Supporting Information

Characterizing the monomer-dimer equilibrium of UbcH8/Ube2L6: A combined SAXS and NMR study

Kerem Kahraman¹, Scott A. Robson², Oktay Göcenler¹, Cansu M. Yenici¹, Cansu D. Tozkoparan¹, Jennifer M. Klein³, Volker Dötsch⁴, Emine Sonay Elgin³, Arthur L. Haas³, Joshua J. Ziarek^{2,*}, Çağdaş Dağ^{1,6,*}

¹Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research (n²STAR), Koc University, İstanbul, Turkey

²Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 East Superior Avenue, Chicago, IL, 460611, USA

³Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, 1901 Perdido Street, New Orleans, LA, 70112, USA

⁴Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Germany

^sMuğla Sıtkı Koçman University, College of Sciences, Department of Chemistry, Muğla, 48000, Turkey

Koc University Isbank Center for Infectious Diseases (KUISCID), Koc University, Istanbul, Turkey

*Corresponding author: cdag@ku.edu.tr, jjziarek@indiana.edu

TOC

Table S1	S3
Table S2	S4
Figure S1	
Figure S2	S6
Figure S3	
Figure S4	S8
Figure S5	
Figure S6	S10
Figure S7	S11
Figure S8	S12

Table S1. Molecular Size Parameters of GST-UbcH8 and UbcH8 dimer Obtained from SAXSData Analysis.

Sample	R _g (nm) ^a	Dmax (nm) ^b	Vp (Å ³) ^c	MW (kDa) ^d	Vc (kDa) ^e	Qp (kDa) ^f
GST-UbcH8	3.37	8	8919	41.604	41.737	42.842
UbcH8 dimer	4.402	6.2	5835	39.547	38.766	44.169

^aRadius of gyration, ^bMaximum Dimension, ^cPorod Volume, ^dMolecular Weight, ^cVolume of

Correlation, ^fPorod invariant

Table S2. Fit quality for superimposition of E2 crystal structures onto UbcH8 dummy atom model. The UbcH8 dummy atom model was calculated from the SAXS data using DAMMIF. The fineness and normalized spatial discrepancy (NSD) of the superimposition obtained using the SASpy Pymol extension.

	3WE5	6QH3	6QHK	6898
Fineness	1.549	1.370	1.030	1.043
Normalized Spatial Discrepancy (NSD)	2.2294	3.6498	4.9168	5.3306

Figure S1. Previously-determined UbcH8 crystal structures. Cartoon and surface representation of UbcH8 protein in the (A) dimeric form (PDB ID:1WZV) and (B) monomeric form (PDB ID:1WZW)

Figure S2. Superimposition of six, 10 minute SAXS frames. The data indicates that little to no radiation damage occurred during the total acquisition period.

Figure S3. SEC chromatograms of (A) UbcH8 (B) 12.2 kDa monomeric protein. S200 16/600 SEC column was used with identical run parameters.

Figure S4. ¹**H-**¹⁵**N HSQC spectrum of UbcH8 collected at 25°C.** Residue numbers are indicated on each peak. Residue 149 (blue) is located at the dimerization interface of the crystal structure. Resonances were assigned by visual inspection using BMRB 16321. Data were collected at 300 μM on a 11.7 T Bruker NMR spectrometer.

Figure S5. ¹**H**-¹⁵**N HSQC superimposed spectra of UbcH8 collected at 25°C.** Orange and purple indicate data collected at 150μM and 300μM, respectively.

Figure S6. ¹H-¹⁵N Chemical shift perturbations of ¹⁵N labeled UbcH8 titrated with ISG15. A)

The combined ¹H-¹⁵N chemical shift perturbations were calculated for each residue. The residues colored orange possessed chemical shift perturbations larger than the threshold (orange line). Residues with no bars were not observed at any concentration. B) Residues with chemical shift perturbations larger than the threshold were mapped onto the UbcH8 monomeric crystal structure (PDB 1WZW) labeled with orange. Peaks with significant intensity changes are indicated in blue, while the catalytic cysteine is labeled red.

Figure S7. Comparison of free UbcH8 dummy atom model with previouslydetermined dimeric E2 enzyme crystal structures. (A) Ubiquitin conjugating enzyme E2 UbcA1 from Agrocybe aegerita (PDB: 3WE5). (B) The catalytic domain of the human ubiquitinconjugating enzyme UBE2S C118M (PDB: 6QH3). (C) The catalytic domain of the human ubiquitin-conjugating enzyme UBE2S (PDB: 6QHK). (D) The catalytic domain of wild-type UBE2S (PDB: 6S98). The free UbcH8 dummy atom model was calculated by DAMMIF.

Figure S8. UbcA1 dimer crystal structure (pdb:3WE5) fitted into the DAMMIF dummy atom model Crystal structure of ubiquitin conjugating enzyme E2 UbcA1 from Agrocybe aegerita (PDB: 3WE5) shown as surface (pink) placed into the dummy model of UbcH8 dimer (Free UbcH8, gray) obtained after the DAMMIF analysis of the SAXS data, using Pymol plugin SasPY.