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ABSTRACT 

Attention-Deficit/Hyperactivity Disorder (ADHD) is frequently comorbid with other psychiatric disorders 

and also with somatic conditions, such as obesity. In addition to the clinical overlap, significant genetic 

correlations have been found between ADHD and obesity as well as body mass index (BMI). The biological 

mechanisms driving this association are largely unknown, but some candidate systems, like dopaminergic 

neurotransmission and circadian rhythm, have been suggested. Our aim was to identify the biological 

mechanisms underpinning the link between ADHD and obesity measures. Using the largest GWAS summary 

statistics currently available for ADHD (N=53,293), BMI (N=681,275), and obesity (N=98,697), we first tested 

the association of dopaminergic and circadian rhythm gene sets with each phenotype.  This hypothesis-

driven approach showed that the dopaminergic gene set was associated with both ADHD (P=5.81x10-3) and 

BMI (P=1.63x10-5), while the circadian rhythm gene set was associated with BMI only (P=1.28x10-3). We 

then took a data-driven approach by conducting genome-wide ADHD-BMI and ADHD-obesity gene-based 

meta-analyses, followed by pathway enrichment analyses. This approach further supported the implication 

of dopaminergic signaling in the link between ADHD and obesity measures, as the Dopamine-DARPP32 

Feedback in cAMP Signaling pathway was significantly enriched in both the ADHD-BMI and ADHD-obesity 

gene-based meta-analysis results. Our findings suggest that dopaminergic neurotransmission, partially 

through DARPP-32-dependent signaling, is a key player underlying the genetic overlap between ADHD and 

obesity measures. Uncovering the shared etiological factors underlying the frequently observed ADHD-

obesity comorbidity may have important implications in terms of preventive interventions and/or efficient 

treatment of these conditions. 
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INTRODUCTION  

Attention-deficit/hyperactivity disorder (ADHD) is a psychiatric disorder characterized by developmentally 

inappropriate and impairing levels of inattention and/or hyperactivity and impulsivity symptoms. The 

prevalence of ADHD is estimated as 5.3% during childhood/adolescence 1 and around 2.8% during 

adulthood 2. ADHD is among the most heritable psychiatric disorders, with heritability estimates around 

74% 3. It follows a multifactorial pattern of inheritance, where multiple genetic and environmental factors, 

each of small effect, as well as their interplay, can contribute to its pathophysiology. A recent genome-wide 

association study (GWAS) meta-analysis identified the first genome-significant associations for ADHD 4.  

High comorbidity rates are a hallmark of ADHD, further increasing disease burden. These comorbidities 

include both psychiatric 5, 6 and non-psychiatric (somatic) diseases and traits. One of the most frequently 

and consistently reported comorbid somatic conditions in ADHD is obesity 7. Obesity is nowadays one of 

the major health problems worldwide, resulting in a large economic burden and significant decrease in life 

expectancy 8, and its prevalence keeps rising substantially 9, 10. Obesity is usually classified according to 

body mass index (BMI), which is calculated as weight in kilograms divided by the height in meters squared 

(kg/m2). A BMI higher than 25 kg/m2 signals overweight and a BMI above 30 kg/m2 is regarded as obesity, 

which can be further subdivided into classes defined based on increasing BMI 11. The genetic contribution 

to obesity and related phenotypes has been extensively studied, and heritability estimates range from 50% 

up to 90% 12. Several GWASs have been conducted on obesity and BMI. For BMI, the most recent GWAS 

meta-analysis was performed in a sample of nearly 700,000 individuals and identified 536 associated 

genomic loci 13. A previous GWAS on 158,864 participants with BMI information compared normal weight 

individuals to those with obesity classes I, II, and III 14. The authors of this study concluded that associations 

found with the categorical phenotypes are highly overlapping with the ones obtained by using BMI as a 

quantitative trait 14.  

The prevalence of ADHD among adults seeking weight loss treatment for obesity has been reported to be 

around 27%, reaching up to 43% when considering only those with extreme obesity (i.e. class III) 15, 16. This 
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rate is more than ten times higher than the prevalence of ADHD in adults in the general population 2. 

Likewise, two recent meta-analyses show a higher than expected prevalence of overweight and/or obesity 

in individuals with ADHD, both during childhood/adolescence and adulthood, with odds ratios up to 1.55 

and the strongest effects being observed in adults 17, 18. Importantly, the association between ADHD and 

obesity was no longer significant when the analysis was limited to participants receiving pharmacological 

treatment for ADHD 17.  

The specific factors underlying the comorbidity between ADHD and obesity remain largely unknown. 

Recently, significant genetic correlations between ADHD and BMI (rg=0.21–0.26, 4, 19, as well as between 

ADHD and obesity (ranging from rg=0.285 to rg=0.338, according to the different obesity classes) and other 

obesity-related phenotypes, have been reported 4. These findings highlight the involvement of genetic 

factors in the observed epidemiological overlap between ADHD and obesity measures and provide an entry 

point for the investigation of the specific biological mechanisms and processes involved. Some candidate 

biological processes have been suggested, including dopaminergic neurotransmission and circadian rhythm 

signaling. These two candidate mechanisms have been selected as the main focus of a large European 

Union consortium aimed at studying comorbid conditions of ADHD (CoCA; https://coca-project.eu/), of 

which this study is part.  

Altered reward processing and impaired inhibitory control, key features of ADHD, are thought to be the 

outcome of dysregulated dopaminergic neurotransmission 20. Studies in humans and animal models have 

also linked disturbances in dopaminergic neurotransmission and downstream processes to obesity 21, 22. It 

has been suggested that overeating may represent an attempt of obese people to compensate for their 

reduced sensitivity to rewards 21. 

Circadian rhythm-related traits (e.g. eveningness) and disturbances (e.g. sleep problems) have been 

repeatedly associated with ADHD and/or ADHD symptoms 23. These problems have also been linked to BMI 

variation and obesity 24. Disrupted circadian rhythm signaling may lead to obesity through temporal 

alterations in eating behavior and changes in metabolic hormones 25. Two manifestations of circadian 
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rhythm disruption in particular, sleeping problems (i.e. altered sleep duration) and an unstable eating 

pattern (e.g. skipping breakfast and binge eating later in the day), may mediate the observed association 

between ADHD symptoms and BMI 26.  

In this paper, we aimed to identify the shared etiological factors underlying the observed associations 

between ADHD and obesity measures. Specifically, we conducted (i) candidate gene-set association 

analyses and (ii) genome-wide gene-based cross-disorder(/trait) meta-analyses, followed by pathway 

enrichment analyses. Across our hypothesis-driven and data-driven analyses, we found altered 

dopaminergic signaling pathways to be implicated in ADHD and BMI/obesity. 
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MATERIALS AND METHODS 

Participant samples  

This study used summary statistics of ADHD, BMI, and obesity GWAS meta-analyses that have been made 

publicly available. These studies had been approved by local ethics committees and had obtained the 

required informed consents (as described in earlier publications 4, 13, 14). 

The ADHD data was derived from 19,099 cases and 34,194 controls, composed by samples from the 

Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) population-based cohort and 

the Psychiatric Genomics Consortium (PGC) samples of European ancestry 4. The iPSYCH-PGC ADHD 

summary statistics were downloaded from the PGC website (https://www.med.unc.edu/pgc/results-and-

downloads) and filtered to include only SNPs with minor allele frequency (MAF) >0.01 and an imputation 

quality (INFO) >0.8, totalizing 8,094,094 variants.  

For BMI, we used summary statistics from the most recent BMI GWAS meta-analysis that combined the 

earlier BMI summary statistics of the Genetic Investigation of ANthropometric Traits (GIANT) consortium 27 

with new GWAS results from participants in the UK Biobank 13. In total, this GIANT-UK Biobank BMI GWAS 

meta-analysis reached a mean sample size of N=681,275 participants of European ancestry 13. After 

downloading the summary statistics from 

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files, we filtered 

the data in order to include only SNPs with MAF >0.01 in our analyses, which yielded a total of 2,336,056 

SNPs (see Yengo et al. 13 for further information on GWAS summary statistics quality control).  

For obesity, summary statistics from a GWAS meta-analysis from European ancestry cohorts within the 

GIANT consortium on obesity class I were used 14. Subjects in that study were considered as cases for 

obesity class I if they had BMI ≥30 kg/m2; controls had a BMI <25 kg/m2. In total, summary stats were based 

on 32,858 cases and 65,839 controls, and were downloaded from 

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files. Data was 
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filtered to SNPs with MAF >0.01, resulting in 2,353,324 SNPs (see Berndt et al. 14  for further information 

GWAS summary statistics quality control).  

ADHD – BMI genetic correlation analysis 

Given the large sample increase of the most recent BMI GWAS, we conducted LD score regression analysis 

28 to (re-)estimate the genetic correlation between ADHD and BMI using summary statistics of the largest 

GWAS currently available for each phenotype (samples described above). For this analysis, we used pre-

computed LD scores based on European samples from the 1000 Genomes Project as indicated in 

https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation. 

Hypothesis-driven, candidate gene-set approach 

Gene-set association analyses  

In order to assess the links between the dopaminergic neurotransmission and circadian rhythm pathways 

and ADHD, BMI, and obesity, we assembled gene sets and tested their associations to the individual 

phenotypes of interest using the GWAS summary statistics described above. Dopaminergic 

neurotransmission and circadian rhythm gene sets were assembled based on the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) and the Gene Ontology (GO) databases. The final dopaminergic (DOPA) and 

circadian rhythm (CIRCA) gene sets comprised 264 and 284 unique autosomal genes, respectively. Details 

on the selection of the gene sets are provided in the Supplementary Material. 

Gene-set association analyses were performed using MAGMA software (version 1.05b 29). The first step was 

to carry out single gene-based analysis to assess the degree of association of each gene (i.e. gene-based P-

values) with each phenotype. The second step was to test the association of each gene set, through 

competitive analyses, by aggregating the gene-based P-values according to their presence (or not) in the 

gene sets (see Supplementary Material for a more detailed description). We used a conservative 

Bonferroni correction to account for multiple testing by dividing the significance P-value threshold of 0.05 
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by the six gene-set tests that were performed (i.e. (DOPA, CIRCA) x ADHD, BMI, obesity) and hence, the 

gene-set significance P-value threshold was set to 8.33 x 10-3.   

Data-driven, genome-wide approach 

Gene-based cross-disorder/trait meta-analyses 

In addition to the hypothesis-driven approach described above, we performed genome-wide gene-based 

cross-disorder(/trait) meta-analyses by using gene-based P-values for ADHD, BMI, and obesity (obtained as 

described above) and the gene meta-analysis option in MAGMA software (version 1.05b 29). The weighted 

Stouffer’s Z method was used to combine the Z-scores for each gene across cohorts, with weights set to the 

square root of the sample size each Z-score is based on (i.e. therefore accounting for the fact that sample 

sizes vary per SNP – and thus per gene – within and between GWAS summary statistics). Since we were 

interested in the combined effect of each gene on both phenotypes in each pair-wise meta-analysis (i.e. the 

ADHD-BMI or the ADHD-obesity meta-analyses), only genes present in both gene-based GWAS results were 

included. The gene-based P-value threshold for genome-wide significance was set to 0.05 divided by the 

number of genes in each gene-based meta-analysis. 

Canonical pathway enrichment analyses 

From each pair-wise gene-based cross-disorder(/trait) meta-analysis, we selected the genome-wide 

significant genes that increased significance by at least one order of magnitude compared to each of the 

original gene-based results (i.e. Pmeta-analysis < PADHD/10 and Pmeta-analysis < P(obesity or BMI)/10). The set of genes 

meeting this criterion was then tested for enrichment of canonical pathways using Ingenuity Pathway 

Analysis (http://www.ingenuity.com; QIAGEN Bioinformatics, Redwood City, California, USA) set at its 

default parameters and using Benjamini-Hochberg correction for multiple testing (see Supplementary 

Material for details).  
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RESULTS 

ADHD–BMI genetic correlation 

The ADHD-BMI genetic correlation was estimated as rg=0.3157 (SE=0.0246; P=8x10-38). This is similar to 

estimates based on smaller BMI datasets as well as to estimates for the obesity classes previously reported 

4, 19 and mentioned in the introduction. 

DOPA and CIRCA gene-set associations with ADHD, BMI, and obesity  

We tested the association of two gene sets – DOPA (264 genes) and CIRCA (284 genes) – with ADHD, BMI, 

and obesity. Results of these gene-set analyses are shown in Table 1. The DOPA gene set was significantly 

associated with both ADHD (P=5.81x10-3) and BMI (P=1.63x10-5); the CIRCA gene set was only associated 

with BMI (P=1.28x10-3). These results do not seem to be driven solely by one or very few individual genes 

that were highly associated with either ADHD or BMI (Supplementary Table S1).  

ADHD-BMI and ADHD-obesity gene-based meta-analyses 

The gene-based cross-disorder(/trait) meta-analysis between ADHD and BMI resulted in 1684 genome-wide 

significant genes, while the one for ADHD and obesity resulted in 22 significant genes. Of those, 211 genes 

for the ADHD-BMI meta-analysis and 9 genes for the ADHD-obesity meta-analysis, showed an increase in 

their association significance (i.e. decrease in P-value) of at least one order of magnitude compared to both 

individual GWASs. These genes, which were all at least nominally significant in the original GWASs being 

meta-analyzed, are listed in Supplementary Tables S2 and S3. 

Canonical pathway enrichment analyses  

Based on the 211 genes from our ADHD-BMI gene-based meta-analysis, the enrichment analysis identified 

four significant canonical pathways, as shown in Table 2. These were CREB Signaling in Neurons, Synaptic 

Long Term Depression, Synaptic Long Term Potentiation, and Dopamine-DARPP32 Feedback in cAMP 

Signaling. The enrichment analysis for the 9 ADHD-obesity genes also rendered four significant canonical 
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pathways: GABA Receptor Signaling, Corticotropin Releasing Hormone Signaling, Dopamine-DARPP32 

Feedback in cAMP Signaling, and Huntington’s Disease Signaling (Table 3). 

One pathway, the Dopamine-DARPP32 Feedback in cAMP Signaling, was found enriched in the two 

analyses. In total, proteins encoded by eight unique genes derived from our meta-analyses operate in this 

canonical pathway (Tables 2 and 3). Combining the enrichment analysis with a literature search, we 

constructed a schematic representation of the Dopamine-DARPP32 Feedback in cAMP Signaling pathway, 

which is shown in Figure 1 and described in detail in the Supplementary Material.  

In addition, a secondary ADHD-BMI gene-based cross-disorder(/trait) meta-analysis was carried out in order 

to address a small sample overlap between the datasets: Welcome Trust participants had been included 

both in the iPSYCH-PGC and the GIANT GWASs (for further information, see Supplementary Material). This 

resulted in 202 genes of interest, highly overlapping with the 211 genes from the main ADHD-BMI meta-

analysis results (182 overlapping genes), where the Dopamine-DARPP32 Feedback in cAMP Signaling 

pathway remained significantly associated with the phenotype through the canonical pathway enrichment 

analysis.  
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DISCUSSION  

In this paper, we aimed to uncover the biological mechanisms underlying the observed genetic associations 

between ADHD and obesity measures. Based on known and self-derived genetic correlation estimates for 

ADHD and BMI/obesity obtained from the world-wide largest datasets for each phenotype, we first applied 

a hypothesis-driven testing approach of two selected gene sets (DOPA and CIRCA), which showed that the 

dopaminergic neurotransmission system partially explains the genetic overlap between ADHD and BMI. Our 

data-driven, genome-wide approach subsequently showed that dopaminergic signaling, specifically 

Dopamine-DARPP32 Feedback in cAMP Signaling, was significantly enriched in both the ADHD-BMI and the 

ADHD-obesity gene-based meta-analysis results. 

Both ADHD and obesity measures have been linked to disturbances in dopaminergic signaling. Alterations 

of the brain’s executive and reward circuits – modulated by mesocortical and mesolimbic dopamine, 

respectively – have been postulated as the basis of the deficient inhibitory control and impaired reward 

processing characteristics of ADHD 20. The ability to resist the impulse to eat desirable foods, and an 

appropriate reward-response to those, also require proper functioning of these dopamine-regulated 

processes 21, 22. For example, impulsive eating, as a result of a high arousal response to a potential reward 

and impaired inhibitory control, can lead to weight gain and obesity 30. In addition, eating behavior is also 

dependent on the hypothalamic homeostatic system, which is comprised by hormonal regulators of energy 

balance – such as insulin, leptin, and gut hormones – and controls hunger, satiety, and adiposity levels 21. 

Increasing evidence suggests that such metabolic hormones can also affect food-related sensitivity of the 

dopaminergic reward system 31, pointing to an overlap between the homeostatic and 

reward/reinforcement systems related to obesity 21.  

Also confirming our hypothesis, the CIRCA gene set was associated with BMI, but the absence of a 

significant association with ADHD was unexpected. ADHD has previously been associated with altered 

circadian rhythmicity at molecular, endocrine, and behavior levels 32. Furthermore, mutations of a key gene 

in circadian rhythm regulation, per1b, in zebrafish have been shown to induce hyperactive, impulsivity-like, 
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and attention deficit-like behaviors 33. The lack of a significant association between ADHD and the CIRCA 

gene set in our study may be due to a true lack of effect of the circadian rhythm pathway on ADHD. 

However, it is also possible that there is a true (unobserved) effect but that the gene set we assembled was 

not appropriate/informative enough to detect such association.    

Going beyond candidate gene-set analyses, we conducted data-driven, genome-wide gene-based cross-

disorder(/trait) meta-analyses to identify biological pathways underlying the shared heritability. Several 

pathways showed significant enrichment in the ADHD-BMI and in the ADHD-obesity results. Dopamine 

signaling was, again, at the heart of the pathway that was significantly enriched in both analyses, i.e. the 

Dopamine-DARPP32 Feedback in cAMP Signaling pathway. This postsynaptic pathway centers around the 

Dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32; also known as Protein phosphatase 

1 regulatory subunit 1B (PPP1R1B)), the phosphorylation state of which modulates dopaminergic 

neurotransmission (see Figure 1 and description in the Supplementary Material for details). 

DARPP-32 is highly expressed in postsynaptic dopaminergic neurons in the dorsal striatum (i.e. caudate and 

putamen), which is involved in certain executive functions, such as inhibitory control, and in the ventral 

striatum (i.e. nucleus accumbens), which is the main brain region responsible for reward processing 

(https://gtexportal.org/home/gene/PPP1R1B). As described above, poor inhibitory control and altered 

reward processing, in the form of steeper delay discounting, are key neurobiological circuitries implicated 

in both ADHD and obesity 20, 21. Further evidence linking dopamine-DARPP-32 signaling, reward processing 

and the brain comes from findings in animal models. Upon investigation of the consequences of frustrated 

expected reward of palatable food on gene expression in the mouse brain, Dopamine-DARPP32 Feedback in 

cAMP Signaling pathway was found to be enriched among differentially expressed genes, both the ventral 

striatum and in frontal cortex 34. 

DARPP-32 modulates the effects of dopamine on cAMP/PKA-dependent gene transcription through 

transcription factors of the cyclic AMP-responsive element-binding (CREB) complex (Figure 1), and CREB 

dysregulation has been linked to both ADHD 35 and obesity 36. Of note, the CREB Signaling in Neurons 
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pathway was also significantly enriched in our ADHD-BMI gene-based meta-analysis, along with two other 

partially overlapping pathways involved in synaptic plasticity processes (namely, the Synaptic Long Term 

Depression and the Synaptic Long Term Potentiation pathways; Table 2), which are also closely related to 

dopamine DARPP-32 signaling.  

Additional evidence for an involvement of DARPP-32 signaling to the ADHD-BMI/obesity overlap comes 

from the study of rare variants. The most common form of monogenic obesity is caused by mutations in the 

melanocortin 4 receptor (MC4R) gene 37 and MRC4 signaling is known to activate DARPP-32 38. In addition 

to early-onset obesity, a higher prevalence of ADHD has been reported in MC4R mutation-carriers 39. It has 

been hypothesized that such co-occurrence may be, in part, underpinned by reward processing deficits 40, 

and animal studies provide further support regarding the involvement of MC4R signaling and 

dopaminergic-dependent reward processing 38, 41. 

Our study has strengths and limitations. A clear strength is that we make use of the largest GWAS meta-

analysis results available for each of the phenotypes being investigated. The sample sizes used to generate 

the (European ancestry) summary statistics used here were, in total, more than 53,000 for the iPSYCH-PGC 

ADHD GWAS, up to 700,000 for the GIANT-UK Biobank BMI GWAS, and almost 99,000 for the GIANT obesity 

GWAS. Another strength is that we did not restrict our gene set assembly to single GO-terms or KEGG 

pathways, but applied a more inclusive approach regarding the processes involved. For dopaminergic 

neurotransmission, we thus assembled a gene set (DOPA) that was subsequently found to be significantly 

associated with ADHD and BMI. This contrasts with the approach adopted in the iPSYCH-PGC ADHD GWAS 

paper, which tested dopaminergic candidate genes and GO-term pathways only individually, failing to 

detect significant associations with ADHD 4. The large difference in sample sizes between the phenotypes 

imposed some difficulties when analyzing them together. We minimized such limitations by carrying out 

gene-based cross-disorder(/trait) meta-analyses in MAGMA, which allows sample sizes to vary between 

and within samples and accounts for such variation by weighting the effects accordingly. We also opted for 

performing gene-based – rather than SNP-based – cross-disorder(/trait) meta-analyses. Apart from 
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assuming that the (combined effect of SNPs within) genes represent entities closer to the biological 

mechanisms, this approach has a reduced statistical burden compared to SNP-based analyses and seems 

most suitable for these data given the difference in SNP density between the ADHD and the BMI and 

obesity GWASs (the later ones being restricted to about 2.4 million SNPs present in HapMap 2). Another 

limitation we addressed was the presence of overlapping samples, since Welcome Trust participants had 

been included both in the iPSYCH-PGC ADHD GWAS and the GIANT BMI and obesity GWASs. The reduction 

in sample size reduced power of our analysis, but findings from the canonical pathway enrichment analysis 

remained stable.  

Overall, the findings of the present study identify dopaminergic neurotransmission as a key player 

underlying the shared heritability of ADHD and BMI/obesity, implicating mechanisms involving DARPP-32 

signaling in particular. This is especially interesting since DARPP-32 has been directly implicated in the 

mechanism of action of ADHD medication 42, 43, which has been suggested to attenuate the increased risk 

for obesity in people with ADHD 17. Uncovering critical aspects of the shared etiology underlying the 

prevalent ADHD-obesity comorbidity may have important implications for clinical outcome, preventive 

interventions, and/or efficient treatment of these conditions. 
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Table/Figure Legends 

Table 1. Gene-set association results of dopaminergic (DOPA) and circadian rhythm (CIRCA) systems with 

ADHD, BMI, and obesity. 

Table 2. Canonical pathways with significant enrichment in the ADHD-BMI gene-based meta-analysis. 

Table 3. Canonical pathways with significant enrichment in the ADHD-obesity gene-based meta-analysis.  

Figure 1. Schematic representation of the Dopamine-DARPP32 Feedback in cAMP Signaling pathway. The 

proteins encoded by the eight genome-wide significant genes derived from the ADHD-BMI gene-based 

meta-analysis results (Table 2) are contextualized and highlighted in red in the pathway. A detailed 

description of the pathway in provided in the Supplementary Material. For clarity and simplicity, additional 

proteins in the pathway are omitted. Protein groups or complexes are shown with double margins.  
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Table 1. Gene-set association results of dopaminergic 
(DOPA) and circadian rhythm (CIRCA) systems with ADHD, 
BMI, and obesity. 

 DOPAa CIRCAb 

ADHDc  P=5.81x10-3 P=0.521 

BMId P=1.63x10-5 P=1.28x10-3 

Obesitye  P=0.050 P=0.205 

Significant associations are highlighted in bold.  
a.

DOPA gene-set analyses are based on 261, 245, and 248 genes 
from the ADHD, BMI, and obesity GWAS summary statistics, 
respectively.  
b.

CIRCA gene-set analyses are based on 281, 272, and 273 genes 
from the ADHD, BMI, and obesity GWAS summary statistics, 
respectively.  
c.
European ancestry iPSYCH-PGC ADHD GWAS 

4
. 

d.
 GIANT-UK Biobank BMI GWAS 

13
 . 

e. 
GIANT obesity (class I) GWAS 

14
. 
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Table 2. Canonical pathways with significant enrichment in the ADHD-BMI gene-based meta-analysis  

 CREB Signaling 
in Neurons 

Synaptic Long 
Term Depression 

Synaptic Long 
Term Potentiation 

Dopamine-DARPP32 
Feedback in cAMP 
Signaling 

P-value 4.11x10
-5

 5.68x10
-5

 2.17x10
-4

 2.19x10
-4

 

P-value - B-H 
corrected 

7.95x10
-3

 7.95x10
-3

 1.53x10
-2

 1.53x10
-2

 

Canonical Pathway 
size (number of 
molecules) 

226 189 134 178 

ADHD-BMI genes
a
 in 

the pathway 
10 9 7 8 

 CACNA1D 
b,c

 

CREB3L3 
b
 

GNAT1 

GRIA1 
b,c

  

GRID2 

GRIK5 

GRM4 

ITPR3 
b,c

  

PLCL1 

PRKAG1 
c
 

CACNA1D 
b,c

 
GNAT1 

GRIA1 
b,c

  

GRID2 

GRM4 

IGF1R 

ITPR3 
b,c

  

PLCL1 

PPP2R3A 

CREB3L3 
b
 

GRIA1 
b,c

  

GRM4  

ITPR3 
b,c

  

PLCL1 

PPP1R3A 

PRKAG1 
c
 

CACNA1D 
b,c

  

CREB3L3 
b
 

CSNK1G2 

ITPR3 
b,c

  

PLCL1 

PPP1R3A 

PPP2R3A 
b
 

PRKAG1 
c
 

a. 
Genes from the ADHD-BMI gene-based meta-analysis results, only considering genome-wide significant (at 

Pthreshold=2.99x10
-6

) genes with association P-values lower by at least one order of magnitude in the meta-analysis 
compared to the gene-based results of both ADHD and BMI individually.

 

b.
 Also part of DOPA in the gene-set analysis 

c.
 Also part of CIRCA in the gene-set analysis 
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Table 3. Canonical pathways with significant enrichment in the ADHD-obesity gene-based meta-analysis  

 GABA Receptor 
Signaling 

Corticotropin 
Releasing Hormone 
Signaling 

Dopamine-DARPP32 
Feedback in cAMP 
Signaling 

Huntington’s 
Disease Signaling 

P-value 6.69x10
-4

 1.45x10
-3

 2.05 x10
-3

 4.19 x10
-3

 

P-value - B-H corrected 2.81x10
-2

 2.87x10
-2

 2.87x10
-2

 4.40 x10
-2

 

Canonical Pathway size 
(Number of molecules) 

101 149 178 256 

ADHD-obesity genes
a
 in the 

pathway 
2 2 2 2 

CACNA1D 
b,c

 

DNM1 

BDNF 

CACNA1D 
b,c

 

CACNA1D 
b,c

 

CSNK1G2 

BDNF 

DNM1 

a. 
Genes from the ADHD-obesity gene-based meta-analysis results, only considering genome-wide significant genes (at 

Pthreshold=2.97x10
-6

) with association P-values lower by at least one order of magnitude in the meta-analysis compared 
to the gene-based results of both ADHD and obesity individually.

 

b.
 Also part of DOPA in the gene-set analysis. 

c.
 Also part of CIRCA in the gene-set analysis. 
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Figure 1. Schematic representation of the Dopamine-DARPP32 Feedback in cAMP 

Signaling pathway. The proteins encoded by the eight genome-wide significant 

genes derived from the ADHD-BMI gene-based meta-analysis results (Table 2) are 

contextualized and highlighted in red in the pathway. A detailed description of the 

pathway in provided in the Supplementary Material. For clarity and simplicity, 

additional proteins in the pathway are omitted. Protein groups or complexes are 

shown with double margins. 
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