≶

Figure B.2: Greater and lesser self-energies in position space. The dots connected by dashed lines
symbolize the tensors V .

Computing the diagrams

The self-energy diagrams shown in Fig. B.2 are obtained from taking the variational derivative of the
Φ-functional. Their diagrammatic form is easily constructed by removing one internal line from the
closed diagrams in Fig. B.1. Then, they read

Σ
≷
ab(x1, x2) =

∫
d4x′ d4y′Vaa′a1a2(x1, x

′)Vb2b1b′b(y
′, x2)

[
G

≷
a1b1

(x1, x2)G
≷
a2b2

(x′, y′)G≶
a′b′(y

′, x′)

±G≷
a1b2

(x1, y
′)G≷

a2b1
(x′, x2)G

≶
b′a′(y

′, x′)
]
. (B.22)

Here, the quantities V , which are fourth-rank tensors in the internal space of the fields, are symbolized
by the dashed lines. Furthermore, the plus and minus signs belong to bosons and fermions, respectively.
For simplicity, we take the quantities V to be local, i.e., Vaa′a1a2(x, y) = Vaa′a1a2δ

(4)(x − y), where
Vaa′a1a2 is a constant. Then, the self-energies are given by

Σ
≷
ab(x1, x2) = Vaa′a1a2Vb2b1b′b

[
G

≷
a1b1

(x1, x2)G
≷
a2b2

(x1, x2)G
≶
b′a′(x2, x1)

±G≷
a1b2

(x1, x2)G
≷
a2b1

(x1, x2)G
≶
b′a′(x2, x1)

]
. (B.23)

After inserting the Wigner transform

G
≷
ab(x1, x2) =

∫
d4p

(2πℏ)4
e−

i
ℏp·(x1−x2)G

≷
ab

(
x1 + x2

2
, p

)
, (B.24)
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the self-energies become

Σ
≷
ab(x1, x2) =

∫
d4k1
(2πℏ)4

d4k2
(2πℏ)4

d4k′

(2πℏ)4
Vaa′a1a2Vb2b1b′be

− i
ℏ (k1+k2−k′)·(x1−x2)

×
[
G

≷
a1b1

(
x1 + x2

2
, k1

)
G

≷
a2b2

(
x1 + x2

2
, k2

)
G

≶
b′a′

(
x1 + x2

2
, k′
)

±G≷
a1b2

(
x1 + x2

2
, k1

)
G

≷
a2b1

(
x1 + x2

2
, k2

)
G

≶
b′a′

(
x1 + x2

2
, k′
)]

. (B.25)

The Wigner transform of the self-energy then reads

Σ
≷
ab(x, k) =

∫
d4ve−

i
ℏk·vΣ≷

ab

(
x− v

2
, x+

v

2

)
=

∫
d4k1
(2πℏ)4

d4k2
(2πℏ)4

d4k′

(2πℏ)4
(2πℏ)4δ(4)(k + k′ − k1 − k2)Vaa′a1a2Vb2b1b′b

×
[
G

≷
a1b1

(x, k1)G
≷
a2b2

(x, k2)G
≶
b′a′(x, k

′)±G≷
a1b2

(x, k1)G
≷
a2b1

(x, k2)G
≶
b′a′(x, k

′)
]

=
1

2

∫
d4k1
(2πℏ)4

d4k2
(2πℏ)4

d4k′

(2πℏ)4
(2πℏ)4δ(4)(k + k′ − k1 − k2)

×G≷
a1b1

(x, k1)G
≷
a2b2

(x, k2)G
≶
b′a′(x, k

′) (Vaa′a1a2 ± Vaa′a2a1) (Vb2b1b′b ± Vb1b2b′b) . (B.26)

Next we define
Vaa′a1a2 ± Vaa′a2a1 =:

1

λ3
Maa′a1a2 , (B.27)

where the factors of λ are necessary to be consistent with the earlier definitions.2 Note that we have
by construction the symmetries Maa′a1a2 = ±Ma′aa1a2 = ±Maa′a2a1 . Then , we find

Σ
≷
ab(x, k) =

1

2λ6

∫
d4k1
(2πℏ)4

d4k2
(2πℏ)4

d4k′

(2πℏ)4
(2πℏ)4δ(4)(k + k′ − k1 − k2)

×G≷
a1b1

(x, k1)G
≷
a2b2

(x, k2)G
≶
b′a′(x, k

′)Maa′a1a2Mb1b2bb′ . (B.28)

Thus, we have obtained Eq. (5.21), which represents the diagrams in Fig. 5.2 in phase space.

B.2.2 Quantum statistics

Here we want to prove that the distribution functions f̃ introduced in Eqs. (5.32), (5.47) and (5.96)
indeed represent the expected Pauli-blocking and Bose-enhancement factors.

Starting from Eqs. (5.1), we find that

G>ab(x1, x2)−G<ab(x1, x2) =


〈[
φ̂a(x1), φ̂b(x2)

]〉
for bosons ,〈{

φ̂a(x1), φ̂b(x2)
}〉

for fermions .
(B.29)

Then, we remember the expression for the (anti)commutators of massive fields of different spins [166],[
ϕ̂(x1), ϕ̂

†(x2)
]
= iℏ∆(x1 − x2) , (B.30a){

ψ̂α(x1), ψ̂β(x2)
}
= (iℏ/∂ +m)αβi∆(x1 − x2) , (B.30b)[

V̂ µ(x1), V̂
†ν(x2)

]
= −iℏ

(
gµν +

ℏ2

m2
∂µ∂ν

)
∆(x1 − x2) , (B.30c)

2Actually there should be a factor of 1/λ4 since the vertices M are contracted with four fields, but we factored out a
contribution of 1/λ2 in the Kadanoff-Baym equations for convenience.



B.3 The antisymmetric part of the energy-momentum tensor 155

where

i∆(x1 − x2) :=
∫

d4p

(2πℏ)3
sgn(p0)δ(p

2 −m2)e−
i
ℏp·(x1−x2) (B.31)

denotes the invariant Pauli-Jordan function. Computing the Wigner transform of Eq. (B.29) yields
for the different fields

G>(x, k)−G<(x, k) = 2πℏ2δ(k2 −m2) , (B.32a)

G>αβ(x, k)−G<αβ(x, k) = 4mπℏΛ+(k)δ(k2 −m2) , (B.32b)

G>µν(x, k)−G<µν(x, k) = −2πℏ2Kµνδ(k2 −m2) , (B.32c)

where we assumed that k0 > 0. Then, we express the Wigner functions as

G<(x, k) = 2πℏ2δ(k2 −m2)f(x, k) , (B.33a)

G>(x, k) = 2πℏ2δ(k2 −m2)f̃(x, k) , (B.33b)

G<αβ(x, k) = −4mπℏδ(k2 −m2)

∫
dS(k)hαβ(k, s)f(x, k, s) , (B.33c)

G>αβ(x, k) = 4mπℏδ(k2 −m2)

∫
dS(k)hαβ(k, s)f̃(x, k, s) , (B.33d)

G<µν(x, k) = −2mπℏ2δ(k2 −m2)

∫
dS(k)hνµ(k, s)f(x, k, s) , (B.33e)

G>µν(x, k) = −2mπℏ2δ(k2 −m2)

∫
dS(k)hνµ(k, s)f̃(x, k, s) , (B.33f)

where we could neglect the gradient and off-shell contributions, since they fall outside our employed
truncation as all Wigner functions treated here appear inside the collision integrals. Finally, we insert
spurious spin-space integrals on the right-hand sides of Eqs. (B.32b) and (B.32c), obtaining

2πℏ2δ(k2 −m2)
[
f̃(x, k)− f(x, k)− 1

]
= 0 , (B.34a)

4mπℏδ(k2 −m2)

∫
dS(k)hαβ(k, s)

[
f̃(x, k, s) + f(x, k, s)− 1

]
= 0 , (B.34b)

2πℏ2δ(k2 −m2)

∫
dS(k)hµν(k, s)

[
f̃(x, k, s)− f(x, k, s)− 1

]
= 0 . (B.34c)

Thus, as expected, we can conclude that, to first order in ℏ, we may identify

f̃(x, k) = 1 + f(x, k) for Klein-Gordon fields , (B.35a)

f̃(x, k, s) = 1− f(x, k, s) for Dirac fields , (B.35b)

f̃(x, k, s) = 1 + f(x, k, s) for Proca fields . (B.35c)

B.3 The antisymmetric part of the energy-momentum tensor

In this section, we will explicitly compute the antisymmetric part of the GLW energy-momentum
tensors for spin-1/2 and spin-1 particles, in order to confirm that they indeed take the form (6.54) which
was obtained by postulating the conservation of the total angular momentum Jµν = σℏΣµνs +∆[µkν].
We will carry out this computation in the KB formalism, since it is more straightforward to implement
and retains quantum-statistical effects.

Dirac fields

From Eq. (3.123), we have

T
[µν]
D = − ℏ

m

∫
d4k

(2πℏ)4
D[µ

V k
ν] . (B.36)
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Using the definition of DV (3.78a) and connecting it with the collision integral in the KB approach
(5.36), we obtain

DµV(x, k) =
1

2
ImTr

[
γµ
(
Σ>G< − Σ<G>

)]
, (B.37)

where we omitted the Poisson-bracket terms. Taking only the quasiclassical contributions (5.52) to
the self-energies and writing the Wigner functions in extended phase space according to Eqs. (5.47),
we find

DµV(x, k) = −4mπℏδ(k2 −m2)
1

2

∫
dΓ1 dΓ2 dΓ

′ dS(k) dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)

× Uµ
(
f1f2f̃

′f̃ − f̃1f̃2f ′f
)
, (B.38)

where we defined3

Uµ :=
m3

4
Im [Mαα′α1α2Mβ1β2ββ′hα1β1(k1, s1)hα2β2(k2, s2)hβ′α′(k′, s′)hβδ(k, s)γ

µ
δα]

=
1

ℏ
W(1/2)∆µ . (B.39)

Then, after using the weak equivalence principle, the antisymmetric part of the energy-momentum
tensor becomes

T
[µν]
D =

1

2

∫
[dΓ](2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(1/2)∆[µkν]

(
f1f2f̃

′f̃ − f̃1f̃2f ′f
)
, (B.40)

in agreement with Eq. (6.54).

Proca fields

In the case of vector fields, we start from Eq. (3.188),

T
[µν]
P =

ℏ
m

∫
d4k

(2πℏ)4
k

2m

(
C[µA +D[µ

S

)
kν] . (B.41)

Using the definitions (3.152) and (3.157), we can express the relevant collision terms as

k

2
(CµA +DµS) = −ReCµνkν = −1

ℏ
Im
[
kν
(
Σ<ναG>α

µ − Σ>ναG<α
µ
)]

, (B.42)

where we employed Eq. (5.82) in the last equality and neglected the Poisson-bracket terms again.
With the quasiclassical contributions (5.101), we find Eq. (B.42) to be

k

2
(CµA +DµS) (x, k) = 4πℏδ(k2 −m2)

1

2

∫
dΓ1 dΓ2 dΓ

′ dS(k) dS̄(k)(2πℏ)4δ(4)(k + k′ − k1 − k2)

×U µ
(
f1f2f̃

′f̃ − f̃1f̃2f ′f
)
, (B.43)

where we introduced4

U µ := − 1

16

1

3
Im
[
Mνµ′µ1µ2Mν1ν2αν

′
hν1µ1

(k1, s1)hν2µ2
(k2, s2)hµ′ν′(k′, s′)hµα(k, s)kν

]
=
m2

ℏ
W(1)∆µ . (B.44)

Using the weak equivalence principle, we thus find

T
[µν]
P =

1

2

∫
[dΓ](2πℏ)4δ(4)(k + k′ − k1 − k2)W̃(1)∆[µkν]

(
f1f2f̃

′f̃ − f̃1f̃2f ′f
)
, (B.45)

as expected from Eq. (6.54).
3Note that there is an additional factor of 1/2 due to the spurious dS̄(k)-integral, which is necessary since W(1/2)

depends on s̄.
4We replaced H by h in the definition of ∆ since the components of spin-rank two will not contribute in the final

expression.



Appendix C

Polarization observables in kinetic
theory

To give a clearer meaning to the different components of the Wigner functions introduced in the
main text, in this appendix we will connect them to the observables related to polarization that are
measured in experiment [5, 10, 16, 18]. This discussion largely follows the one presented in Ref. [167]
for spin-1/2 particles.

The spin-density matrix of a particle is defined as

ϱσσ′(k) :=
⟨â†σ′(k)âσ(k)⟩∑
σ′′⟨â†σ′′(k)âσ′′(k)⟩

. (C.1)

The goal is to relate the Wigner function [i.e., the normal-ordered expectation value of Eq. (3.31)] to
the averages over creation and annihilation operators appearing in Eq. (C.1). Expressing the fields in
terms of creation and annihilation operators

φ̂a(x) :=
λ

2

∑
σ

∫
dK

[
e−

i
ℏk·xUa(k, σ)âσ(k) + e

i
ℏk·xV a(k, σ)̂b†σ(k)

]
(C.2)

and inserting them into the Wigner function, we obtain W =W+ +W− +WS , where W± denote the
particle and antiparticle contributions, respectively (i.e., their associated momenta are timelike with
k0 > 0 or k0 < 0), while WS denotes the Wigner function whose momentum is spacelike. These three
quantities read explicitly

W ab
+ (x, k) =

κλ2

4

∑
σ,σ′

∫
dP

∫
dP ′(2πℏ)4δ(4)

(
k − p+ p′

2

)
× e i

ℏ (p−p′)·xU
b
(p, σ)Ua(p′, σ′)⟨â†σ(p)âσ′(p′)⟩ , (C.3a)

W ab
− (x, k) = ±κλ

2

4

∑
σ,σ′

∫
dP

∫
dP ′(2πℏ)4δ(4)

(
k +

p+ p′

2

)
× e i

ℏ (p−p′)·xV
b
(p, σ)V a(p′, σ′)⟨̂b†σ′(p

′)̂bσ(p)⟩ , (C.3b)

W ab
S (x, k) =

κλ2

4

∑
σ,σ′

∫
dP

∫
dP ′(2πℏ)4δ(4)

(
k − p− p′

2

)
×
[
e

i
ℏ (p+p′)·xU

b
(p, σ)V a(p′, σ′)⟨â†σ(p)̂b†σ′(p

′)⟩
+ e−

i
ℏ (p+p′)·xV

b
(p, σ)Ua(p′, σ′)⟨̂bσ(p)âσ′(p′)⟩

]
, (C.3c)
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where the positive and negative signs in W− correspond to bosons and fermions, respectively. The
integral of the positive-energy Wigner function over a hypersurface Σ reads∫

dΣαk
αW ab

+ (x, k) ≡ k0
∫

d3xW ab
+ (x, k)

=
κλ2

2

∑
σ,σ′

(2πℏ)δ(k2 −m2)Θ(k0)U
b
(k, σ)Ua(k, σ′)⟨â†σ(k)âσ′(k)⟩ . (C.4)

Making use of the orthogonality relations of the polarization vectors (4.9), we find the sought-after
relation

(2πℏ)δ(k2 −m2)Θ(k0)⟨â†σ(k)âσ′(k)⟩ = 2

κλ2η2

∫
dΣαk

αUa(k, σ
′)W ab

+ (x, k)Ub(k, σ) , (C.5)

which lets us express the spin-density matrix of the particles as

ϱσσ′(k) =

∫
dΣαk

αUa(k, σ)W
ab
+ (x, k)Ub(k, σ

′)∑
σ′′

∫
dΣαkαUa(k, σ′′)W ab

+ (x, k)Ub(k, σ′′)
. (C.6)

Note that a similar relation holds also for the antiparticles.

In the next step we will derive expressions for the vector and tensor polarization, which are defined as
(for a particle of spin S) [15]

Sµ(k) := Tr
[
Ŝµϱ̂(k)

]
, (C.7)

Θµν(k) :=
1

2

√
3

2
Tr

{[
Ŝ(µŜν) +

2S(S + 1)

3
Kµν

]
ϱ̂(k)

}
, (C.8)

where
Ŝµ := − 1

2m
ϵµναβ ĴναP̂β (C.9)

denotes the Pauli-Lubanski operator divided by the particle mass [140, 167]. Here, Ĵµν is the
generator of Lorentz transformations, while P̂µ generates spacetime translations. We can represent
the matrix elements of the operator Ŝµ as

⟨k, σ| Ŝµ |k, σ′⟩ = − 1

2m
ϵµναβkνD

S([k])−1DS(Jαβ)D
S([k]) , (C.10)

where DS(Jµν) and DS([k]) are the spin-S representations of the total angular-momentum operator
and the standard Lorentz boost to the four-momentum kµ, respectively. From this relation we can
infer

Sµ(k) = − 1

2m
ϵµναβkνTr

[
DS([k])−1DS(Jαβ)D

S([k])ϱ(k)
]
, (C.11)

Θµν(k) =
1

2

√
3

2

{
− 1

4
ϵαβγ(µϵν)ρσλ

kαkλ
m2

Tr
[
DS([k])−1DS(Jβγ)D

S(Jρσ)D
S([k])ϱ(k)

]
+

2S(S + 1)

3
Kµν

}
. (C.12)

At this point, we treat the cases of different nontrivial representations of the Lorentz group1 separately.

Dirac fields

In the case of Dirac fermions, we have to consider the (1/2, 0)⊕ (0, 1/2)-representation, where (making
the Dirac indices i, j, · · · and the spin indices r, s, · · · explicit)

DS(Jαβ)ij =
i

4
[γα, γβ ]ij , DS([k])r,i =

1√
2m

ur,i(k) , (C.13)

1For scalar particles, which transform in the (0, 0)-representation, both the vector and tensor polarization vanish.
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with the basis spinor u. Then, upon using the completeness relation of the Dirac spinors (4.56b), we
find for the vector polarization

Sµ(k) = − 1

4m2
ϵµναβkν

i

4

∫
dΣλk

λTr {(/k +m)[γα, γβ ](/k +m)W (x, k)}∫
dΣλkλTr [(/k +m)W (x, k)]

. (C.14)

Decomposing the Wigner function according to the Clifford algebra (3.73), evaluating the traces
and making use of Eqs. (3.79) (with vanishing right-hand sides) yields

Sµ(k) =
1

2

∫
dΣλk

λAµ(x, k)∫
dΣλkλF(x, k)

. (C.15)

When translating this expression into extended phase space, we find

Sµ(k) =
1

2

1

N(k)

∫
dΣγk

γ

∫
dS(k)sµf(x, k, s) , (C.16)

where we defined
N(k) :=

∫
dΣγk

γF(x, k) ≡
∫

dΣγk
γ

∫
dS(k)f(x, k, s) . (C.17)

The tensor polarization on the other hand is given by

Θµν(k) =
1

4

√
3

2

{
ϵαβγ(µϵν)ρσλ

kαkλ
64m3

∫
dΣξk

ξTr {(/k +m)[γβ , γγ ][γρ, γσ](/k +m)W (x, k)}∫
dΣξkξTr [(/k +m)W (x, k)]

+Kµν

}
,

(C.18)

and vanishes upon performing the traces, as expected.

Proca fields

For massive spin-1 particles, we work in the (1/2, 1/2) representation of the Lorentz group, where

DS(Jβγ)
µν = i(gµβg

ν
γ − gµγ gνβ) , (DS(Jβγ)D

S(Jρσ))
µν = gµβg

ν
ρgγσ + gµγ g

ν
σgβρ − gµβgνσgγρ − gµγ gνρgβσ .

(C.19)
In a basis where the polarization vectors in the particle rest frame [i.e., the frame where k⋆µ =
(m, 0, 0, 0)µ] coincide with the Cartesian axes, ϵ(λ)µ(k⋆) = −gλµ, we can furthermore express the
standard Lorentz transformation as

DS([k])µλ = ϵ(λ)µ(k) . (C.20)

Upon inserting this representation into the vector polarization (C.11), we find

Sµ(k) = −iϵµναβ kν
m

∫
dΣγk

γWαβ(x, k)∫
dΣγkγKρσW ρσ(x, k)

, (C.21)

which in extended phase space becomes

Sµ(k) =
1

N(k)

∫
dΣγk

γ

∫
dS(k)sµf(x, k, s) , (C.22)

where we redefined

N(k) :=

∫
dΣγk

γKρσW
ρσ(x, k) =

∫
dΣγk

γ

∫
dS(k)f(x, k, s) (C.23)

and used Eqs. (3.168). Note that, although the quantity N(k) is now defined in terms of the spin-1
Wigner function, the expressions for the vector polarization (C.16) and (C.22) (up to an expected
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factor of two) formally coincide when expressed in extended phase space.2 The tensor polarization
becomes

Θµν(k) =
1

2

√
3

2

[
2ϵµαβγϵνρσλ

kαkλ
m2

gγσKβηKρζ

∫
dΣϵk

ϵW ηζ(x, k)∫
dΣϵkϵKϕψWϕψ(x, k)

+
4

3
Kµν

]
=

√
3

2

[
(Kµ

αK
ν
β −KµνKαβ)

∫
dΣγk

γWαβ(x, k)∫
dΣγkγKρσW ρσ(x, k)

+
2

3
Kµν

]
=

√
3

2
Kµν
αβ

∫
dΣγk

γWαβ(x, k)∫
dΣγkγKρσW ρσ(x, k)

, (C.24)

where we employed the completeness relation of the polarization vectors (4.103b). Translating this
expression into integrals over spin space, we finally have

Θµν(k) =
1

2

√
3

2

1

N(k)

∫
dΣγk

γ

∫
dS(k)Kµν

αβs
αsβf(x, k, s) . (C.25)

2This is of course also an effect of suitable choices of the measure in spin space.



Appendix D

The evolution equations of the
irreducible moments

The purpose of this appendix is to show the steps to arrive at the equations of motion for the irreducible
moments, i.e., Eqs. (6.75), (6.78), and (6.80) in the main text. Considering the definitions of the
moments (6.18) in conjunction with the fact that the spin vector is not a function of spacetime, it
becomes clear that the only difference in the equations of motion for moments of different rank in spin
can come from the equilibrium terms in the Boltzmann equation (6.73). Thus, we will consider a
general moment

χµ1···µℓ
r :=

∫
dΓF (s)Erkk

⟨µ1 · · · kµℓ⟩δfks , (D.1)

where the function F (s) can be 1, sµ, or Kµν
αβs

αsβ , depending on the spin-rank of the moment one
wants to consider.

In the following we will use the following identities for the irreducible tensors,

k⟨µ⟩k⟨ν⟩ = k⟨µkν⟩ +
1

3
∆µν

(
k⟨ξ⟩kξ

)
, (D.2a)

k⟨µ⟩k⟨ν⟩k⟨λ⟩ = k⟨µkνkλ⟩ +
1

5

(
∆µνk⟨λ⟩ + 2 perm.

)(
k⟨ξ⟩kξ

)
, (D.2b)

k⟨µ⟩k⟨ν⟩k⟨λ⟩k⟨ρ⟩ = k⟨µkνkλkρ⟩ +
1

7

(
∆µνk⟨λkρ⟩ + 5 perm.

)(
k⟨ξ⟩kξ

)
+

1

15

(
∆µν∆λρ + 2 perm.

) (
k⟨ξ⟩kξ

)2
, (D.2c)

k⟨µ⟩k⟨ν⟩k⟨λ⟩k⟨ρ⟩k⟨α⟩ = k⟨µkνkλkρkα⟩ +
1

9

(
∆µνk⟨λkρkα⟩ + 9 perm.

)(
k⟨ξ⟩kξ

)
+

1

35

(
∆µν∆λρk⟨α⟩ + 14 perm.

)(
k⟨ξ⟩kξ

)2
, (D.2d)

k⟨µ⟩k⟨ν⟩k⟨λ⟩k⟨ρ⟩k⟨α⟩k⟨β⟩ = k⟨µkνkλkρkαkβ⟩ +
1

11

(
∆µνk⟨λkρkαkβ⟩ + 14 perm.

)(
k⟨ξ⟩kξ

)
+

1

63

(
∆µν∆λρk⟨αkβ⟩ + 44 perm.

)(
k⟨ξ⟩kξ

)2
+

1

105

(
∆µν∆λρ∆αβ + 14 perm.

) (
k⟨ξ⟩kξ

)3
, (D.2e)

which, in conjunction with
k⟨α⟩kα = m2 − E2

k ,

will allow us to use the orthogonality relation (6.12). In the expressions above, “+ x perm.” stands for
x other distinct permutations of Lorentz indices.
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Momentum-rank zero

We apply the comoving derivative on the definition (D.1) and obtain

χ̇r = ru̇µχ
µ
r−1 +

∫
dΓF (s)Erkδḟks . (D.3)

Making use of the Boltzmann equation (6.73), we find

χ̇r − Cr−1 = ru̇µχ
µ
r−1 −

∫
dΓF (s)Er−1

k

(
Ekḟeq + k · ∇feq

)
−
∫

dΓF (s)Er−1
k kν∇νδfks , (D.4)

where we defined the generalized irreducible collision terms

C⟨µ1···µℓ⟩
r :=

∫
dΓF (s)Erkk

⟨µ1 · · · kµℓ⟩C(x, k, s) . (D.5)

We start with the last term in Eq. (D.4) and compute

−
∫

dΓF (s)Er−1
k kν∇νδfks = −θχr −∇νχνr−1 + (r − 1)(∇νuµ)

∫
dΓF (s)Er−2

k k⟨ν⟩k⟨µ⟩δfks

= −∇νχνr−1 + (r − 1)σµνχ
µν
r−2 −

θ

3

[
(r + 2)χr − (r − 1)m2χr−2

]
, (D.6)

such that we find

χ̇r − Cr−1 = −
∫

dΓF (s)Er−1
k

(
Ekḟeq + k · ∇feq

)
− θ

3

[
(r + 2)χr − (r − 1)m2χr−2

]
+ ru̇µχ

µ
r−1 −∇νχνr−1 + (r − 1)σµνχ

µν
r−2 . (D.7)

The term that distinguishes the cases of different ranks in spin is the first one on the right-hand side
of the equation above, which is nonzero only for spin-ranks zero and one. In the case of the irreducible
moments of spin-rank two, this term vanishes, such that we find Eq. (6.80a) in the main text upon
setting χ ≡ ψ. To evaluate the nonvanishing equilibrium contributions, we note that∫

dS(k)feq = gf0k , (D.8a)∫
dS(k)sµfeq = −σℏ

m
f0kf̃0kΩ̃

µν
0 kν . (D.8b)

Furthermore, a derivative acting on f0k can be written as

∂µf0k =
∂f0k
∂α0

(
∂µα0 − Ek∂

µβ0 − β0k⟨α⟩∂µuα
)
. (D.9)

In the case of the irreducible moments of zeroth rank in spin [i.e., F (s) = 1], we compute

−
∫

dΓEr−1
k

(
Ekḟeq + k · ∇feq

)
= −g

∫
dKEr−1

k

(
Ekḟ0k + k · ∇f0k

)
= −Jr0α̇0 + Jr+1,0β̇0 + θ [(1− r)Ir1 − Ir0] . (D.10)

Note that, in order to obtain the term proportional to the expansion scalar, we used the product
rule instead of directly evaluating the derivative acting on the local-equilibrium distribution function.
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Inserting Eq. (D.10) into the general expression (D.7) and making use of the evolution equations for
α0 and β0, we obtain Eq. (6.75a) in the main text. In the case where F (s) = sµ, we evaluate

−
∫

dΓsµEr−1
k

(
Ekḟeq + k · ∇feq

)
=
σℏ
m

∫
dKEr−1

k (Eku · ∂ + k · ∇) f0kf̃0kΩ̃µν0 kν

=
σℏ
gm

(
Jr+1,0

˙̃
Ωµν0 uν − Jr+1,1∇νΩ̃µν0

)
+
σℏ
m

Ω̃µν0

∫
dKEr−1

k kν (Eku · ∂ + k · ∇) f0kf̃0k

=
σℏ
gm

{
Jr+1,0

˙̃
Ωµν0 uν − Jr+1,1∇νΩ̃µν0 + 2ωµ0

[
Kr+1,0α̇0 −Kr+2,0β̇0 + θ(Jr+1,0 + rJr+1,1)

]
+ β0Kr+2,1Ω̃

µν
0 u̇ν − Ω̃µν0 (Kr+1,1Iν −Kr+2,1∇νβ0)

}
. (D.11)

Here, we used that Ω̃µν0 uν = 2ωµ0 . With these equilibrium terms, we obtain Eq. (6.78a).

Momentum-rank one

We act with the comoving derivative on the moment of tensor-rank one in momentum,

χ̇⟨µ⟩
r = ∆µ

ν

d

dτ

∫
dΓF (s)Erkk

⟨µ⟩δfks

= ru̇αχ
µα
r−1 +

1

3
u̇µ
[
m2rχr−1 − (r + 3)χr+1

]
+∆µ

ν

∫
dΓF (s)Erkk

⟨ν⟩δḟks , (D.12)

and subsequently evaluate the second term by employing the Boltzmann equation:

∆µ
ν

∫
dΓF (s)Erkk

⟨ν⟩δḟks = C
⟨ν⟩
r−1 −∆µ

ν

∫
dΓF (s)Er−1

k k⟨ν⟩
(
Ekḟeq + kρ∇ρfeq + kρ∇ρδfks

)
. (D.13)

First, we analyze the last term in the equation above:

−∆µ
ν

∫
dΓF (s)Er−1

k k⟨ν⟩kρ∇ρδfks

= −∆µ
ν∇ρ

[∫
dΓF (s)Er−1

k k⟨ν⟩
(
Eku

ρ + k⟨ρ⟩
)
δfks

]
+ (r − 1)

∫
dΓF (s)Er−2

k k⟨µ⟩ (kρ∇ρEk) δfks +∆µ
ν

∫
dΓF (s)Er−1

k k⟨ρ⟩
(
∇ρk⟨ν⟩

)
δfks

= −4

3
θχµr −∆µ

ν∇ρχνρr−1 −
1

3
∇µ
(
m2χr−1 − χr+1

)
− (σµα − ωµα)χr,α

+ (r − 1)

[
θ

3

(
m2χµr−2 − χµr

)
+ χµρλr−2σρλ +

2

5

(
m2χρr−2 − χρr

)
σµρ

]
. (D.14)

Then, we can combine our results so far to yield

χ̇⟨µ⟩
r − C

⟨µ⟩
r−1 = −

∫
dΓF (s)Er−1

k k⟨µ⟩
(
Ekḟeq + kρ∇ρfeq

)
+

1

3
u̇µ
[
m2rχr−1 − (r + 3)χr+1

]
+ ωµαχ

α
r −∆µ

β∇αχ
βα
r−1 −

1

3
∇µ
(
m2χr−1 − χr+1

)
+
θ

3

[
(r − 1)m2χµr−2 − (r + 3)χµr

]
+ ru̇αχ

µα
r−1 +

1

5

[
(2r − 2)m2χαr−2 − (2r + 3)χαr

]
σµα + (r − 1)χµαβr−2σαβ . (D.15)

In the case of the moments of spin-rank two, χ ≡ ψ, the equilibrium terms vanish and we find Eq.
(6.80b). For spin-ranks zero and one, we need to evaluate these terms separately again. For χ ≡ ρ, we
compute

−
∫

dΓEr−1
k k⟨µ⟩

(
Ekḟeq + kρ∇ρfeq

)
= Jr+1,1I

µ − Jr+2,1 (∇µβ0 + β0u̇
µ) , (D.16)
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which, after inserting the result into Eq. (D.15) and making use of the equation of motion for the
four-velocity, yields Eq. (6.75b). Analogous to the previous case, for χ ≡ τ we have

−
∫

dΓsλEr−1
k k⟨µ⟩

(
Ekḟeq + kρ∇ρfeq

)
=
σℏ
m

∫
dKEr−1

k k⟨µ⟩ (Eku · ∂ + k · ∇) f0kf̃0kΩ̃λν0 kν

= − σℏ
gm

(
Jr+2,1

˙̃
Ω
λ⟨µ⟩
0 + Jr+2,1uν∇µΩ̃λν0

)
+ Ω̃λν0

σℏ
m

∫
dKEr−1

k kνk
⟨µ⟩ (Eku · ∂ + k · ∇) f0kf̃0k

=
σℏ
gm

{
− Jr+2,1

˙̃
Ω
λ⟨µ⟩
0 − Jr+2,1uν∇µΩ̃λν0 + Ω̃

λ⟨µ⟩
0

(
−Kr+2,1α̇0 +Kr+3,1β̇0 −

5

3
β0Kr+3,2θ

)
− 2β0Kr+3,2Ω̃

λν
0 σµν + 2ωλ0 [−Kr+2,1I

µ +Kr+3,1 (∇µβ0 + β0u̇
µ)]

}
. (D.17)

Inserting this result into Eq. (D.15), we find Eq. (6.78b) in the main text.

Momentum-rank two

Differentiating the moment of second rank in momentum and projecting the result onto the subspace
of tensors that are orthogonal to uµ, symmetric and traceless, yields

χ̇⟨µν⟩
r = ∆µν

αβ

d

dτ

∫
dΓF (s)Erkk

⟨αkβ⟩δfks

= ∆µν
αβ

[
ru̇λ

∫
dΓF (s)Er−1

k k⟨αkβ⟩k⟨λ⟩δfks +
∫

dΓF (s)Erk

(
d

dτ
k⟨αkβ⟩

)
δfks

+

∫
dΓF (s)Erkk

⟨αkβ⟩δḟks

]
. (D.18)

We start by computing the first term in Eq. (D.18),

∆µν
αβru̇λ

∫
dΓF (s)Er−1

k k⟨αkβ⟩k⟨λ⟩δfks = ru̇λχ
λµν
r−1 +

2

5
ru̇⟨µ

(
m2χ

ν⟩
r−1 − χ

ν⟩
r+1

)
. (D.19)

Using the projected derivative of the traceless symmetric projector of rank two orthogonal to the
four-velocity,

∆µν
αβ

d

dτ
∆αβ
γδ = −u̇⟨µ∆ν⟩

(γuδ) , (D.20)

the second contribution in Eq. (D.18) gives

∆µν
αβ

∫
dΓF (s)Erk

(
d

dτ
k⟨αkβ⟩

)
δfks = −2u̇⟨µχν⟩r+1 . (D.21)

Putting the Boltzmann equation to use, the third term in Eq. (D.18) reads

∫
dΓF (s)Erkk

⟨µkν⟩δḟk = Cµνr−1 −
∫

dΓF (s)Erkk
⟨µkν⟩ḟeq −

∫
dΓF (s)Er−1

k k⟨µkν⟩kλ∇λfeq

−
∫

dΓF (s)Er−1
k k⟨µkν⟩kλ∇λδfks . (D.22)



165

As in the preceding computations, we first concentrate on evaluating the contributions that contain
the deviation of the distribution function from equilibrium. Considering the last term in Eq. (D.22),
we find

−
∫

dΓF (s)Er−1
k k⟨µkν⟩kλ∇λδfks

=−∆µν
αβ∇λ

[∫
dΓF (s)Er−1

k k⟨αkβ⟩k⟨λ⟩δfks

]
+∆µν

αβ

∫
dΓF (s)∇λ

(
Er−1

k k⟨αkβ⟩k⟨λ⟩
)
δfks

=− θχµνr −∆µν
αβ∇λχ

αβλ
r−1 −

2

5
∇⟨µ

(
m2χ

ν⟩
r−1 − χ

ν⟩
r+1

)
+

∫
dΓF (s)k⟨λ⟩

[
Er−1

k ∆µν
αβ∇λ

(
k⟨α⟩k⟨β⟩ − 1

3
∆αβk⟨σ⟩kσ

)
+ (r − 1)Er−2

k k⟨µkν⟩k⟨ρ⟩∇λuρ
]
δfks

=− θχµνr −∆µν
αβ∇λχ

αβλ
r−1 −

2

5
∇⟨µ

(
m2χ

ν⟩
r−1 − χ

ν⟩
r+1

)
+

∫
dΓF (s)k⟨λ⟩

[
− 2Erk∆

µν
αβk

α∇λuβ + (r − 1)Er−2
k

(
k⟨µ⟩k⟨ν⟩ − 1

3
∆µνk⟨σ⟩kσ

)
k⟨ρ⟩∇λuρ

]
δfks

=− θχµνr −∆µν
αβ∇λχ

αβλ
r−1 −

2

5
∇⟨µ

(
m2χ

ν⟩
r−1 − χ

ν⟩
r+1

)
− 2χλ⟨µr

(
σν⟩λ − ων⟩λ +

1

3
θ∆ν⟩

λ

)
+ (r − 1)∇λuρχµνλρr−2 +

2

7
(r − 1)

(
m2χ

λ⟨µ
r−2 − χλ⟨µr

)(
2σν⟩λ +

2

3
θ∆ν⟩

λ

)
+

1

7
(r − 1)θ

(
m2χµνr−2 − χµνr

)
+

2

15

[
m4(r − 1)χr−2 −m2(2r + 3)χr + (r + 4)χr+2

]
σµν . (D.23)

Combining these results, we find

χ̇⟨µν⟩
r − C

⟨µν⟩
r−1 = −

∫
dΓF (s)Erkk

⟨µkν⟩ḟeq −
∫

dΓF (s)Er−1
k k⟨µkν⟩kλ∇λfeq

+
2

15

[
m4(r − 1)χr−2 −m2(2r + 3)χr + (r + 4)χr+2

]
σµν + ru̇λχ

λµν
r−1

+
2

5
u̇⟨µ
[
rm2χ

ν⟩
r−1 − (r + 5)χ

ν⟩
r+1

]
− 2

5
∇⟨µ

(
m2χ

ν⟩
r−1 − χ

ν⟩
r+1

)
+
θ

3

[
m2(r − 1)χµνr−2 − (r + 4)χµνr

]
+ (r − 1)χµνλρr−2 σλρ −∆µν

αβ∇λχ
αβλ
r−1 + 2χλ⟨µr ων⟩λ

+
2

7

[
2m2(r − 1)χ

λ⟨µ
r−2 − (2r + 5)χλ⟨µr

]
σν⟩λ . (D.24)

Setting F (s) = Kµν
αβs

αsβ (and thus χ ≡ ψ), the equilibrium terms vanish and we find Eq. (6.80c). For
the moments of spin-rank zero, χ ≡ ρ, the equilibrium term becomes

−
∫

dΓF (s)Erkk
⟨αkβ⟩ḟeq −

∫
dΓF (s)Er−1

k k⟨µkν⟩kλ∇λfeq = 2β0Jr+3,2σ
µν , (D.25)

which then yields Eq. (6.75c) by virtue of the identity

β0Jnq = In−1,q−1 + (n− 2q)In−1,q . (D.26)

For χ ≡ τ , the equilibrium terms are computed as

−
∫

dΓsλErkk
⟨αkβ⟩ḟeq −

∫
dΓsλEr−1

k k⟨µkν⟩kβ∇βfeq

=
σℏ
m

∫
dKEr−1

k k⟨µkν⟩kα (Eku · ∂ + k · ∇) f0kf̃0kΩ̃λα0

=
2σℏ
gm

{
Kr+3,2∆

µν
αβ∇αΩ̃λβ + Ω̃λ⟨µ

[
Kr+3,2I

ν⟩ −Kr+4,2

(
∇ν⟩β0 + β0u̇

ν⟩
)]

− 2β0Kr+4,2ω
λ
0σ

µν
}
, (D.27)

leading to Eq. (6.78c).
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Momentum-rank three

The moment of tensor-rank three in momentum works as the ones before. Applying the comoving
derivative gives

χ̇⟨µνλ⟩
r = ∆µνλ

αβγ

d

dτ

∫
dΓF (s)Erkk

⟨αkβkγ⟩δfks

= ∆µνλ
αβγ

[
ru̇κ

∫
dΓF (s)Er−1

k k⟨αkβkγ⟩k⟨κ⟩δfks +
∫

dΓF (s)Erk

(
d

dτ
k⟨αkβkγ⟩

)
δfks

+

∫
dΓF (s)Erkk

⟨αkβkγ⟩δḟks

]
. (D.28)

The first term in the equation above yields

∆µνλ
αβγru̇κ

∫
dΓF (s)Er−1

k k⟨αkβkγ⟩k⟨κ⟩δfks = ru̇κχ
κµνλ
r−1 +

3

7
ru̇⟨µ

(
m2χ

νλ⟩
r−1 − χ

νλ⟩
r+1

)
, (D.29)

whereas the second term becomes

∆µνλ
αβγ

∫
dΓF (s)Erk

(
d

dτ
k⟨αkβkγ⟩

)
δfks = −3u̇⟨µχνλ⟩r+1 . (D.30)

After employing the Boltzmann equation, we obtain for the third term in Eq. (D.28)∫
dΓF (s)Erkk

⟨µkνkλ⟩δḟk = Cµνλr−1 −
∫

dΓF (s)Er−1
k k⟨µkνkλ⟩kκ∇κδfks . (D.31)

Note that we could set the terms involving the equilibrium distribution function to zero already,
since no first-order structure involving only fluid gradients with the appropriate symmetries exists.
Considering the second term in the equation above, we compute

−
∫

dΓF (s)Er−1
k k⟨µkνkλ⟩k⟨κ⟩∇κδfks

= −∆µνλ
αβγ∇κ

[∫
dΓF (s)Er−1

k k⟨αkβkγ⟩k⟨κ⟩δfks

]
+∆µνλ

αβγ

∫
dΓF (s)k⟨κ⟩∇κ

(
Er−1

k k⟨αkβkγ⟩
)
δfks

= −θχµνλr −∆µνλ
αβγ∇κχ

καβγ
r−1 −

3

7
∇⟨µ

(
m2χ

νλ⟩
r−1 − χ

νλ⟩
r+1

)
+

∫
dΓF (s)k⟨κ⟩

[
Er−1

k ∆µνλ
αβγ∇κk⟨αkβkγ⟩ + (r − 1)Er−2

k k⟨µkνkλ⟩k⟨ρ⟩∇λuρ
]
δfks

= −2θχµνλr −∆µνλ
αβγ∇κχ

καβγ
r−1 −

3

7
∇⟨µ

(
m2χ

νλ⟩
r−1 − χ

νλ⟩
r+1

)
− 3χκ⟨µνr σλ⟩κ + 3χκ⟨µνr ωλ⟩κ

− 6

5
σ⟨µν

(
m2χλ⟩r − χλ⟩r+2

)
+ (r − 1)

[
σκρχ

κρµνλ
r−2 +

θ

3

(
m2χµνλr−2 − χµνλr

)
+

2

3

(
m2χ

κ⟨µν
r−2 − χκ⟨µνr

)
σλ⟩κ +

6

35
σ⟨µν

(
m4χ

λ⟩
r−2 − 2m2χλ⟩r + χ

λ⟩
r+2

) ]
. (D.32)

Combining the expressions, we find

χ̇⟨µνλ⟩
r − C

⟨µνλ⟩
r−1 =

6

35
σ⟨µν

[
m4(r − 1)χ

λ⟩
r−2 −m2(2r + 5)χλ⟩r + (r + 6)χ

λ⟩
r+2

]
+ ru̇κχ

κµνλ
r−1

+
3

7
u̇⟨µ
[
rm2χ

νλ⟩
r−1 − (r + 7)χ

νλ⟩
r+1

]
− 3

7
∇⟨µ

(
m2χ

νλ⟩
r−1 − χ

νλ⟩
r+1

)
+
θ

3

[
m2(r − 1)χµνλr−2 − (r + 5)χµνλr

]
+ (r − 1)χµνλρκr−2 σρκ −∆µνλ

αβγ∇κχ
αβγκ
r−1

+ 3χκ⟨µνr ωλ⟩κ +
1

3

[
2m2(r − 1)χ

κ⟨µν
r−2 − (2r + 7)χκ⟨µνr

]
σλ⟩κ . (D.33)

Upon specifying χ ≡ ψ, we obtain Eq. (6.80d).
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Momentum-rank four

Letting the comoving derivative act on the irreducible moment of tensor-rank four gives

χ̇⟨µνλρ⟩
r = ∆µνλρ

αβγδ

d

dτ

∫
dΓF (s)Erkk

⟨αkβkγkδ⟩δfks

= ∆µνλρ
αβγδ

[
ru̇κ

∫
dΓF (s)Er−1

k k⟨αkβkγkδ⟩k⟨κ⟩δfks +
∫

dΓF (s)Erk

(
d

dτ
k⟨αkβkγkδ⟩

)
δfks

+

∫
dΓF (s)Erkk

⟨αkβkγkδ⟩δḟks

]
. (D.34)

The first two terms give

∆µνλρ
αβγδru̇κ

∫
dΓF (s)Er−1

k k⟨αkβkγkδ⟩k⟨κ⟩δfks = ru̇κχ
κµνλρ
r−1 +

4

9
ru̇⟨µ

(
m2χ

νλρ⟩
r−1 − χ

νλρ⟩
r+1

)
(D.35)

and
∆µνλρ
αβγδ

∫
dΓF (s)Erk

(
d

dτ
k⟨αkβkγkδ⟩

)
δfks = −3u̇⟨µχνλρ⟩r+1 , (D.36)

respectively, while the Boltzmann equation lets the third term take the form∫
dΓF (s)Erkk

⟨µkνkλkρ⟩δḟk = Cµνλρr−1 −
∫

dΓF (s)Er−1
k k⟨µkνkλkρ⟩kκ∇κδfks , (D.37)

where we employed again that the equilibrium terms vanish. With the help of the identities (D.2) we
find

−
∫

dΓF (s)Er−1
k k⟨µkνkλkρ⟩k⟨κ⟩∇κδfks

= −∆µνλρ
αβγδ∇κ

[∫
dΓF (s)Er−1

k k⟨αkβkγkδ⟩k⟨κ⟩δfks

]
+∆µνλρ

αβγδ

∫
dΓF (s)k⟨κ⟩∇κ

(
Er−1

k k⟨αkβkγkδ⟩
)
δfks

= −θχµνλρr −∆µνλρ
αβγδ∇κχ

καβγδ
r−1 − 4

9
∇⟨µ

(
m2χ

νλρ⟩
r−1 − χ

νλρ⟩
r+1

)
+

∫
dΓF (s)k⟨κ⟩

[
Er−1

k ∆µνλρ
αβγδ∇κk⟨αkβkγkδ⟩ + (r − 1)Er−2

k k⟨µkνkλkρ⟩k⟨ξ⟩∇λuξ
]
δfks

= −7

3
θχµνλρr −∆µνλρ

αβγδ∇κχ
καβγδ
r−1 − 4

9
∇⟨µ

(
m2χ

νλρ⟩
r−1 − χ

νλρ⟩
r+1

)
− 4χκ⟨µνλr σρ⟩κ + 4χκ⟨µνλr ωρ⟩κ

− 12

7
σ⟨µν

(
m2χλρ⟩r − χλρ⟩r+2

)
+ (r − 1)

[
σκξχ

κξµνλρ
r−2 +

θ

3

(
m2χµνλρr−2 − χµνλρr

)
+

8

11

(
m2χ

κ⟨µνλ
r−2 − χκ⟨µνλr

)
σρ⟩κ +

4

21
σ⟨µν

(
m4χ

λρ⟩
r−2 − 2m2χλρ⟩r + χ

λρ⟩
r+2

) ]
. (D.38)

When putting these expressions together, we arrive at

χ̇⟨µνλρ⟩
r − C

⟨µνλρ⟩
r−1 =

4

21
σ⟨µν

[
m4(r − 1)χ

λρ⟩
r−2 −m2(2r + 7)χλρ⟩r + (r + 8)χ

λρ⟩
r+2

]
+ ru̇κχ

κµνλρ
r−1

+
4

9
u̇⟨µ
[
rm2χ

νλρ⟩
r−1 − (r + 9)χ

νλρ⟩
r+1

]
− 4

9
∇⟨µ

(
m2χ

νλρ⟩
r−1 − χ

νλρ⟩
r+1

)
+
θ

3

[
m2(r − 1)χµνλρr−2 − (r + 6)χµνλρr

]
+ (r − 1)χµνλρξκr−2 σξκ −∆µνλρ

αβγδ∇κχ
αβγδκ
r−1

+ 4χκ⟨µνλr ωρ⟩κ +
4

11

[
2m2(r − 1)χ

κ⟨µνλ
r−2 − (2r + 9)χκ⟨µνλr

]
σρ⟩κ , (D.39)

which yields Eq. (6.80e) when setting χ ≡ ψ.
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Appendix E

Calculations for second-order
hydrodynamics

In this appendix we will show how to arrive at the equations of dissipative relativistic second-order
hydrodynamics (6.156)–(6.161), and list the transport coefficients appearing therein.

E.1 Derivation of the hydrodynamic equations

In order to derive the hydrodynamic equations, we start from the equations of motion for the irreducible
moments and use the asymptotic matching conditions to rewrite the terms of second order as functions
of the hydrodynamic variables. Then, it is straightforward to obtain the final form of the second-order
equations through the inversion of the linearized collision matrix.

E.1.1 Energy-momentum tensor and particle four-current

The quantities appearing in the energy-momentum tensor and the particle four-current, i.e., the bulk
viscous pressure Π, the particle-diffusion current nµ, and the shear-stress tensor πµν , all couple with
certain contractions of moments of spin-rank two, as was discussed in the main text. Thus, we have
to evaluate the respective equations together, which we group by their transformation properties.
Explicitly, we have two types of scalar moments (ρr and pr) that can be matched to Π, three types of
vectorial moments (ρµr , pµr , and qµr ) that will play into the equation of motion for nµ, and four tensorial
moments (ρµνr , ψ⟨µν⟩

r , pµνr , and qµνr ) contributing to πµν .

Note that, beside the asymptotic matchings (6.139), (6.142), and (6.147), we need to express the
comoving derivatives of α0, β0, and uµ that appear in terms of second order in the moment equations.
For them, we employ the evolution equations (6.39) to first order in Kn and Re−1, giving

α̇0 ≃ Hθ , β̇0 ≃ Hθ , u̇µ ≃ Fµ

ε0 + P0
, (E.1)

where we introduced

H :=
J20(ε0 + P0)− J30n0

D20
, H :=

J10(ε0 + P0)− J20n0
D20

. (E.2)
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These relations can then be used to express the derivatives of any function F which depends on the
equilibrium distribution function as

∂µF ≃ uµθ
(
∂F

∂α0
H+

∂F

∂β0
H
)
+ Iµ

(
∂F

∂α0
+

1

h

∂F

∂β0

)
− β0
ε0 + P0

∂F

∂β0
Fµ . (E.3)

Here we defined the enthalpy per particle h := (ε0 + P0)/n0 and replaced the gradients of β0 via the
relation (6.41).

Scalars

First, we rewrite the moment equation (6.75a) by employing the asymptotic matching (6.139), yielding

τ̃Π,rΠ̇+
m2

3
Cr−1 = −m

2

3
α(0)
r θ− ℓ̃Πn,r∇µnµ− τ̃Πn,rnµFµ− δ̃ΠΠ,rΠθ−λ̃Πn,rnµIµ+λ̃Ππ,rπµνσµν . (E.4)

Here and in the following, the r-dependent coefficients are listed in Subsec. E.2.1. The second scalar
equation is given by the contraction of the moment equation (6.80c). Here, we have to employ the
asymptotic matching (6.147) for the moments of spin-rank two, as well as the expressions (6.150) for
their components parallel to uµ. Taking these together with Eqs. (6.153), all moments of second rank
in spin have to be replaced via the following rules:

ψµνr ≃ −
3

m2
Υ(00)
r Π

(
uµuν − 1

3
∆µν

)
+Υ(01)

r u(µnν) + T (20)
r0 πµν , (E.5a)

ψµν,λr ≃ Υ(11)
r nλ

(
uµuν − 1

3
∆µν

)
+Υ(12)

r u(µπν)λ − 1

m2
Υ(10)
r Πu(µ∆ν)λ +

3

5
T (11)
r0 n⟨µ∆ν⟩λ ,

(E.5b)

ψµν,λαr ≃ Υ(22)
r πλα

(
uµuν − 1

3
∆µν

)
+

3

5
Υ(21)
r u(µ∆ν)⟨λnα⟩

− 3

5m2
T (00)
r0 Π∆µν,λα +

12

7
T (22)
r0 ∆γδ∆

λα,γ⟨µπν⟩δ , (E.5c)

ψµν,λαβr ≃ 5

7
Υ(32)
r u(µ∆ν)⟨λπαβ⟩ +

3

7
T (13)
r0 ∆µν,γδ∆λαβ

γδρ n
ρ , (E.5d)

ψµν,λαβγr ≃ 5

9
T (24)
r0 ∆µν,ρσ∆λαβγ

ρσζη π
ζη . (E.5e)

All moments of spin-rank two and momentum-rank higher than four do not feature contributions of
first order in Knudsen and inverse Reynolds numbers. Then, the contraction of Eq. (6.80c) reads

τ̃pΠ,rΠ̇ +
m2

3
Cp,r−1 = −ℓ̃pΠn,r∇µnµ − τ̃pΠn,rnµFµ − δ̃pΠΠ,rΠθ − λ̃pΠn,rnµIµ + λ̃pΠπ,rπ

µνσµν , (E.6)

which (as expected) looks very similar to Eq. (E.4), with the difference that the first-order term ∼ θ
is absent. Upon inserting the form of the linearized collision terms Cr−1 and Cp,r−1 and inverting
the corresponding matrix [cf. Eq. (6.115)], we obtain Eq. (6.156) in the main text. The coefficients
appearing therein are listed in Subsec. E.2.2.

Vectors

Rewriting the moment equation (6.75b) with the asymptotic matching (6.139) gives

τ̃n,rṅ
⟨µ⟩ − C⟨µ⟩

r−1 = α(1)
r Iµ − τ̃n,rnνωνµ − δ̃nn,rnµθ − ℓ̃nΠ,r∇µΠ+ ℓ̃nπ,r∆

µν∇λπλν + τ̃nΠ,rΠF
µ

− τ̃nπ,rπµνFν − λ̃nn,rσµνnν + λ̃nΠ,rΠI
µ − λ̃nπ,rπµνIν , (E.7)
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where the coefficients are listed again in Subsec. E.2.1. The equations of motion for the moments
of spin-rank two that are relevant (namely pµr and qµr ) are obtained by contracting Eqs. (6.80b) and
(6.80d). They yield

τ̃pn,rṅ
⟨µ⟩ − Cµp,r−1 = −λ̃pnω,rnνωνµ − δ̃pnn,rnµθ − ℓ̃pnΠ,r∇µΠ+ ℓ̃pnπ,r∆

µν∇λπλν + τ̃pnΠ,rΠF
µ

− τ̃pnπ,rπµνFν − λ̃pnn,rσµνnν + λ̃pnΠ,rΠI
µ − λ̃pnπ,rπµνIν (E.8)

and

τ̃qn,rṅ
⟨µ⟩ − Cµq,r−1 = −λ̃qnω,rnνωνµ − δ̃qnn,rnµθ − ℓ̃qnΠ,r∇µΠ+ ℓ̃qnπ,r∆

µν∇λπλν + τ̃qnΠ,rΠF
µ

− τ̃qnπ,rπµνFν − λ̃qnn,rσµνnν + λ̃qnΠ,rΠI
µ − λ̃qnπ,rπµνIν , (E.9)

respectively. Writing the three equations above as one vector equation and inverting the collision
matrix (6.119) then gives Eq. (6.157), with the coefficients defined in Subsec. E.2.2.

Tensors

Applying the asymptotic matching (6.139) to the moment equation (6.75c) of energy-rank r gives

τ̃π,rπ̇
⟨µν⟩ − C⟨µν⟩

r−1 = 2α(2)
r σµν + 2τ̃π,rπλ

⟨µων⟩λ − δ̃ππ,rπµνθ − τ̃ππ,rπλ⟨µσν⟩λ + λ̃πΠ,rΠσ
µν

− τ̃πn,rn⟨µF ν⟩ + ℓ̃πn,r∇⟨µnν⟩ + λ̃πn,rn
⟨µIν⟩ . (E.10)

After applying the asymptotic matching (6.147), Eq. (6.80a) becomes

τ̃ψπ,rπ̇
⟨µν⟩ − C

⟨µν⟩
r−1 = λ̃ψπω,rπλ

⟨µων⟩λ − δ̃ψππ,rπµνθ − τ̃ψππ,rπλ⟨µσν⟩λ + λ̃ψπΠ,rΠσ
µν

− τ̃ψπn,rn⟨µF ν⟩ + ℓ̃ψπn,r∇⟨µnν⟩ + λ̃ψπn,rn
⟨µIν⟩ . (E.11)

In order to obtain the remaining two tensor equations, i.e., the equations of motion for pµνr and qµνr ,
we have to contract Eqs. (6.80c) and (6.80e) appropriately, which yield

τ̃pπ,rπ̇
⟨µν⟩ − Cµνp,r−1 = λ̃pπω,rπλ

⟨µων⟩λ − δ̃pππ,rπµνθ − τ̃pππ,rπλ⟨µσν⟩λ + λ̃pπΠ,rΠσ
µν

− τ̃pπn,rn⟨µF ν⟩ + ℓ̃pπn,r∇⟨µnν⟩ + λ̃pπn,rn
⟨µIν⟩ (E.12)

and

τ̃qπ,rπ̇
⟨µν⟩ − Cµνq,r−1 = λ̃qπω,rπλ

⟨µων⟩λ − δ̃qππ,rπµνθ − τ̃qππ,rπλ⟨µσν⟩λ + λ̃qπΠ,rΠσ
µν

− τ̃qπn,rn⟨µF ν⟩ + ℓ̃qπn,r∇⟨µnν⟩ + λ̃qπn,rn
⟨µIν⟩ . (E.13)

Then, after inverting the collision matrix (6.123), we obtain Eq. (6.158) in the main text.

E.1.2 Spin tensor

In the case of the spin tensor, there are two moments of axial-vector type (τ ⟨µ⟩r and tµr ), which have to
be treated together with the respective component ωµ0 of the spin potential. Similarly, one vectorial
moment wµr is determined together with κµ0 , whereas there is only one moment of tensor type tµνr
that does not couple to the spin potential. First, we have to express the moments that appear in the
second-order terms of Eqs. (6.78), i.e., we have to write down relations analogous to the ones in Eqs.
(E.5). Taking into account Eqs. (6.145) as well as the asymptotic matching (6.142), we find

τµr ≃ Q(10)
r0 pµ , (E.14a)

τµ,νr ≃ X (10)
r uµpν + X (12)

r uµqν +
1

2
ϵµναβuα

(
Q(11)
r0 wβ +Q(κ)

r κ0,β

)
, (E.14b)

τµ,νλr ≃ 3

5
Q(12)
r0 ∆µ⟨νqλ⟩ − 2

3
Q(22)
r0 tρ

⟨λϵν⟩µαρuα , (E.14c)

while the higher moments can be approximated as zero. We can then proceed in the same way as
shown before.
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Axial vectors

We have to start with the evolution equation for the magnetic component of the spin potential, ωµ0 ,
which reads

τ̃ωω̇
⟨µ⟩
0 − Cµω = K̃ωθθω

µ
0 + K̃ωθpθp

µ + K̃ωσσ
µνω0,ν + K̃ωσpσ

µνpν + K̃ωtt
µνων

+ ϵµναβuν

(
h̃ωκ∇ακ0,β + K̃ωIκ,rIακ0,β + K̃ωFκ,rFακ0,β

)
, (E.15)

where we defined

Cµω := −ωµ0 −
∑
n

γ
(0)
n

Γ(ω)
τµn −

∑
n

γ
(2)
n

Γ(ω)
tµn − β0ωµ , (E.16)

cf. Eq. (6.62b). After using the relations (E.14), we find from the moment equation (6.78a):

τ̃p,rṗ
⟨µ⟩ + τ̃pω,rω̇

⟨µ⟩
0 − C

⟨µ⟩
r−1 = K̃pθ,rθp

µ + K̃pθq,rθq
µ + K̃pθω,rθω

µ
0 + K̃pσ,rσ

µνpν + K̃pσq,rσ
µνqν

+ K̃pσω,rσ
µνω0,ν + ϵµναβuν

(
h̃pw,r∇αwβ + h̃pκ,r∇ακ0,β + K̃pIw,rIαwβ

+ K̃pFw,rFαwβ + K̃pIκ,rIακ0,β + K̃pFκ,rFακ0,β

)
. (E.17)

The moment equation (6.78c), after being contracted with ∆µλ, becomes

τ̃q,rq̇
⟨µ⟩ − Cα,µr−1α = K̃qθ,rθq

µ + K̃qθp,rθp
µ + K̃qσ,rσ

µνqν + K̃qσω,rσ
µνω0,ν

+ K̃qσp,rσ
µνpν + K̃qt,rt

µνων + ϵµναβuν

(
h̃qw,r∇αwβ + h̃qκ,r∇ακ0,β + K̃qIw,rIαwβ

+ K̃qFw,rFαwβ + K̃qIκ,rIακ0,β + K̃qFκ,rFακ0,β

)
. (E.18)

The r-dependent coefficients can be found as before in Subsec. E.2.1.

Note that in these equations there are no terms ∼ ωµνpν , ωµνqν , ωµνω0,ν . The reason for this lies in
the fact that up to second order we may replace pµ, qµ, and ωµ0 by their Navier-Stokes values, which
are proportional to ωµ, and we have ωµνων = 0. Similarly, there are no terms ∼ ϵ⟨µ⟩ναβωνακβ , since
we cannot have four linearly independent vectors orthogonal to uµ. Lastly, terms ∼ σµρtγ

ρϵνµδγuδ
vanish to second order since tµν ∼ σµν .

The inversion of the collision matrix (6.127) then produces Eqs. (6.159), with the transport coefficients
again given in Subsec. E.2.2.

Vectors

The first vector-valued quantity appearing in the spin tensor is the electric part of the spin potential
κµ0 , whose evolution equation reads

τ̃κκ̇
⟨µ⟩
0 − Cµκ = K̃κθθκ

µ
0 + K̃κσσ

µνκ0,ν + K̃κωω
µνκ0,ν + h̃κt∆

µ
λ∇νtνλ + K̃κF tt

µνFν

+ ϵµναβuν

(
h̃κω∇αω0,β + h̃κp∇αpβ + K̃κIωIαω0,β + K̃κFωFαω0,β + K̃κFpFαpβ

)
,

(E.19)

where we defined

Cµκ := −κµ0 −
∑
n

γ
(1)
n

Γ(κ)
wµn −

β0F
µ

ε0 + P0
+ Γ(I)Iµ , (E.20)
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cf. Eq. (6.62a). On the other hand, contracting Eq. (6.78b) with ϵµναβuν gives

τ̃w,rẇ
⟨µ⟩ + τ̃wκ,rκ̇

⟨µ⟩
0 − Cµw,r−1 = K̃wθ,rθw

µ + K̃wθκ,rθκ
µ
0 + K̃wσ,rσ

µνwν + K̃wσκ,rσ
µνκ0,ν

+ K̃wω,rω
µνwν + K̃wωκ,rω

µνκ0,ν + h̃wt,r∆
µ
λ∇νtνλ + K̃wIt,rt

µνIν

+ K̃wF t,rt
µνFν + ϵµναβuν

(
h̃wp,r∇αpβ + h̃wq,r∇αqβ + K̃wIω,rIαω0,β

+ K̃wIp,rIαpβ + K̃wIq,rIαqβ + K̃wFp,rFαpβ + K̃wFq,rFαqβ

)
.

(E.21)

Inverting the collision matrix (6.131), we find Eqs. (6.160).

Tensor

Contracting the moment equation (6.78c) with ∆µν
γδ ϵ

δαβρuρ yields

τ̃t,r ṫ
⟨µν⟩ − Cµνt,r−1 = K̃tθ,rθt

µν + h̃tw,r∇⟨µwν⟩ + h̃tκ,r∇⟨µκν⟩0 + K̃tIw,rI
⟨µwν⟩ + K̃tFw,rF

⟨µwν⟩

+ K̃tIκ,rI
⟨µκν⟩0 + K̃tFκ,rF

⟨µκν⟩0 + K̃tωω,rω
⟨µ
0 ω

ν⟩ + K̃tωp,rp
⟨µων⟩ + K̃tωq,rq

⟨µων⟩

+ σα
⟨µϵν⟩αβγuβ

(
K̃tσω,rω0,γ + K̃tσp,rpγ + K̃tσq,rqγ

)
, (E.22)

which, after the inversion of the collision term, gives Eq. (6.161) in the main text.

E.2 Transport coefficients

In this section, we list the transport coefficients appearing in the main text as well as in the first part
of this appendix. To obtain them, one has to perform the contractions of the various moment equations
as described in the previous section. The following contractions of irreducible tensors prove helpful in
performing these computations,

∆
µ1···µℓ−1λ
ν1···νℓ−1λ

=
2ℓ+ 1

2ℓ− 1
∆
µ1···µℓ−1
ν1···νℓ−1 , ∆µν

γδ∆
ζγ
αξ∆

δ
ζ
ξ
β =

7

12
∆µν
αβ , (E.23)

cf., e.g., Ref. [43] for the first identity.

E.2.1 Primary coefficients

To keep the presentation clear, we first list the r-dependent coefficients appearing in the moment
equations after performing the asymptotic matching, but before inverting the linearized collision terms.

Tµν : Scalars

The coefficients appearing in Eq. (E.4) read

τ̃Π,r := R(0)
r0 , (E.24a)

ℓ̃Πn,r :=
m2

3

(
G3r

D20
−R(1)

r−1,0

)
, (E.24b)

τ̃Πn,r :=
m2

3(ε0 + P0)

(
rR(1)

r−1,0 −
G3r

D20
+
∂R(1)

r−1,0

∂ lnβ0

)
, (E.24c)
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δ̃ΠΠ,r :=
∂R(0)

r0

∂α0
H+

∂R(0)
r0

∂β0
H+

r + 2

3
R(0)
r0 −

m2

3

[
G2r

D20
+ (r − 1)R(0)

r−2,0

]
, (E.24d)

λ̃Πn,r := −
m2

3

(
∂R(1)

r−1,0

∂α0
+

1

h

∂R(1)
r−1,0

∂β0

)
, (E.24e)

λ̃Ππ,r :=
m2

3

[
(1− r)R(2)

r−2,0 −
G2r

D20

]
. (E.24f)

The ones in Eq. (E.6) on the other hand are defined as

τ̃pΠ,r := T (00)
r0 , (E.25a)

ℓ̃pΠn,r := −
m2

3

[
T (13)
r−1,0 +

2

5

(
m2T (11)

r−1,0 − T
(11)
r+1,0

)]
, (E.25b)

τ̃pΠn,r :=
m2

3(ε0 + P0)

{
2

5

[
m2rT (11)

r−1,0 − (r + 5)T (11)
r+1,0

]
− 2Υ(21)

r + rT (13)
r−1,0

+
∂

∂ lnβ0

[
T (13)
r−1,0 +

2

5

(
m2T (11)

r−1,0 − T
(11)
r+1,0

)]}
, (E.25c)

δ̃pΠΠ,r :=
∂T (00)

r0

∂α0
H+

∂T (00)
r0

∂β0
H+

4

9

(
m2Υ

(10)
r−1 −Υ

(10)
r+1

)
− 1

3

[
m2(r − 1)T (00)

r−2,0 − (r + 4)T (00)
r0

]
,

(E.25d)

λ̃pΠn,r := −
m2

3

(
∂

∂α0
+

1

h

∂

∂β0

)[
2

5

(
m2T (11)

r−1,0 − T
(11)
r+1,0

)
+ T (13)

r−1,0

]
, (E.25e)

λ̃pΠπ,r :=
m2

3

{
4

5

(
m2Υ

(12)
r−1 −Υ

(12)
r+1

)
+ 2Υ

(32)
r−1 −

2

7

[
2m2(r − 1)T (22)

r−2,0 − (2r + 5)T (22)
r0

]
− 2

15

[
m4(r − 1)T (20)

r−2,0 −m2(2r + 3)T (20)
r0 + (r + 4)T (20)

r+2,0

]
− (r − 1)T (24)

r−2,0

}
(E.25f)

Nµ : Vectors

The quantities appearing in Eq. (E.7) read

τ̃n,r := R(1)
r0 , (E.26a)

δ̃nn,r :=
r + 3

3
R(1)
r0 −

r − 1

3
m2R(1)

r−2,0 +
∂R(1)

r0

∂α0
H+

∂R(1)
r0

∂β0
H , (E.26b)

ℓ̃nΠ,r :=
β0Jr+2,1

ε0 + P0
+

1

m2
R(0)
r+1,0 −R

(0)
r−1,0 , (E.26c)

ℓ̃nπ,r :=
β0Jr+2,1

ε0 + P0
−R(2)

r−1,0 , (E.26d)

τ̃nΠ,r :=
1

ε0 + P0

(
β0Jr+2,1

ε0 + P0
− rR(0)

r−1,0 +
r + 3

m2
R(0)
r+1,0 −

∂R(0)
r−1,0

∂ lnβ0
+

1

m2

∂R(0)
r+1,0

∂ lnβ0

)
, (E.26e)

τ̃nπ,r :=
1

ε0 + P0

(
β0Jr+2,1

ε0 + P0
− rR(2)

r−1,0 −
∂R(2)

r−1,0

∂ lnβ0

)
, (E.26f)

λ̃nn,r :=
1

5

[
(2r + 3)R(1)

r0 − 2(r − 1)m2R(1)
r−2,0

]
, (E.26g)

λ̃nΠ,r :=
∂R(0)

r−1,0

∂α0
+

1

h

∂R(0)
r−1,0

∂β0
− 1

m2

(
∂R(0)

r+1,0

∂α0
+

1

h

∂R(0)
r+1,0

∂β0

)
, (E.26h)

λ̃nπ,r :=
∂R(2)

r−1,0

∂α0
+

1

h

∂R(2)
r−1,0

∂β0
, (E.26i)
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whereas the ones in Eq. (E.8) are given by

τ̃pn,r := T (11)
r0 , (E.27a)

λ̃pnω,r := −
1

2
T (11)
r0 +

2

3
Υ

(21)
r−1 +

5

9

(
m2Υ

(01)
r−1 −Υ

(01)
r+1

)
, (E.27b)

δ̃pnn,r :=

(
H ∂

∂α0
+H ∂

∂β0

)
T (11)
r0

− 1

3

[
(r − 1)m2T (11)

r−2,0 − (r + 3)T (11)
r0 − 1

3
Υ

(21)
r−1 −

10

9

(
m2Υ

(01)
r−1 −Υ

(01)
r+1

)]
, (E.27c)

ℓ̃pnΠ,r := −
1

m2
T (00)
r−1,0 , (E.27d)

ℓ̃pnπ,r :=
1

3

(
T (20)
r+1,0 −m2T (20)

r−1,0

)
− T (22)

r−1,0 , (E.27e)

τ̃pnΠ,r :=
1

m2(ε0 + P0)

(
4Υ(10)

r − rT (00)
r−1,0 −

∂T (00)
r−1,0

∂ lnβ0

)
, (E.27f)

τ̃pnπ,r :=
1

ε0 + P0

{
Υ(12)
r +

1

3

[
(r + 3)T (20)

r+1,0 −m2rT (20)
r−1,0

]
+

1

3

∂

∂ lnβ0

(
T (20)
r+1,0 −m2T (20)

r−1,0 − 3T (22)
r−1,0

)
− rT (22)

r−1,0

}
, (E.27g)

λ̃pnn,r :=
1

9

(
m2Υ

(01)
r−1 −Υ

(01)
r+1

)
+

23

15
Υ

(21)
r−1 −

3

5
(r − 1)T (13)

r−2,0

− 1

50

[
(2r − 2)m2T (11)

r−2,0 − (2r + 3)T (11)
r0

]
, (E.27h)

λ̃pnΠ,r :=
1

m2

(
∂

∂α0
+

1

h

∂

∂β0

)
T (00)
r−1,0 , (E.27i)

λ̃pnπ,r :=
1

3

(
∂

∂α0
+

1

h

∂

∂β0

)(
m2T (20)

r−1,0 − T
(20)
r+1,0 + 3T (22)

r−1,0

)
. (E.27j)

Interestingly, due to the contraction there now appears a nontrivial transport coefficient coupling nµ
and ωµν . The coefficients in Eq. (E.9) are

τ̃qn,r := T (13)
r0 , (E.28a)

λ̃qnω,r :=
3

5
T (13)
r0 , (E.28b)

δ̃qnn,r :=

(
H ∂

∂α0
+H ∂

∂β0

)
T (13)
r0 +

1

3

[
(r + 5)T (13)

r0 −m2(r − 1)T (13)
r−2,0

]
, (E.28c)

ℓ̃qnΠ,r :=
3

5m2

(
T (00)
r+1,0 −m2T (00)

r−1,0

)
, (E.28d)

ℓ̃qnπ,r :=
6

35

(
T (22)
r+1,0 −m2T (22)

r−1,0

)
− T (24)

r−1,0 , (E.28e)

τ̃qnΠ,r :=
3

5m2(ε0 + P0)

[
(r + 7)T (00)

r+1,0 −m2rT (00)
r−1,0 −

∂

∂ lnβ0

(
m2T (00)

r−1,0 − T
(00)
r+1,0

)]
, (E.28f)

τ̃qnπ,r :=
1

ε0 + P0

{
6

35

[
(r + 7)T (22)

r+1,0 −m2rT (22)
r−1,0

]
− 6

35

∂

∂ lnβ0

(
m2T (22)

r−1,0 − T
(22)
r+1,0

)
− rT (24)

r−1,0 −
∂T (24)

r−1,0

∂ lnβ0

}
, (E.28g)

λ̃qnn,r :=
53

225

[
(2r + 7)T (13)

r0 −m2(2r − 2)T (13)
r−2,0

]
− 18

125

[
m4(r − 1)T (11)

r−2,0 −m2(2r + 5)T (11)
r0 + (r + 6)T (11)

r+2,0

]
, (E.28h)

λ̃qnΠ,r :=
3

5m2

(
∂

∂α0
+

1

h

∂

∂β0

)(
m2T (00)

r−1,0 − T
(00)
r+1,0

)
, (E.28i)
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λ̃qnπ,r :=

(
∂

∂α0
+

1

h

∂

∂β0

)[
6

35

(
m2T (22)

r−1,0 − T
(22)
r+1,0

)
+ T (24)

r−1,0

]
. (E.28j)

Tµν : Tensors

The coefficients in Eq. (E.10) are defined as

τ̃π,r := R(2)
r0 , (E.29a)

δ̃ππ,r :=
1

3

[
(r + 4)R(2)

r0 −m2(r − 1)R(2)
r−2,0

]
+
∂R(2)

r0

∂α0
H+

∂R(2)
r0

∂β0
H , (E.29b)

τ̃ππ,r :=
2

7

[
(2r + 5)R(2)

r0 − 2m2(r − 1)R(2)
r−2,0

]
, (E.29c)

λ̃πΠ,r := −
2

5m2

[
(r + 4)R(0)

r+2,0 − (2r + 3)m2R(0)
r0 + (r − 1)m4R(0)

r−2,0

]
, (E.29d)

τ̃πn,r :=
2

5(ε0 + P0)

[
(r + 5)R(1)

r+1,0 − rm2R(1)
r−1,0 +

∂R(1)
r+1,0

∂ lnβ0
−m2

∂R(1)
r−1,0

∂ lnβ0

]
, (E.29e)

ℓ̃πn,r :=
2

5

(
R(1)
r+1,0 −m2R(1)

r−1,0

)
, (E.29f)

λ̃πn,r :=
2

5

[
∂R(1)

r+1,0

∂α0
+

1

h

∂R(1)
r+1,0

∂β0
−m2

(
∂R(1)

r−1,0

∂α0
+

1

h

∂R(1)
r−1,0

∂β0

)]
. (E.29g)

The terms appearing in Eq. (E.11) on the other hand read

τ̃ψπ,r := T (20)
r0 , (E.30a)

λ̃ψπω,r := 2Υ
(12)
r−1 , (E.30b)

δ̃ψππ,r :=
1

3

[
(r + 2)T (20)

r0 −m2(r − 1)T (20)
r−2,0 + 2Υ

(12)
r−1

]
+H∂T

(20)
r0

∂α0
+H∂T

(20)
r0

∂β0
, (E.30c)

τ̃ψππ,r := 2Υ
(12)
r−1 −

12

7
(r − 1)T (22)

r−2,0 , (E.30d)

λ̃ψπΠ,r :=
2

m
Υ

(10)
r−1 −

3

5m2
(r − 1)T (00)

r−2,0 , (E.30e)

τ̃ψπn,r := −
3

5(ε0 + P0)

(
∂T (11)

r−1,0

∂ lnβ0
+ rT (11)

r−1,0

)
+

2

ε0 + P0
Υ(01)
r , (E.30f)

ℓ̃ψπn,r := −
3

5
T (11)
r−1,0 , (E.30g)

λ̃ψπn,r := −
3

5

∂T (11)
r−1,0

∂α0
− 1

h

3

5

∂T (11)
r−1,0

∂β0
, (E.30h)

whereas the ones in Eq. (E.12) are given by

τ̃pπ,r := T (22)
r0 , (E.31a)

λ̃pπω,r := T (22)
r0 , (E.31b)

δ̃pππ,r :=

(
H ∂

∂α0
+H ∂

∂β0

)
T (22)
r0 − 1

3

[
m2(r − 1)T (22)

r−2,0 − (r + 4)T (22)
r0

]
, (E.31c)

τ̃pππ,r :=
3

49

[
2m2(r − 1)T (22)

r−2,0 − (2r + 5)T (22)
r0

]
− (r − 1)T (24)

r−2,0

− 2

15

[
m4(r − 1)T (20)

r−2,0 −m2(2r + 3)T (20)
r0 + (r + 4)T (20)

r+2,0

]
, (E.31d)

λ̃pπΠ,r :=
7

15m2

(
m2Υ

(10)
r−1 −Υ

(10)
r+1

)
, (E.31e)
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τ̃pπn,r :=
1

ε0 + P0

{
7

50

[
(r + 5)T (11)

r+1,0 −m2rT (11)
r−1,0

]
− 1

10
rT (13)
r−1,0

− ∂

∂ lnβ0

[
7

50

(
m2T (11)

r−1,0 − T
(11)
r+1,0

)
+

1

10
T (13)
r−1,0

]}
, (E.31f)

ℓ̃pπn,r :=
7

50

(
T (11)
r+1,0 −m2T (11)

r−1,0

)
− 1

10
T (13)
r−1,0 , (E.31g)

λ̃pπn,r := −
(

∂

∂α0
+

1

h

∂

∂β0

)[
7

50

(
m2T (11)

r−1,0 − T
(11)
r+1,0

)
+

1

10
T (13)
r−1,0

]
. (E.31h)

Lastly, the coefficients in Eq. (E.13) are defined as

τ̃qπ,r := T (24)
r0 , (E.32a)

λ̃qπω,r := −
10

3
T (24)
r0 , (E.32b)

δ̃qππ,r := H
∂T (24)

r0

∂α0
+H∂T

(24)
r0

∂β0
− 1

3

[
m2(r − 1)T (24)

r−2,0 − (r + 6)T (24)
r0

]
, (E.32c)

τ̃qππ,r :=
10

49

[
(2r + 9)T (24)

r0 −m2(2r − 2)T (24)
r−2,0

]
− 288

1715

[
m4(r − 1)T (22)

r−2,0 −m2(2r + 7)T (22)
r0 + (r + 8)T (22)

r+2,0

]
, (E.32d)

λ̃qπΠ,r := −
36

175

[
m4(r − 1)T (00)

r−2,0 −m2(2r + 7)T (00)
r0 + (r + 8)T (00)

r+2,0

]
, (E.32e)

τ̃qπn,r :=
12

35(ε0 + P0)

[
(r + 9)T (13)

r+1,0 −m2rT (13)
r−1,0 −

∂

∂ lnβ0

(
m2T (13)

r−1,0 − T
(13)
r+1,0

)]
, (E.32f)

ℓ̃qπn,r := −
12

35

(
m2T (13)

r−1,0 − T
(13)
r+1,0

)
, (E.32g)

λ̃qπn,r := −
(

∂

∂α0
+

1

h

∂

∂β0

)(
m2T (13)

r−1,0 − T
(13)
r+1,0

)
. (E.32h)

This concludes the list of coefficients appearing in the equations for the components of the energy-
momentum tensor and particle four-current.

Sλµν : Axial vectors

First, we list the coefficients appearing in Eq. (E.15),

τ̃ω :=
2σ2ℏ
mgΓ(ω)

(J30 − J31) , (E.33a)

K̃ωθ := −
2σ2ℏ
mgΓ(ω)

[
(K30 −K31)H− (K40 −K41)H+

(
J30 −

1

3
J31

)]
, (E.33b)

K̃ωθp := − σm2

3Γ(ω)
, (E.33c)

K̃ωσ :=
2σ2ℏ
mgΓ(ω)

J31 , (E.33d)

K̃ωσp :=
σm2

2Γ(ω)
, (E.33e)

K̃ωt :=
σ

Γ(ω)
, (E.33f)

h̃ωκ := − 2σ2ℏ
mgΓ(ω)

J31 , (E.33g)

K̃ωIκ,r := −
2σ2ℏ
mgΓ(ω)

(
K31 −

1

h
K41

)
, (E.33h)
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K̃ωFκ,r := −
2σ2ℏ
mgΓ(ω)

1

ε0 + P0
(β0K41 − 3J31) . (E.33i)

The quantities appearing in Eq. (E.17) read

τ̃p,r := Q(10)
r0 , (E.34a)

τ̃pω,r := −
2σℏ
gm

Jr+1,0 , (E.34b)

K̃pθ,r := −
1

3

[
(r + 2)Q(10)

r0 −m2(r − 1)Q(10)
r−2,0 + X

(10)
r−1

]
−
(
H ∂

∂α0
+H ∂

∂β0

)
Q(10)
r0 , (E.34c)

K̃pθq,r := −
1

3
X (12)
r−1 , (E.34d)

K̃pθω,r :=
2σℏ
gm

[
Kr+1,0H−Kr+2,0H+ Jr+1,0 +

(
r − 2

3

)
Jr+1,1

]
, (E.34e)

K̃pσ,r := −X (10)
r−1 , (E.34f)

K̃pσq,r := −X (12)
r−1 + (r − 1)

3

5
Q(12)
r−2,0 , (E.34g)

K̃pσω,r :=
2σℏ
gm

Jr+1,1 , (E.34h)

h̃pw,r :=
1

2
Q(11)
r−1,0 , (E.34i)

h̃pκ,r :=
1

2
Q(κ)
r−1,0 +

2σℏ
gm

Jr+1,1 , (E.34j)

K̃pIw,r :=
1

2

(
∂

∂α0
+

1

h

∂

∂β0

)
Q(11)
r−1,0 , (E.34k)

K̃pFw,r := −
1

ε0 + P0

(
1

2

∂Q(11)
r−1,0

∂ lnβ0
+
r

2
Q(11)
r0

)
, (E.34l)

K̃pIκ,r :=
1

2

(
∂

∂α0
+

1

h

∂

∂β0

)
Q(κ)
r−1,0 +

2σℏ
gm

(
Kr+1,1 −

1

h
Kr+2,1

)
, (E.34m)

K̃pFκ,r :=
1

ε0 + P0

(
−1

2

∂Q(κ)
r−1,0

∂ lnβ0
− r

2
Q(κ)
r0 +

2σℏ
gm

Jr+1,0

)
. (E.34n)

Similarly, the coefficients in Eq. (E.18) are defined as

τ̃q,r := Q(12)
r0 , (E.35a)

K̃qθ,r :=
2

9

(
X (12)
r+1 −m2X (12)

r−1

)
+

1

3

[
(r − 1)m2Q(12)

r−2,0 − (r + 4)Q(12)
r0

]
−
(
H ∂

∂α0
+H ∂

∂β0

)
Q(12)
r0 ,

(E.35b)

K̃qθp,r :=
2

9

(
X (10)
r+1 −m2X (10)

r−1

)
, (E.35c)

K̃qσ,r :=
1

10

[
2(r − 1)m2Q(12)

r−2,0 − (2r + 5)Q(12)
r0

]
+

1

15

(
X (12)
r+1 −m2X (12)

r−1

)
, (E.35d)

K̃qσω,r := −
4σℏ
gm

β0Kr+4,2 , (E.35e)

K̃qσp,r :=
2

15

[
(r − 1)m4Q(10)

r−2,0 − (2r + 3)m2Q(10)
r0 + (r + 4)Q(10)

r+2,0

]
+

1

15

(
X (10)
r+1 −m2X (10)

r−1

)
,

(E.35f)

K̃qt,r := −
10

9
Q(22)
r0 , (E.35g)

h̃qw,r :=
1

6

(
Q(11)
r+1,0 −m2Q(11)

r−1,0

)
, (E.35h)

h̃qκ,r :=
1

6

(
Q(κ)
r+1 −m2Q(κ)

r−1

)
+

10

3

σℏ
gm

Kr+3,2 , (E.35i)
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K̃qIw,r :=
1

6

(
∂

∂α0
+

1

h

∂

∂β0

)(
Q(11)
r+1,0 −m2Q(11)

r−1,0

)
, (E.35j)

K̃qFw,r :=
1

ε0 + P0

1

6

[
rm2Q(11)

r−1,0 − (r + 5)Q(11)
r+1,0 −

∂

∂ lnβ0

(
Q(11)
r+1,0 −m2Q(11)

r−1,0

)]
, (E.35k)

K̃qIκ,r :=
1

6

(
∂

∂α0
+

1

h

∂

∂β0

)(
Q(κ)
r+1 −m2Q(κ)

r−1

)
+

10

3

σℏ
gm

(
Kr+3,2 −

1

h
Kr+4,2

)
, (E.35l)

K̃qFκ,r :=
1

ε0 + P0

1

6

[
rm2Q(κ)

r−1 − (r + 5)Q(κ)
r+1 −

∂

∂ lnβ0

(
Q(κ)
r+1 −m2Q(κ)

r−1

)]
. (E.35m)

Sλµν : Vectors

The coefficients that appear in Eq. (E.19) are given by

τ̃κ :=
4σ2ℏ
gmΓ(κ)

J31 , (E.36a)

K̃κθ := −
4σ2ℏ
gmΓ(κ)

(
K31H−K41H+

4

3
J31

)
, (E.36b)

K̃κσ :=
2σ2ℏ
gmΓ(κ)

J31 , (E.36c)

K̃κω :=
2σ2ℏ
gmΓ(κ)

J31 , (E.36d)

h̃κt := −
σ

Γ(κ)
, (E.36e)

K̃κF t :=
σ

Γ(κ)(ε0 + P0)
, (E.36f)

h̃κω :=
2σ2ℏ
gmΓ(κ)

J31 , (E.36g)

h̃κp :=
σm2

2Γ(κ)
, (E.36h)

K̃κIω :=
2σ2ℏ
gmΓ(κ)

(
K31 −

1

h
K41

)
, (E.36i)

K̃κFω :=
2σ2ℏ
gmΓ(κ)

1

ε0 + P0
(β0K41 − J30) , (E.36j)

K̃κFp := − σm2

2Γ(κ)(ε0 + P0)
. (E.36k)

On the other hand, the coefficients in Eq. (E.21) are

τ̃w,r := Q(11)
r0 , (E.37a)

τ̃wκ,r := Q(κ)
r +

4σℏ
gm

Jr+2,1 , (E.37b)

K̃wθ,r :=
1

3

[
m2(r − 1)Q(11)

r−2,0 − (r + 3)Q(11)
r0

]
−
(
H ∂

∂α0
+H ∂

∂β0

)
Q(11)
r0 , (E.37c)

K̃wθκ,r := −
4σℏ
gm

(
Kr+2,1H−Kr+3,1H+

5

3
β0Kr+3,2 −

1

3
Jr+2,1

)
−
(
H ∂

∂α0
+H ∂

∂β0

)
Q(κ)
r

+
1

3

[
m2(r − 1)Q(κ)

r−2 − (r + 3)Q(κ)
r

]
, (E.37d)

K̃wσ,r := −
1

10

[
2m2(r − 1)Q(11)

r−2,0 − (2r + 3)Q(11)
r0

]
, (E.37e)

K̃wσκ,r :=
2σℏ
gm

(2β0Kr+3,2 − Jr+2,1)−
1

10

[
2m2(r − 1)Q(κ)

r−2 − (2r + 3)Q(κ)
r

]
, (E.37f)
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K̃wω,r :=
1

2
Q(11)
r0 , (E.37g)

K̃wωκ,r :=
1

2
Q(κ)
r +

2σℏ
gm

Jr+2,1 , (E.37h)

h̃wt,r := −Q(22)
r−1,0 , (E.37i)

K̃wIt,r := −
(

∂

∂α0
+

1

h

∂

∂β0

)
Q(22)
r−1,0 , (E.37j)

K̃wF t,r :=
1

ε0 + P0

(
rQ(22)

r−1,0 +
∂

∂ lnβ0
Q(22)
r−1,0

)
, (E.37k)

h̃wp,r :=
1

3

(
m2Q(10)

r−1,0 −Q
(10)
r+1,0

)
, (E.37l)

h̃wq,r := −
1

2
Q(12)
r−1,0 , (E.37m)

K̃wIω,r :=
2σℏ
gm

(
Kr+2,1 −

1

h
Kr+3,1

)
, (E.37n)

K̃wIp,r :=
1

3

(
∂

∂α0
+

1

h

∂

∂β0

)(
m2Q(10)

r−1,0 −Q
(10)
r+1,0

)
, (E.37o)

K̃wIq,r := −
1

2

(
∂

∂α0
+

1

h

∂

∂β0

)
Q(12)
r−1,0 , (E.37p)

K̃wFp,r := −
1

3(ε0 + P0)

[
m2rQ(10)

r−1,0 − (r + 3)Q(10)
r+1,0 +

∂

∂ lnβ0

(
m2Q(10)

r−1,0 −Q
(10)
r+1,0

)]
, (E.37q)

K̃wFq,r :=
1

2(ε0 + P0)

(
rQ(12)

r−1,0 +
∂

∂ lnβ0
Q(12)
r−1,0

)
. (E.37r)

Sλµν : Tensor

In Eq. (E.22), the following coefficients were introduced,

τ̃t,r := Q(22)
r0 , (E.38a)

K̃tθ,r :=
1

3

[
m2(r − 1)Q(22)

r−2,0 − (r + 4)Q(22)
r0

]
−
(
H ∂

∂α0
+H ∂

∂β0

)
Q(22)
r0 , (E.38b)

h̃tw,r :=
3

10

(
Q(11)
r+1,0 −m2Q(11)

r−1,0

)
, (E.38c)

h̃tκ,r :=
3

10

(
Q(κ)
r+1 −m2Q(κ)

r−1

)
, (E.38d)

K̃tIw,r :=
3

10

(
∂

∂α0
+

1

h

∂

∂β0

)(
Q(11)
r+1,0 −m2Q(11)

r−1,0

)
, (E.38e)

K̃tFw,r :=
3

10(ε0 + P0)

[
rm2Q(11)

r−1,0 − (r + 5)Q(11)
r+1,0 −

∂

∂ lnβ0

(
Q(11)
r+1,0 −m2Q(11)

r−1,0

)]
, (E.38f)

K̃tIκ,r :=
3

10

(
∂

∂α0
+

1

h

∂

∂β0

)(
Q(11)
r+1,0 −m2Q(11)

r−1,0

)
+

6σℏ
gm

(
Kr+3,2 −

1

h
Kr+4,2

)
, (E.38g)

K̃tFκ,r :=
3

10(ε0 + P0)

[
rm2Q(κ)

r−1 − (r + 5)Q(κ)
r+1 −

∂

∂ lnβ0

(
Q(κ)
r+1 −m2Q(κ)

r−1

)]
, (E.38h)

K̃tωω,r :=
6σℏ
gm

Kr+3,2 , (E.38i)

K̃tωp,r :=
3

5

(
X (10)
r+1 −m2X (10)

r−1

)
, (E.38j)

K̃tωq,r :=
3

5

(
X (12)
r+1 −m2X (12)

r−1

)
+

9

10
Q(12)
r0 , (E.38k)
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K̃tσω,r := −
4σℏ
gm

β0Kr+4,2 +
6σℏ
gm

Kr+3,2 , (E.38l)

K̃tσp,r := −
1

5

(
X (10)
r+1 −m2X (10)

r−1

)
+

2

15

[
m4(r − 1)Q(10)

r−2,0 − (2r + 3)m2Q(10)
r0 + (r + 4)Q(10)

r+2,0

]
,

(E.38m)

K̃tσq,r := −
1

5

(
X (12)
r+1 −m2X (12)

r−1

)
− 1

10

[
2(r − 1)m2Q(12)

r−2,0 − (2r + 5)Q(12)
r0

]
. (E.38n)

E.2.2 Total coefficients

After inverting the linearized collision terms, the transport coefficients appearing in Eqs. (6.156)–(6.161)
are simply given by weighted sums of the r-dependent coefficients appearing in the previous subsection.

Components of Tµν and Nµ

The second-order coefficients in Eq. (6.156) are given by

τΠ :=
∑
r

(
τ
(ρ)
S,0r τ̃Π,r + τ

(ρp)
S,0r τ̃pΠ,r

)
, (E.39a)

ℓΠn :=
∑
r

(
τ
(ρ)
S,0r ℓ̃Πn,r + τ

(ρp)
S,0r ℓ̃pΠn,r

)
, (E.39b)

τΠn :=
∑
r

(
τ
(ρ)
S,0r τ̃Πn,r + τ

(ρp)
S,0r τ̃pΠn,r

)
, (E.39c)

δΠΠ :=
∑
r

(
τ
(ρ)
S,0r δ̃ΠΠ,r + τ

(ρp)
S,0r δ̃pΠΠ,r

)
, (E.39d)

λΠn :=
∑
r

(
τ
(ρ)
S,0rλ̃Πn,r + τ

(ρp)
S,0r λ̃pΠn,r

)
, (E.39e)

λΠπ :=
∑
r

(
τ
(ρ)
S,0rλ̃Ππ,r + τ

(ρp)
S,0r λ̃pΠπ,r

)
. (E.39f)

The first contribution denotes the case where there is no tensor polarization, while the second terms
give (presumably small) corrections. Similarly, the second-order transport coefficients in Eq. (6.157)
read

τn :=
∑
r

(
τ
(ρ)
V,0r τ̃n,r + τ

(ρp)
V,0r τ̃pn,r + τ

(ρq)
V,0r τ̃qn,r

)
, (E.40a)

λnω :=
∑
r

(
τ
(ρ)
V,0r + τ

(ρp)
V,0r λ̃pnω,r + τ

(ρq)
V,0rλ̃qnω,r

)
, (E.40b)

δnn :=
∑
r

(
τ
(ρ)
V,0r δ̃nn,r + τ

(ρp)
V,0r δ̃pnn,r + τ

(ρq)
V,0r δ̃qnn,r

)
, (E.40c)

ℓnΠ :=
∑
r

(
τ
(ρ)
V,0r ℓ̃nΠ,r + τ

(ρp)
V,0r ℓ̃pnΠ,r + τ

(ρq)
V,0r ℓ̃qnΠ,r

)
, (E.40d)

ℓnπ :=
∑
r

(
τ
(ρ)
V,0r ℓ̃nπ,r + τ

(ρp)
V,0r ℓ̃pnπ,r + τ

(ρq)
V,0r ℓ̃qnπ,r

)
, (E.40e)

τnΠ :=
∑
r

(
τ
(ρ)
V,0r τ̃nΠ,r + τ

(ρp)
V,0r τ̃pnΠ,r + τ

(ρq)
V,0r τ̃qnΠ,r

)
, (E.40f)

τnπ :=
∑
r

(
τ
(ρ)
V,0r τ̃nπ,r + τ

(ρp)
V,0r τ̃pnπ,r + τ

(ρq)
V,0r τ̃qnπ,r

)
, (E.40g)

λnn :=
∑
r

(
τ
(ρ)
V,0rλ̃nn,r + τ

(ρp)
V,0r λ̃pnn,r + τ

(ρq)
V,0rλ̃qnn,r

)
, (E.40h)
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λnΠ :=
∑
r

(
τ
(ρ)
V,0rλ̃nΠ,r + τ

(ρp)
V,0r λ̃pnΠ,r + τ

(ρq)
V,0rλ̃qnΠ,r

)
, (E.40i)

λnπ :=
∑
r

(
τ
(ρ)
V,0rλ̃nπ,r + τ

(ρp)
V,0r λ̃pnπ,r + τ

(ρq)
V,0rλ̃qnπ,r

)
. (E.40j)

Finally, the second-order transport coefficients appearing in the equation of motion for the shear-stress
tensor (6.158) are defined as

τπ :=
∑
r

(
τ
(ρ)
T,0r τ̃π,r + τ

(ρψ)
T,0r τ̃ψπ,r + τ

(ρp)
T,0r τ̃pπ,r + τ

(ρq)
T,0r τ̃qπ,r

)
, (E.41a)

λπω :=
∑
r

(
2τ

(ρ)
T,0r + τ

(ρψ)
T,0r λ̃ψπω,r + τ

(ρp)
T,0rλ̃pπω,r + τ

(ρq)
T,0rλ̃qπω,r

)
, (E.41b)

δππ :=
∑
r

(
τ
(ρ)
T,0r δ̃ππ,r + τ

(ρψ)
T,0r δ̃ψππ,r + τ

(ρp)
T,0r δ̃pππ,r + τ

(ρq)
T,0r δ̃qππ,r

)
, (E.41c)

τππ :=
∑
r

(
τ
(ρ)
T,0r τ̃ππ,r + τ

(ρψ)
T,0r τ̃ψππ,r + τ

(ρp)
T,0r τ̃pππ,r + τ

(ρq)
T,0r τ̃qππ,r

)
, (E.41d)

λπΠ :=
∑
r

(
τ
(ρ)
T,0rλ̃πΠ,r + τ

(ρψ)
T,0r λ̃ψπΠ,r + τ

(ρp)
T,0rλ̃pπΠ,r + τ

(ρq)
T,0rλ̃qπΠ,r

)
, (E.41e)

τπn :=
∑
r

(
τ
(ρ)
T,0r τ̃πn,r + τ

(ρψ)
T,0r τ̃ψπn,r + τ

(ρp)
T,0r τ̃pπn,r + τ

(ρq)
T,0r τ̃qπn,r

)
, (E.41f)

ℓπn :=
∑
r

(
τ
(ρ)
T,0r ℓ̃πn,r + τ

(ρψ)
T,0r ℓ̃ψπn,r + τ

(ρp)
T,0r ℓ̃pπn,r + τ

(ρq)
T,0r ℓ̃qπn,r

)
, (E.41g)

λπn :=
∑
r

(
τ
(ρ)
T,0rλ̃πn,r + τ

(ρψ)
T,0r λ̃ψπn,r + τ

(ρp)
T,0rλ̃pπn,r + τ

(ρq)
T,0rλ̃qπn,r

)
. (E.41h)

Components of Sλµν

We now turn to the transport coefficients that are present in the equations of motion for the components
of the spin tensor.

The coefficients in Eq. (6.159a) read

τω := T
(ω)
A τ̃ω +

∑
r

T
(ωτ)
A,r τ̃pω,r , (E.42a)

τωp :=
∑
r

T
(ωτ)
A,r τ̃p,r , (E.42b)

τωq :=
∑
r

T
(ωt)
A,r τ̃q,r , (E.42c)

Kωθ := T
(ω)
A K̃ωθ +

∑
r

T
(ωτ)
A,r K̃pθω,r , (E.42d)

Kωθp := T
(ω)
A K̃ωθp +

∑
r

(
T
(ωτ)
A,r K̃pθ,r + T

(ωt)
A,r K̃qθp,r

)
, (E.42e)

Kωθq :=
∑
r

(
T
(ωτ)
A,r K̃pθq,r + T

(ωt)
A,r K̃qθ,r

)
, (E.42f)

Kωσ := T
(ω)
A K̃ωσ +

∑
r

(
T
(ωτ)
A,r K̃pσω,r + T

(ωt)
A,r K̃qσω,r

)
, (E.42g)

Kωσp := T
(ω)
A K̃ωσp +

∑
r

(
T
(ωτ)
A,r K̃pσ,r + T

(ωt)
A,r K̃qσp,r

)
, (E.42h)

Kωσq :=
∑
r

(
T
(ωτ)
A,r K̃pσq,r + T

(ωt)
A,r K̃qσ,r

)
, (E.42i)
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Kωt := T
(ω)
A K̃ωt +

∑
r

T
(ωt)
A,r K̃qt,r , (E.42j)

hωw :=
∑
r

(
T
(ωτ)
A,r h̃pw,r + T

(ωt)
A,r h̃qw,r

)
, (E.42k)

hωκ := T
(ω)
A h̃ωκ +

∑
r

(
T
(ωτ)
A,r h̃pκ,r + T

(ωt)
A,r h̃qκ,r

)
, (E.42l)

KωIw :=
∑
r

(
T
(ωτ)
A,r K̃pIw,r + T

(ωt)
A,r K̃qIw,r

)
, (E.42m)

KωFw :=
∑
r

(
T
(ωτ)
A,r K̃pFw,r + T

(ωt)
A,r K̃qFw,r

)
, (E.42n)

KωIκ := T
(ω)
A K̃ωIκ +

∑
r

(
T
(ωτ)
A,r K̃pIκ,r + T

(ωt)
A,r K̃qIκ,r

)
, (E.42o)

KωFκ := T
(ω)
A K̃ωFκ +

∑
r

(
T
(ωτ)
A,r K̃pFκ,r + T

(ωt)
A,r K̃qFκ,r

)
. (E.42p)

Here, there are no contributions from moments of other spin ranks. However, the quantities transforming
as axial vectors (ωµ, pµ, and qµ) couple to each other, as can be seen in the transport coefficients.
Similarly, the ones in Eq. (6.159b) are given by

τp :=
∑
r

T
(τ)
A,0r τ̃p,r , (E.43a)

τpq :=
∑
r

T
(τt)
A,0r τ̃q,r , (E.43b)

τpω := T
(τω)
A,0 τ̃ω +

∑
r

T
(τ)
A,0r τ̃pω,r , (E.43c)

Kpθ := T
(τω)
A,0 K̃ωθp +

∑
r

(
T
(τ)
A,0rK̃pθ,r + T

(τt)
A,0rK̃qθp,r

)
, (E.43d)

Kpθq :=
∑
r

(
T
(τ)
A,0rK̃pθq,r + T

(τt)
A,0rK̃qθ,r

)
, (E.43e)

Kpθω := T
(τω)
A,0 K̃ωθ +

∑
r

T
(τ)
A,0rK̃pθω,r , (E.43f)

Kpσ := T
(τω)
A,0 K̃ωσp +

∑
r

(
T
(τ)
A,0rK̃pσ,r + T

(τt)
A,0rK̃qσp,r

)
, (E.43g)

Kpσq :=
∑
r

(
T
(τ)
A,0rK̃pσq,r + T

(τt)
A,0rK̃qσ,r

)
, (E.43h)

Kpσω := T
(τω)
A,0 K̃ωσ +

∑
r

(
T
(τ)
A,0rK̃pσω,r + T

(τt)
A,0rK̃qσω,r

)
, (E.43i)

Kpt := T
(τω)
A,0 K̃ωt +

∑
r

T
(τt)
A,0rK̃qt,r , (E.43j)

hpw :=
∑
r

(
T
(τ)
A,0rh̃pw,r + T

(τt)
A,0rh̃qw,r

)
, (E.43k)

hpκ := T
(τω)
A,0 h̃ωκ +

∑
r

(
T
(τ)
A,0rh̃pκ,r + T

(τt)
A,0rh̃qκ,r

)
, (E.43l)

KpIw :=
∑
r

(
T
(τ)
A,0rK̃pIw,r + T

(τt)
A,0rK̃qIw,r

)
, (E.43m)

KpFw :=
∑
r

(
T
(τ)
A,0rK̃pFw,r + T

(τt)
A,0rK̃qFw,r

)
, (E.43n)

KpIκ := T
(τω)
A,0 K̃ωIκ +

∑
r

(
T
(τ)
A,0rK̃pIκ,r + T

(τt)
A,0rK̃qIκ,r

)
, (E.43o)

KpFκ := T
(τω)
A,0 K̃ωFκ +

∑
r

(
T
(τ)
A,0rK̃pFκ,r + T

(τt)
A,0rK̃qFκ,r

)
. (E.43p)
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The coefficients in the equation of motion for qµ (6.159c) are defined as

τq :=
∑
r

T
(t)
A,0r τ̃q,r , (E.44a)

τqω := T
(tω)
A,0 τ̃ω +

∑
r

T
(tτ)
A,0r τ̃pω,r , (E.44b)

τqp :=
∑
r

T
(tτ)
A,0r τ̃p,r , (E.44c)

Kqθ :=
∑
r

(
T
(tτ)
A,0rK̃pθq,r + T

(t)
A,0rK̃qθ,r

)
, (E.44d)

Kqθω := T
(tω)
A,0 K̃ωθ +

∑
r

T
(tτ)
A,0rK̃pθω,r , (E.44e)

Kqθp := T
(tω)
A,0 K̃ωθp +

∑
r

(
T
(tτ)
A,0rK̃pθ,r + T

(t)
A,0rK̃qθp,r

)
, (E.44f)

Kqσ :=
∑
r

(
T
(tτ)
A,0rK̃pσq,r + T

(t)
A,0rK̃qσ,r

)
, (E.44g)

Kqσω := T
(tω)
A,0 K̃ωσ +

∑
r

(
T
(tτ)
A,0rK̃pσω,r + T

(t)
A,0rK̃qσω,r

)
, (E.44h)

Kqσp := T
(tω)
A,0 K̃ωσp +

∑
r

(
T
(tτ)
A,0rK̃pσ,r + T

(t)
A,0rK̃qσp,r

)
, (E.44i)

Kqt := T
(tω)
A,0 K̃ωt +

∑
r

T
(t)
A,0rK̃qt,r , (E.44j)

hqw :=
∑
r

(
T
(tτ)
A,0rh̃pw,r + T

(t)
A,0rh̃qw,r

)
, (E.44k)

hqκ := T
(tω)
A,0 h̃ωκ +

∑
r

(
T
(tτ)
A,0rh̃pκ,r + T

(t)
A,0rh̃qκ,r

)
, (E.44l)

KqIw :=
∑
r

(
T
(tτ)
A,0rK̃pIw,r + T

(t)
A,0rK̃qIw,r

)
, (E.44m)

KqFw :=
∑
r

(
T
(tτ)
A,0rK̃pFw,r + T

(t)
A,0rK̃qFw,r

)
, (E.44n)

KqIκ := T
(tω)
A,0 K̃ωIκ +

∑
r

(
T
(tτ)
A,0rK̃pIκ,r + T

(t)
A,0rK̃qIκ,r

)
, (E.44o)

KqFκ := T
(tω)
A,0 K̃ωFκ +

∑
r

(
T
(tτ)
A,0rK̃pFκ,r + T

(t)
A,0rK̃qFκ,r

)
. (E.44p)

The quantities appearing in the equation of motion for κµ0 (6.160a) are given by

τκ := T
(κ)
V τ̃κ +

∑
r

T
(κw)
V,r τ̃wκ,r , (E.45a)

τκw :=
∑
r

T
(κw)
V,r τ̃w,r , (E.45b)

Kκθ := T
(κ)
V K̃κθ +

∑
r

T
(κw)
V,r K̃wθκ,r , (E.45c)

Kκθw :=
∑
r

T
(κw)
V,r K̃wθ,r , (E.45d)

Kκσ := T
(κ)
V K̃κσ +

∑
r

T
(κw)
V,r K̃wσκ,r , (E.45e)

Kκσw :=
∑
r

T
(κw)
V,r K̃wσ,r , (E.45f)

Kκω := T
(κ)
V K̃κω +

∑
r

T
(κw)
V,r K̃wωκ,r , (E.45g)
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Kκωw :=
∑
r

T
(κw)
V,r K̃wω,r , (E.45h)

hκt := T
(κ)
V h̃κt +

∑
r

T
(κw)
V,r K̃wt,r , (E.45i)

KκIt :=
∑
r

T
(κw)
V,r K̃wIt,r , (E.45j)

KκF t := T
(κ)
V K̃κF t +

∑
r

T
(κw)
V,r K̃wF t,r , (E.45k)

hκω := T
(κ)
V h̃κω , (E.45l)

hκp := T
(κ)
V h̃κp +

∑
r

T
(κw)
V,r h̃wp,r , (E.45m)

hκq :=
∑
r

T
(κw)
V,r h̃wq,r , (E.45n)

KκIω := T
(κ)
V K̃κIω +

∑
r

T
(κw)
V,r K̃wIω,r , (E.45o)

KκIp :=
∑
r

T
(κw)
V,r K̃wIp,r , (E.45p)

KκIq :=
∑
r

T
(κw)
V,r K̃wIq,r , (E.45q)

KκFω := T
(κ)
V K̃κFω , (E.45r)

KκFp := T
(κ)
V K̃κFp +

∑
r

T
(κw)
V,r K̃wFp,r , (E.45s)

KκFq :=
∑
r

T
(κw)
V,r K̃wFq,r . (E.45t)

The coefficients in Eq. (6.160b) read

τw :=
∑
r

T
(w)
V,0r τ̃w,r , (E.46a)

τwκ := T
(wκ)
V,0 τ̃κ +

∑
r

T
(w)
V,0r τ̃wκ,r , (E.46b)

Kwθ :=
∑
r

T
(w)
V,0rK̃wθ,r , (E.46c)

Kwθκ := T
(wκ)
V,0 K̃κθ +

∑
r

T
(w)
V,0rK̃wθκ,r , (E.46d)

Kwσ :=
∑
r

T
(w)
V,0rK̃wσ,r , (E.46e)

Kwσκ := T
(wκ)
V,0 K̃κσ +

∑
r

T
(w)
V,0rK̃wσκ,r , (E.46f)

Kwω :=
∑
r

T
(w)
V,0rK̃wω,r , (E.46g)

Kwωκ := T
(wκ)
V,0 K̃κω +

∑
r

T
(w)
V,0rK̃wωκ,r , (E.46h)

hwt := T
(wκ)
V,0 h̃κt +

∑
r

T
(w)
V,0rK̃wt,r , (E.46i)

KwIt :=
∑
r

T
(w)
V,0rK̃wIt,r , (E.46j)

KwF t := T
(wκ)
V,0 K̃κF t +

∑
r

T
(w)
V,0rK̃wF t,r , (E.46k)

hwω := T
(wκ)
V,0 h̃κω , (E.46l)
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hwp := T
(wκ)
V,0 h̃κp +

∑
r

T
(w)
V,0rh̃wp,r , (E.46m)

hwq :=
∑
r

T
(w)
V,0rh̃wq,r , (E.46n)

KwIω := T
(wκ)
V,0 K̃κIω +

∑
r

T
(w)
V,0rK̃wIω,r , (E.46o)

KwIp :=
∑
r

T
(w)
V,0rK̃wIp,r , (E.46p)

KwIq :=
∑
r

T
(w)
V,0rK̃wIq,r , (E.46q)

KwFω := T
(wκ)
V,0 K̃κFω , (E.46r)

KwFp := T
(wκ)
V,0 K̃κFp +

∑
r

T
(w)
V,0rK̃wFp,r , (E.46s)

KwFq :=
∑
r

T
(w)
V,0rK̃wFq,r . (E.46t)

Lastly, the coefficients appearing in the equation of motion for the tensor tµν (6.161) are given by

τt :=
∑
r

T
(t)
T,0r τ̃t,r , (E.47a)

Ktθ :=
∑
r

T
(t)
T,0rK̃tθ,r , (E.47b)

htw :=
∑
r

T
(t)
T,0rh̃tw,r , (E.47c)

htκ :=
∑
r

T
(t)
T,0rh̃tκ,r , (E.47d)

KtIw :=
∑
r

T
(t)
T,0rK̃tIw,r , (E.47e)

KtFw :=
∑
r

T
(t)
T,0rK̃tFw,r , (E.47f)

KtIκ :=
∑
r

T
(t)
T,0rK̃tIκ,r , (E.47g)

KtFκ :=
∑
r

T
(t)
T,0rK̃tFκ,r , (E.47h)

Ktωω :=
∑
r

T
(t)
T,0rK̃tωω,r , (E.47i)

Ktωp :=
∑
r

T
(t)
T,0rK̃tωp,r , (E.47j)

Ktωq :=
∑
r

T
(t)
T,0rK̃tωq,r , (E.47k)

Ktσω :=
∑
r

T
(t)
T,0rK̃tσω,r , (E.47l)

Ktσp :=
∑
r

T
(t)
T,0rK̃tσp,r , (E.47m)

Ktσq :=
∑
r

T
(t)
T,0rK̃tσq,r . (E.47n)



Appendix F

Useful formulae

This appendix is concerned with deriving several expressions that are used in the main text. Specifically,
we show how to compute general spin-space and thermodynamic integrals in Secs. F.1 and F.2, whereas
Sec. F.3 demonstrates how to construct the orthogonal polynomials used in the expansion of the
distribution function. Lastly, the purpose of Sec. F.4 is to show a method to treat collision integrals
one may need to compute.

F.1 General spin-space integrals

We want to consider a general integral over spin space of the form

Iµ1···µn :=

∫
dS(k) sµ1 · · · sµn , (F.1)

where the measure is in general (for on-shell momenta where k2 = m2)

dS(k) := S0
m

ςπ
d4sδ(s2 + ς2)δ(k · s) . (F.2)

Comparing this to Eqs. (3.90) and (3.162), we can see that ς2 = 3 and S0 = 1 for Dirac fermions,
whereas ς2 = 2 and S0 = 3/2 for Proca particles. Given that the integral (F.1) only depends on the
momentum k and has to be orthogonal to it in all indices, it can only depend on combinations of the
projector Kµν . Considering its symmetry, we find that it has to be of the form

Iµ1···µn =

{
I(n)K(µ1µ2 · · ·Kµn−1µn) , if n is even ,
0 , if n is odd .

(F.3)

Here, the round brackets denote the symmetrization in all indices,

K(µ1µ2 · · ·Kµn−1µn) :=
1

(n− 1)!!

∑
P
Kµ1µ2 · · ·Kµn−1µn , (F.4)

where the factor (n− 1)!! counts the terms in the sum over permutations, which is denoted by P. At
this point, we only need to compute I(n). In order to do this, we first notice what happens when we
contract the tensor (F.4) with Kµ1µ2 . We have

Kµ1µ2K
(µ1µ2 · · ·Kµn−1µn) =

n+ 1

n− 1
K(µ3µ4 · · ·Kµn−1µn) , (F.5)
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which becomes clear when considering which types of contractions can happen inside the symmetrized
tensor of rank n. Then, we have upon complete contraction

Kµ1µ2
· · ·Kµn−1µn

K(µ1µ2 · · ·Kµn−1µn) = n+ 1 . (F.6)

Now we are able to compute I(n) as

I(n) =
1

n+ 1
Kµ1µ2

· · ·Kµn−1µn
Iµ1···µn =

(−ς2)n/2
n+ 1

∫
dS(k) . (F.7)

The last integral is a Lorentz scalar and easily calculated in the particle rest frame, where δ(k · s) =
δ(s0)/m, ∫

dS(k) =
S0

ςπ

∫
d3sδ(−s2 + ς2) =

S0

2ς2π

∫
d3sδ(−|s|+ ς) = 2S0 . (F.8)

In total we thus have

∫
dS(k)sµ1 · · · sµn =

S0
2(−ς2)n/2
n+ 1

K(µ1µ2 · · ·Kµn−1µn) , if n is even ,

0 , if n is odd .
(F.9)

In particular, the first few nonzero integrals read∫
dS(k) = 2S0 , (F.10a)∫

dS(k)sµsν = −S0
2ς2

3
Kµν , (F.10b)∫

dS(k)sµsνsαsβ = S0
2ς4

15

(
KµνKαβ +KµαKνβ +KµβKνα

)
. (F.10c)

F.2 Thermodynamic integrals

The basic thermodynamic integral we have to evaluate is given by [cf. Eq. (6.16)]

Inq :=
1

(2q + 1)!!

∫
dΓEn−2q

k

(
−k⟨α⟩kα

)q
f0k

=
1

(2q + 1)!!

∫
dΓEn−2q

k

(
E2

k −m2
)q
f0k , (F.11)

where we used that k⟨α⟩kα = m2 − E2
k. Since this integral is a scalar, we can evaluate it in any frame,

which most conveniently is chosen to be the fluid rest frame, where uµ ≡ (1,0) and Ek ≡ k0 =
√
k2 +m2.

Switching to spherical coordinates and performing the angular integrations, we find

Inq =
g

(2q + 1)!!

1

2π2

∫ ∞

0

dk k2q+2(k2 +m2)(n−1)/2−q
[
eβ0

√
k2+m2−α0 + a

]−1

=
g

(2q + 1)!!

β−n−2
0

2π2

∫ ∞

z

dy
(
y2 − z2

)q+1/2
yn−2q

[
ey−α0 + a

]−1
, (F.12)

where g = 2s+ 1 is the degeneracy factor for spin-s particles and we substituted y := β0
√
k2 +m2 in

the second equality. Furthermore, z := mβ0 is the ratio of mass over temperature that quantifies how
far we are in the relativistic regime. In the following we consider classical statistics, i.e., a = 0. The
remaining task then consists of evaluating an integral of the form

Iab(z) :=
∫ ∞

z

dy
(
y2 − z2

)b−1/2
yae−y , (F.13)
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with a = n − 2q and b = q + 1. In the ultrarelativistic limit z → 0, the integral is evaluated
straightforwardly as

Iab(0) =
∫ ∞

0

dy y2b+a−1e−y = Γ(a+ 2b) . (F.14)

In the case where z > 0, it is advantageous to first define x := y/z, such that

Iab(z) = za+2b

∫ ∞

1

dx
(
x2 − 1

)b−1/2
xae−zx . (F.15)

Then, we note that the following recursion holds,

Iab(z) = Ia+2,b−1(z)− Ia,b−1(z) , (F.16)

which can be applied iteratively to obtain

Iab(z) =
b∑
j=0

(−1)j
(
b

j

)
z2jIa+2b−2j,0(z) . (F.17)

However, the integrals Ia+2b−2j,0(z) can be evaluated by remembering the definition of the Bickley-
Naylor function [168]

Kir(z) :=

∫ ∞

0

dτ cosh−r τe−z cosh τ =

∫ ∞

1

dx
x−r√
x2 − 1

e−zx ≡ zrI−r,0(z) , (F.18)

which then yields

Iab(z) = za+2b
b∑
j=0

(−1)j
(
b

j

)
Ki2j−2b−a(z) . (F.19)

Summarizing our results, we have

Inq =
geα0

(2q + 1)!!

β−n−2
0

2π2
×


zn+2

q+1∑
j=0

(−1)j
(
q + 1

j

)
Ki2j−2−n(z) , z > 0

Γ(n+ 2) , z = 0

. (F.20)

In order to implement Eq. (F.20) efficiently in the case z > 0, we note that the Bickley-Naylor
function fulfills the following recursion relation for r ≥ 2,

rKir+1(z) = (r − 1)Kir−1(z)− zKir(z) + zKir−2(z) , (F.21)

with the starting values given by [169]

Ki0(z) = K0(z) , (F.22a)

Ki1(z) =
π

2
{1− z [L−1(z)K0(z) + L0(z)K1(z)]} , (F.22b)

where Kr(z) is the modified Bessel function of the second kind and Lr(z) denotes the modified
Struve function. In the cases where r < 0, the Bickley-Naylor function can be expressed as

Kir(z) = (−1)r dr

dzr
K0(z) . (F.23)

The result (F.20) is the general solution that will hold for any value of n and q, as long as the integral
converges, which is ensured by demanding that q > −3/2 for z > 0 and n > −2 for z = 0. Nevertheless,
for the cases where n − 2q ≥ 0 we may establish a simpler formula that circumvents the use of
Bickley-Naylor functions. Orienting on the method presented in Chapter XIII of Ref. [43], we first
note that we can express the integral (F.13) as

Iab(z) = (−1)a(2b− 1)!!za+2b da

dza
Kb(z)

zb
, (F.24)
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which is easily proved by employing the integral representation of the modified Bessel function

Kr(z) ≡
z−r

(2r − 1)!!

∫ ∞

z

dτ
(
τ2 − z2

)r−1/2
e−τ (F.25)

and substituting χ := τ/z in the integral. Note that the relation (F.24) holds for all a ∈ Z, where
derivatives of negative order are to be interpreted as integrals of the respective positive order. On the
other hand, as long as a ≥ 0, it is also possible to establish

da

dza
Kb(z)

zb
=

⌊a/2⌋∑
j=0

(−1)a−j(2j − 1)!!

(
a

2j

)
Kb+a−j(z)

zb+j
, (F.26)

which is based on the identity
d

dz

Kb(z)

zb
= −Kb+1(z)

zb
(F.27)

and can be proved by induction. Combining Eqs. (F.24) and (F.26), we obtain

Iab(z) = (2b− 1)!!

⌊a/2⌋∑
j=0

(−1)j(2j − 1)!!

(
a

2j

)
za+b−jKb+a−j(z) , (F.28)

which in turn allows us to express the thermodynamic integral Inq for n− 2q ≥ 0 as

Inq = geα0
β−n−2
0

2π2

⌊(n−2q)/2⌋∑
j=0

(−1)j(2j − 1)!!

(
n− 2q

2j

)
zn+1−q−jKn+1−q−j(z) . (F.29)

Here we assumed that z > 0, since the z = 0 case does not change compared to Eq. (F.20).

F.3 Orthogonal polynomials

In this section, we show how to evaluate the coefficients a(j,ℓ)nr introduced in Eq. (6.19), orienting on
Ref. [51]. Requiring that the polynomials P (j,ℓ)

kn are orthonormal, cf. Eq. (6.14), we have

δmn =

∫
dKω(ℓ)

n∑
r∈S(j)ℓ

m∑
s∈S(j)ℓ

a(j,ℓ)nr a(j,ℓ)ms E
r+s
k

=

n∑
r∈S(j)ℓ

m∑
s∈S(j)ℓ

a(j,ℓ)nr a(j,ℓ)ms

Jr+s+2ℓ,ℓ

J2ℓ,ℓ
. (F.30)

Next, we define the matrix D(j,ℓn) whose elements are D(j,ℓn)
rs := Jr+s+2ℓ,ℓ [51]. Note that the dimension

of this matrix is as large as the number of elements included in the basis S(j)ℓ that are smaller or equal
to n. Then, the orthonormality requirement reads

n∑
r∈S(j)ℓ

m∑
s∈S(j)ℓ

a(j,ℓ)nr a(j,ℓ)ms D(j,ℓn)
rs = δmnJ2ℓ,ℓ ∀m,n ∈ S(j)ℓ . (F.31)

To see what this equation tells us, consider it for m = s0, where s0 denotes the smallest element of the
set S(ℓ)j :

n∑
r∈S(j)ℓ

a(j,ℓ)nr D(j,ℓn)
rs0 = 0 . (F.32)
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Moving on to m = s1, where s1 is the next-smallest element, we find after using Eq. (F.32)

n∑
r∈S(j)ℓ

a(j,ℓ)nr D(j,ℓn)
rs1 = 0 . (F.33)

Iterating this procedure, we find
n∑

s∈S(j)ℓ

a(j,ℓ)nr D(j,ℓn)
rs = 0 ∀ s ̸= n . (F.34)

In the case s = n, we obtain

a(j,ℓ)nn

n∑
r∈S(j)ℓ

a(j,ℓ)nr D(j,ℓn)
rn = J2ℓ,ℓ , (F.35)

where we used Eq. (F.34). In total, we thus have

n∑
r∈S(j)ℓ

a
(j,ℓ)
nr

a
(j,ℓ)
nn

D(j,ℓn)
rs =

J2ℓ,ℓ(
a
(j,ℓ)
nn

)2 δns . (F.36)

The solution of this equation is

(
a(j,ℓ)nn

)2
=
(
D−1

)(j,ℓn)
nn

J2ℓ,ℓ , a(j,ℓ)nm =

(
D−1

)(j,ℓn)
mn

(D−1)
(j,ℓn)
nn

a(j,ℓ)nn , (F.37)

which is the explicit relation were looking to obtain.

F.4 Collision integrals

As has become clear in the main text, almost always collision integrals have to be evaluated to compute
transport coefficients. While in rare cases these integrals can be done analytically [170, 171], in most
cases they have to be performed numerically. Since the expressions we deal with often involve a large
number of terms, in this section we present a method introduced in Chapter XIII of Ref. [43] that can
be used to automatize this computation. The basic idea consists in separating the integrals into a sum
of elementary collision integrals

J (a,b,d,e,f) :=

∫
[dK]e−βPT ·u(P 2

T )
a(PT · u)b(Q · u)d(Q′ · u)e(−Q ·Q′)fδ(4)(k + k′ − k1 − k2) , (F.38)

where the momenta k, k′, k1, and k2 can be expressed in terms of the total momentum PT and the
relative momenta Q, Q′ via

kµ =
1

2
(PµT +Qµ) , (F.39a)

k′µ =
1

2
(PµT −Qµ) , (F.39b)

kµ1 =
1

2
(PµT +Q′µ) , (F.39c)

kµ2 =
1

2
(PµT −Q′µ) . (F.39d)

Next we follow the steps in Ref. [43] and make use of the identity∫ ∞

z

dy
(
y2 − z2

)b−1/2
yae−y = za+2b

b∑
j=0

(−1)j
(
b

j

)
Ki2j−2b−a(z) , (F.40)
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which we proved in Sec. F.2. The result for the basic integral (F.38) then reads

J (a,b,d,e,f) = β−4−2a−b−d−e−2f 16π3

(2πℏ)12

min(d,e)∑
g=0

K(d, e, g)σ(f,g)

d+e
2 +1∑
h=0

(d+e
2 + 1

h

)
(−1)h

×
∫ ∞

2z

dv
[
v2 − (2z)2

](d+e)/2+f+1
v2(a−1)+b+3Ki−b−d−e−2+2h(v) , (F.41)

where we introduced the following factors,

K(d, e, g) :=


d!e!

(d− g)!!(d+ g + 1)!!(e− g)!!(e+ g + 1)!!
, if (d− g), (e− g) even ,

0 , otherwise ,
(F.42a)

σ(f,g) :=


(2g + 1)

f ! 2g

(f + g + 1)!

(
f+g
2

)
!(

f−g
2

)
!
, if (f − g) even ,

0 , otherwise .

(F.42b)

The remaining task then consists of expanding the collision integrals in question as sums of the
basic integrals (F.41). Note that the tensors Ξµν , Ξµναβ , which may appear in the integrals related to
irreducible moments of spin-rank higher than zero, do not allow for a straightforward expression in
terms of polynomials of PT , Q, and Q′. This is the case because of the factors of energy appearing in
the denominator, leading to

Ξµν = ∆µν +
(P

⟨µ⟩
T +Q⟨µ⟩)(P ⟨ν⟩

T +Q⟨ν⟩)

(PT · u+Q · u)2 , (F.43)

and similarly for Ξµναβ . In order to bring these terms into the form required by Eq. (F.38) as well, we
expand them around the nonrelativistic limit [formally equivalent to taking the limit kµ ≃ (m,0)µ],
leading to

Ξµν ≃ ∆µν , Ξµναβ ≃ ∆µν
αβ . (F.44)

The plot 6.1 is generated with this leading-order approximation.
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