Robotic-inspired approach to multi-domain membrane receptor conformation space: theory and SARS-CoV-2 spike protein case study

Alen T. Mathew¹, Mateusz Sikora^{2,3}, Gerhard Hummer³, and Ahmad Reza Mehdipour¹

 ¹ Center for Molecular Modeling, Ghent University, Ghent, Belgium
 ² Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
 ³ Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany

Point	Definition			
Base	Z coordinate of COM^a of P atoms of lower leaflet lipid molecules + XY coordinates of Joint 1			
Joint 1	COM of C_{α} atoms of residues 1233-1237 of three chains A B C			
Joint 2	COM of C_{α} atoms of residues 1207-1215 of three chains A B C			
Joint 3	COM of C_{α} atoms of residues 1160-1174 of three chains A B C			
Joint 4	COM of C_{α} atoms of residues 11141-1146 of three chains A B C			
End Effector	COM of C_{α} atoms of residues 332-442 of three chains A B C			
^a COM Center of mass				

Table 1: Points definition

Source	Length	Description	Code name
Mehdipour lab	$3 \times 0.5 \ \mu s$	Full length glycosylated spike	$Mehdipour_{Glyc}$
Mehdipour lab	$3 \times 0.5 \ \mu s$	Full length nonglycosylated spike	$Mehdipour_{Noglyc}$
Hummer lab	$2.5 \ \mu s$	Four copies of Full length glycosy- lated spike	$Hummer_{Glyc}$
Tajkhorshid lab	$5 \ \mu s$	Full length glycosylated spike	$Tajkhorshid_{Glyc}$
Tajkhorshid lab	$5 \ \mu s$	Full length nonglycosylated spike	$Tajkhorshid_{Noglyc}$
Im lab	16×1.28	Full length glycosylated spike	Im_{Glyc}
	$\mu { m s}$		
Klauda lab	$1 \ \mu s$	Full length glycosylated spike	$Klauda_{glyc}$

Table 2: Simulation data used in this study

Figure S 1: Denavit-Hartenberg (DH) convention and parameters.

Figure S 2: Spherical coordinates convention and parameters.

Figure S 3: Distribution of Denavit-Hartenberg (DH) parameters for the generated robotic arm of spike.

Figure S 4: Spherical coordinate parameters for the generated robotic arm of spike.

Figure S 5: Generated robotic arms with similar SC parameters and tip point position.