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1 Introduction

Understanding the dynamics of non-Abelian gauge theories beyond the weak-coupling limit
is an important challenge. In this regime a quasi-particle description is likely not applicable
and one must resort to a different intuition in order to understand the physics, especially
out of equilibrium. Holography provides a powerful framework with which a variety of the-
ories can be analysed from first principles in this regime. In this context the quasi-particle
intuition is replaced by intuition based on higher-dimensional gravity, black hole horizons,
etc. In the case in which the gauge theory dynamics takes place in flat space, holography
has provided valuable qualitative insights into the properties of Quantum Chromodynam-
ics (QCD), especially into the far-from-equilibrium dynamics of its deconfined phase (see
e.g. [1] and references therein). These properties are explored experimentally via the small
drops of deconfined QCD matter that are created in Heavy Ion Collisions (HIC) (for a
recent review, see [2]). Since these little fireballs are violently produced at an initial tem-
perature just a few times the QCD deconfinement temperature, the physics immediately
after the collision is non-weakly coupled and far from equilibrium. One of the insights pro-
vided by holography is that the system becomes well described by hydrodynamics at a time
at which the viscous corrections are still very large [3–5]. During its subsequent evolution
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the fireball expands, cools down and eventually hadronises. In QCD in equilibrium, this
transition is realised as a smooth crossover [6].

Extending the analysis to the dynamics of gauge theories in curved spacetime is inter-
esting from several viewpoints. At a theoretical level, the spacetime curvature may lead
to new effects and hence richer dynamics. Phenomenologically, one motivation comes from
Cosmology, where the dynamics of the gauge theory is coupled to an expanding space-
time. This situation was certainly realised about one microsecond after the Big Bang,
when the decreasing temperature of the Universe crossed the QCD critical temperature
and quarks and gluons became bound into hadrons. Another interesting scenario comes
from the possibility that the physics beyond the Standard Model might be completed at
some high-energy scale by a Grand Unified non-Abelian gauge Theory (GUT). In this sce-
nario there may be implications for the early Universe, and out-of-equilibrium effects may
arise if, for example, the GUT theory undergoes a phase transition (see for example [7, 8]).
Finally, it has recently been suggested that dark matter may be strongly self-interacting
(recent reviews include [9, 10]), in which case a complete understanding of the dark sector
would require going beyond perturbative methods.

This paper is an exploratory investigation aimed at understanding the dynamics of
strongly coupled matter in a cosmological context via holography. We emphasize that,
unlike in e.g. [11, 12], our goal is not to provide a dual holographic description of the
cosmological gravitational field but only of the strongly coupled matter that lives in this
background, as in e.g. [13–20]. We will therefore assume that the four-dimensional grav-
itational field is prescribed a priori and use five-dimensional gravity to describe only the
dynamics of the four-dimensional gauge theory. We also stress that, at this very early stage,
we are mainly motivated by theoretical curiosity, with the phenomenological motivation
being mostly inspirational. For this reason we will not be guided by an attempt to describe
a realistic scenario but rather make a number of simplifying assumptions.

The first one is that we will ignore the backreaction of the matter on the expanding
metric. The second one is that we will consider the simplest possible expanding geometry,
namely de Sitter (dS) space. The third simplification is that we will restrict our attention
to spatially homogeneous states. And the fourth one concerns the gauge theory that we will
study. This will be defined by the condition that it be a four-dimensional, non-conformal
theory with the simplest possible gravity dual. The non-conformal nature of the theory is
absolutely crucial in order to uncover the physics that we are interested in. The reason is
that de Sitter space is conformal to Minkowski space. Roughly speaking this means that,
up to the effect of the conformal anomaly, the physics of a conformal theory in dS is the
same as in flat space [21].

Despite these simplifications, we will still be able to capture several novel effects. These
include the fact that at late times the apparent and the event horizons do not coincide, re-
flecting the non-equilibrium nature of the state, or the existence of an entanglement horizon
in between them that cannot be penetrated by extremal surface anchored at the boundary.

The rest of the paper is structured as follows. In section 2 we introduce the holographic
model. In section 3 we review the thermodynamic and transport properties of the model
on flat space and discuss how we fix ambiguities due to anomalies in the hydrodynamic
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approximation. In section 4 we introduce the numerical algorithm we use to solve the dual
gravity problem, explain how we construct initial states and analyse our results for the
time evolution of the model on de Sitter space, the properties of late time states and how
they are approached. In section 5 we discuss entanglement and horizon entropies. We end
with a summary and discussion in section 6.

2 Holographic model

We follow a bottom-up approach and use five-dimensional Einstein-dilaton gravity with
non-trivial potential to model the dynamics of a strongly coupled field theory with broken
conformal symmetry in four dimensions. We will consider the same holographic model as
in [22]. That reference explored the thermodynamics and the transport properties of the
dual gauge theory in flat space. We will review these properties in section 3. In the current
section we will focus on the extension that is needed on the holographic side in order to
describe the dynamics in de Sitter space.

The action of the holographic model is given by

S = 2
8πG

∫
M
d5x
√
−g

(1
4R[g]− 1

2(∂φ)2 − V (φ)
)

+ 1
8πG

∫
∂M

d4x
√
−γK + Sct . (2.1)

Here G is the five-dimensional Newton’s constant, R[g] is the Ricci scalar associated to the
five-dimensional bulk metric gµν on M, γij is the metric induced on a four-dimensional
slice near the boundary ∂M, and

K = γijKij = γij∇inj (2.2)

is the trace of the extrinsic curvature Kij associated to this slice. The second term on the
right-hand side of (2.1) is the familiar Gibbons-Hawking term. The third term in (2.1) will
be described below. The equations of motion take the form

Rµν −
1
2Rgµν = 2∂µφ∂νφ− 2V (φ)gµν − (∂φ)2gµν , (2.3a)

∇2φ = ∂V

∂φ
. (2.3b)

The potential V (φ) encodes the properties of the dual gauge theory. We wish to choose
the simplest possible potential with the following two properties: (i) it describes a non-
conformal theory, and (ii) the vacuum of the theory in flat space is described by a completely
regular solution on the gravity side. Following ref. [22] we therefore choose the potential

L2V (φ) = −3− 3
2φ

2 − 1
3φ

4 +
(

1
3φ2

M

+ 1
2φ4

M

)
φ6 − 1

12φ4
M

φ8 , (2.4)

which can be derived from the superpotential

LW (φ) = −3
2 −

φ2

2 + φ4

4φ2
M

(2.5)
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via the relation
V (φ) = −4

3W (φ)2 + 1
2W

′ (φ)2 . (2.6)

L is a length scale. The dimensionless constant φM is a free parameter that controls
the degree of non-conformality of the model, for example the maximum value of the bulk
viscosity. For concreteness, in this paper we will choose

φM = 2 . (2.7)

Both V (φ) and W (φ) have a maximum at φ = 0 and a minimum at φ = φM . Each of these
extrema yields an AdS solution of the equations of motion with constant φ and radius
L2 = −3/V (φ). In the gauge theory each of these solutions is dual to a fixed point of
the Renormalisation Group (RG) with a number of degrees of freedom N2 proportional to
L3/G. In top-down models this relation is known precisely. For example, in the case in
which the gauge theory is N = 4 SYM with N colours we would have

L3

8πG = N2

4π2 . (2.8)

In our bottom-up model we will take this as a definition of the number of degrees of freedom
in the gauge theory, N , at each fixed point.

The potential (2.4) leads to three important properties of the model: first, the resulting
geometry is asymptotically AdS5 in the UV with radius L, since V (0) = −3/L2. Second,
the second derivative of the potential at φ = 0 implies that, in this asymptotic region,
the scalar field has mass m2 = −3/L2. Following the standard quantisation analysis this
means that, in the UV, this field is dual to an operator in the gauge theory, Ô, with
scaling dimension ∆UV = 3. The value of the source M of this operator introduces a scale
responsible for the breaking of conformal invariance. Third, the solution near φ = φM is
again AdS5 with a different radius

LIR =
√
− 3
V (φM ) = 1

1 + 1
6φ

2
M

L . (2.9)

In this region the effective mass of the scalar field differs from its UV value and it is given by

m2
IR = 12

L2

(
1 + 1

9φ
2
M

)
= 12
L2
IR

(
1 + 1

9φ
2
M

)
(
1 + 1

6φ
2
M

)2 . (2.10)

As a consequence, the operator Ô at the IR fixed point has dimension

∆IR = 2 + 2

√
1 + m2

IRL
2
IR

4 = 6
(

1 + φ2
M

9

)(
1 + φ2

M

6

)−1

. (2.11)

As we will review in section 3, when the gauge theory is placed in flat space there exists an
RG flow between the UV and the IR fixed points. The crossover takes place at the scale M
and the geometry dual to the entire flow is completely regular. In most expressions below
we will fix the radius of the UV AdS solution to unity, i.e., we will set L = 1.
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In order to understand the UV properties of the theory, such as anomalies, UV diver-
gences, etc. we will solve the Einstein’s equations near the boundary in a power expansion
in the so-called Fefferman-Graham (FG) coordinate ρ. This has dimensions of (length)2

and in terms of it the near-boundary metric takes the form

ds2 = dρ2

4ρ2 + γij(ρ, x)dxidxj . (2.12)

The boundary is located at ρ = 0 and is parametrised by the coordinates xi with
i = 0, . . . , 3. Near the boundary the metric and the scalar field take the form

γij(ρ, x) = 1
ρ

{
g(0)ij(x) + ρ g(2)ij(x) + ρ2

[
g(4)ij(x) + h(4)ij(x) log ρ

]
+O(ρ3)

}
, (2.13a)

φ(ρ, x) = ρ1/2
{
φ(0)(x) + ρ

[
φ(2)(x) + ψ(2)(x) log ρ

]
+O(ρ2)

}
. (2.13b)

As we will see below, the logarithmic terms are related to the presence of anomalies. The
first term g(0)ij(x) is the boundary metric. We will be interested in the case in which this
is a maximally symmetric, four-dimensional spacetime with constant positive curvature
R = 12H2, namely a dS4 metric with Hubble rate H:

ds2
b = g(0)ijdxidxj = −dt2 + e2Htd~x2 . (2.14)

Similarly, we will assume that the first term in the expansion of the scalar field is a constant
that defines the characteristic mass scale in the gauge theory:

φ(0) = M . (2.15)

The first term of the action (2.1) suffers from large-volume divergences, as can be
verified by substituting the expansions (2.13) into the action. These divergences can
be regularised and renormalised by a procedure called holographic renormalisation (see
e.g. [23–25]), which makes the action finite and the variational principle well-defined. This
procedure is implemented by including in (2.1) the counterterm action

Sct = 1
8πG

∫
d4x
√
−γ
[(
−1

8R[γ]− 3
2 −

1
2φ

2
)

+ 1
2 (log ρ)A+

(
αA+ βφ4

) ]
, (2.16)

defined on a timelike, constant-ρ hypersurface near the boundary. The induced metric
on this hypersurface is denoted γij and R[γ] is the associated Ricci scalar. The second
term of (2.1) is also understood to be evaluated on this slice at ρ, the first term of (2.1)
is understood to be evaluated by integrating down to this slice, and the limit ρ → 0 is
understood to be taken at the end of the calculation.

In (2.16), A(γij , φ) is the so-called conformal anomaly, which in our case is given by

A = Ag +Aφ (2.17)
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where
Ag = 1

16

(
RijRij −

1
3R

2
)

(2.18)

is the holographic gravitational conformal anomaly and

Aφ = −φ
2

12R (2.19)

is the conformal anomaly due to matter. In these equations all the terms are functionals
of the metric γij and of the scalar field φ induced on the ρ-hypersurface. However, making
use of the expansions (2.13) we see that the product with the determinant of the induced
metric yields a finite contribution in the limit in which the cut-off is removed, since

lim
ρ→0

√
−γA (γij , φ) = lim

ρ→0

[ 1
ρ4

√
−g(0)

] [
ρ4A

(
g(0)ij , φ(0)

) ]
=
√
−g(0)A

(
g(0)ij , φ(0)

)
.

(2.20)
For this reason we will often think of the anomaly as evaluated on the boundary values of
the fields, in which case (2.18) and (2.19) reduce to

Ag = −3
4H

4 , (2.21)

Aφ = −M2H2 . (2.22)

The fact that
√
−γA yields a finite result has two consequences. First, it means that the

logarithmic term in (2.16) cancels a purely logarithmic divergence from the bulk action.
The requirement that this cancellation takes place fixes uniquely the form of the anomaly,
including the values of all the numerical coefficients in (2.18) and (2.19). The presence of
this logarithmic term on the gravity side breaks diffeomorphism invariance and is dual to
the presence of the conformal anomaly in the dual gauge theory.

The second consequence is that the anomaly itself (without the log) can be added to
the counterterm action with an arbitrary coefficient, which we named α in (2.16). It is
important to note that not just the anomaly but any local, finite term that is invariant under
the symmetries of the theory can be added to the counterterm action with an arbitrary
coefficient. These terms can be constructed out of non-negative powers of the scalar field
and of curvature invariants of the induced metric γij in such a way that their overall mass
dimension is four. The βφ4 term is an example of such a term. Other possible terms
include combinations of RijRij , R2 and φ2 that are linearly independent of A. Therefore
we could replace the last term of (2.16) by

αA+ βφ4 + δ1
(
RijR

ij +R2
)

+ δ2 φ
2R+ · · · . (2.23)

The freedom to add these terms with arbitrary coefficients δi is part of the general freedom
in the choice of renormalisation scheme. The coefficient α plays a special role since it can
be shifted by a scale transformation, which is implemented via the following rescaling of
the coordinates

xi = λx′i , ρ = λ2ρ′ , (2.24)
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where λ is a positive real number. It is easy to see that the effect of this transformation
is to shift the counterterm action by a term of the form (log λ)A, which in turn can be
absorbed through the redefinition α→ α+ log λ. The freedom to rescale ρ, or equivalently
to shift α, is the freedom to choose a renormalisation scale. We thus see that the freedom
to choose a renormalisation scheme includes, but is larger than, the freedom to choose a
renormalisation scale. This statement is well known on the gauge theory side. In order
to renormalise the theory it is not enough to choose a renormalisation scale since finite
parts must also be fixed. For example, the difference between the MS and MS schemes is
precisely the choice of the finite parts. Below we will discuss the effect of the anomaly on
the gauge theory observables of interest to us, namely the expectation values of the stress
tensor and of the scalar operator.

The value β = 1/4φ2
M is special because in this case the βφ4 term combines with

the second and the third summands in the first term of (2.16) to give precisely the su-
perpotential (2.5). This means that, if the theory (2.1) is the bosonic truncation of a
supersymmetric theory with superpotential W , then in flat space this choice of β leads to
a supersymmetric renormalisation scheme. Motivated by this discussion, in this paper we
will set to zero all the coefficients in (2.23) but α and β. This implies no loss of generality
since physically meaningful quantities are scheme-independent.

Substitution of the expansions (2.13) in the equations of motion (2.3) determines sev-
eral coefficients [25]. The Klein-Gordon equation for the scalar field fixes the logarithmic
coefficient ψ(2) in terms of g(0)ij and φ(0) as

ψ(2) = 1
24φ(0)R = 1

2MH2 . (2.25)

Unless otherwise indicated, in this and in subsequent equations it is understood that the
curvature tensors are those associated to the boundary metric g(0)ij . At leading order
Einstein’s equations determine

g(2)ij = −1
2

(
Rij −

1
6Rg(0)ij

)
−
φ2

(0)
3 g(0)ij = −

(1
2H

2 + 1
3M

2
)
g(0)ij . (2.26)

The logarithmic part at subleading order fixes

h(4)ij = hgrav
(4)ij −

1
12Rijφ

2
(0) , (2.27)

where

hgrav
(4)ij = 1

8RikjlR
kl − 1

48∇i∇jR+ 1
16∇

2Rij −
1
24RRij

+
( 1

96R
2 − 1

96∇
2R− 1

32RklR
kl
)
g(0)ij (2.28)

is the purely gravitational part. For conformally flat metrics, such as (2.14), this part
vanishes, hence

h(4)ij = − 1
12Rijφ

2
(0) = −1

4H
2M2g(0)ij . (2.29)
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The subleading non-logarithmic part of Einstein’s equations fixes the trace of g(4)ij :

Trg(4)ij = −2φ(0)φ(2) + 5
72Rφ

2
(0) + 1

16

(
RijR

ij − 2
9R

2
)

+ 2
9φ

4
(0) (2.30a)

= −2Mφ(2) + 5
6M

2H2 + 1
4H

4 + 2
9M

4 , (2.30b)

as well as its covariant divergence

∇jg(4)ij = ∇j
{
− 1

8
[
Tr
(
g 2

(2)

)
−
(
Trg(2)

)2 ]
g(0)ij + 1

2
(
g 2

(2)

)
ij
− 1

4g(2)ij Tr g(2)

− 3
2h(4)ij − g(0)ijφ(0)

(
φ(2) + ψ(2)

)}
(2.31a)

= ∇j
{(1

4H
4 + 5

24H
2M2 + 1

9M
4 −Mφ(2)

)
g(0)ij

}
. (2.31b)

The coefficients in (2.13) determine the holographic stress tensor as

〈T̂ij〉 = lim
ρ→0

2ρ−2
√
−γ

δS

δγij
(2.32)

= 2
(
N2

4π2

){
g(4)ij + 1

8
[
Trg2

(2) − (Trg(2))2
]
g(0)ij −

1
2g

2
(2) + 1

4g(2)ijTrg(2)

+ φ(0)

(
φ(2) −

1
2ψ(2)

)
g(0)ij + α

(
T gij + T φij

)
+
( 1

18 + β

)
φ4

(0)g(0)ij

}
.

In this and in subsequent equations we have made use of (2.8) to replace G in favour of N ,
which makes the expected N2-scaling of the stress tensor manifest. The contributions T gij
and T φij come from the variation of Ag and Aφ in (2.16), respectively, and are given by:

1
2T

g
ij = hgrav

(4)ij = 0 , (2.33)

T φij = −1
6φ

2
(0)

(
Rij −

1
2Rg(0)ij

)
= 1

2M
2H2g(0)ij . (2.34)

As we mentioned above, the first equation follows from the conformal flatness of the dS
metric (2.14). The expectation value of the scalar operator in the field theory is given by

〈Ô〉 = lim
ρ→0

ρ−∆UV/2
√
−γ

δS

δφ
= 2

(
N2

4π2

){
−2φ(2) + (1− 4α)ψ(2) − 4βφ3

(0)

}
. (2.35)

In the presence of external sources the holographic stress tensor satisfies anomaly-
corrected Ward identities. These can be obtained from the variation of the renormalised
on-shell action

δS[δg(0), δφ(0)] =
∫

d4x
√
g(0)

(1
2〈T̂ij〉δg

ij
(0) + 〈Ô〉δφ(0)

)
. (2.36)
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Invariance of the action under diffeomorphisms

δgij(0) = −(∇iξj +∇jξi) , δφ(0) = ξi∇iφ(0) , (2.37)

leads to the diffeomorphism Ward identity

∇i〈T̂ij〉 = −〈Ô〉∇jφ(0) . (2.38)

Weyl transformations

δgij(0) = −2σgij , δφ(0) = −(d−∆UV)σφ(0) , (2.39)

give the anomaly-corrected conformal Ward identity

〈T̂ ii 〉 = −(d−∆UV)φ(0)〈Ô〉+
(
N2

4π2

)
(Ag +Aφ) , (2.40)

where d is the spacetime dimension of the boundary theory and Ag and Aφ are given
in (2.18) and (2.19), respectively. In our case the Ward identities reduce to

∇i〈T̂ij〉 = 0 , 〈T̂ ii 〉 = −M〈Ô〉 −
(
N2

4π2

)(3
4H

4 +M2H2
)
. (2.41)

We are now ready to discuss the effect of the anomaly on physical observables such as
the stress tensor and the scalar operator. To see this consider again the rescaling (2.24).
In the gauge theory this is equivalent to rescaling H and M as

H ′ = λH , M ′ = λM . (2.42)

Following [24], we note that the rescaling above leaves the FG form of the metric (2.12)
invariant and transforms all the expansion coefficients homogeneously,

g′(0)ij = g(0)ij , g′(2)ij = λ2g(2)ij , h′(4)ij = λ4h(4)ij , (2.43)

except for g(4)ij , which acquires an inhomogeneous piece due to the logarithmic term
in (2.13):

g′(4)ij = λ4g(4)ij + 2λ4 log λh(4)ij . (2.44)

Similarly, the coefficients φ(0) and ψ(2) in the expansion of the scalar field transform ho-
mogeneously, whereas φ(2) acquires an inhomogeneous piece:

φ′(2) = λ3φ(2) + 2λ3 log λψ(2) . (2.45)

It follows that the stress tensor and the scalar expectation value transform as

〈T̂ ′ij〉 = λ4〈T̂ij〉+ 4
(
N2

4π2

)
λ4 log λh(4)ij , (2.46)

〈Ô′〉 = λ3〈Ô〉 − 8
(
N2

4π2

)
λ3 log λψ(2) , (2.47)
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namely

〈T̂ij(λH, λM)〉 = λ4〈T̂ij(H,M)〉 − λ4 log λ
(
N2

4π2

)
H2M2 g(0)ij , (2.48)

〈Ô(λH, λM)〉 = λ3〈Ô(H,M)〉 − λ3 log λ
(
N2

4π2

)
4MH2 , (2.49)

where we have made use of (2.25) and (2.29). This immediately implies that these expec-
tation values must take the form

〈T̂ij(H,M)〉 = H4 tij

(
H

M

)
− log

(
H

µ

) (
N2

4π2

)
H2M2 g(0)ij , (2.50)

〈Ô(H,M)〉 = H3 f

(
H

M

)
− log

(
H

µ

) (
N2

4π2

)
4MH2 , (2.51)

where µ is some arbitrary reference scale, a remnant of the renormalisation process much
like the renormalisation scale in QFT. The first and second terms on the right-hand sides
transform homogeneously and inhomogeneously under the rescaling (2.42), respectively.
Needless to say, one could rewrite the first terms in a variety of forms, for example as
M4tij(H/M) for the stress tensor, etc. Also, one could replace log(H/µ) by log(H/M) +
log(M/µ), thus redefining

tij → tij + log
(
H

M

) (
N2

4π2

)
M2

H2 g(0)ij . (2.52)

Note also that there is no loss of generality in assuming that the scale µ is the same in both
equations, since the difference can again be absorbed in a redefinition of the homogeneous
terms.

The key conclusion is that, because of the anomaly, expectation values in the field
theory do not only depend on the ratio H/M , but on the two independent dimensionless
ratios that can be built fromM,H and µ. Put differently, in order to specify the theory it is
not enough to specify the ratio between H andM , but instead both scales must be specified
independently with respect to some arbitrary reference scale µ. The freedom in the choice of
this scale is part of a bigger freedom in the choice of renormalisation scheme, as we discussed
around (2.23). Throughout this paper we will measure all dimensionful quantities in units
of M and, when necessary, we will fix the renormalisation scheme by specifying α and β.

In the flat-space limit, namely if H = 0, both the anomaly (2.21) and its contribu-
tions (2.33) and (2.34) to the stress tensor vanish identically. This means that in this case
both the stress tensor and the scalar operator transform covariantly under scale trans-
formations. In other words, the non-homogeneous terms in the equations above vanish.
Moreover, the only non-zero finite term among all the possible ones in (2.23) is the βφ4

term. This produces a contribution to the stress tensor (2.32) that shifts its value by a
term proportional to the boundary metric g(0)ij = ηij , namely it shifts the energy density
and the pressure by opposite amounts. Therefore the choice of scheme in the flat-space case
reduces entirely to fixing the energy or the pressure of some reference state, for example
that of the vacuum. We will come back to this point in the next section.
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In this work we will only consider states that are homogeneous and isotropic, for which
the associated energy momentum tensor takes the diagonal form

〈T̂ ij 〉 = diag {−ε(t), p(t), p(t), p(t)} . (2.53)

When plotting numerical results we will often use “reduced” quantities such as reduced
energy density, reduced pressure and reduced expectation value of the scalar operator
defined as

E(t) ≡ 2π2

N2 ε(t) , P(t) ≡ 2π2

N2 p(t) , O(t) ≡ 2π2

N2 〈Ô(t)〉 . (2.54)

In terms of these variables, the trace Ward identity (2.41) takes the form

E(t)− 3P(t) = MO(t) + 1
2

(3
4H

2 +M2H2
)
. (2.55)

3 Dynamics in flat space

3.1 Thermodynamics and transport

In this section we review the most salient thermodynamic and transport properties of the
holographic model on flat space, studied in detail in [22]. This is useful because later
we will use thermal equilibrium states on flat space to initialise the time evolution of
non-equilibrium states on dS4 and compare their evolution to viscous hydrodynamics with
transport coefficients presented in this section.

The gauge/gravity correspondence maps thermodynamic equilibrium states on the
gauge theory side to equilibrium black brane geometries on the gravity side. In our case
these are homogeneous and isotropic solutions of the equations of motion (2.3) with a
regular horizon and asymptotically AdS boundary conditions for the metric and appropriate
asymptotic scaling for the scalar field. A convenient gauge to construct these solutions is
one where the holographic coordinate is identified with the scalar field1

ds2 = e2A(φ)
(
−H(φ)dτ2 + d~x2

)
− 2eA(φ)+B(φ) dτdφ . (3.1)

In this gauge the boundary is located at φ = 0 and the value of the scalar field at the
horizon φh is determined by the condition H(φh) = 0. After introducing a master field

G(φ) = d
dφA(φ) , (3.2)

the equations of motion (2.3) can be rewritten in terms of a single master equation2 [22, 26]

G′(φ)
G(φ) + 4V (φ)

3V ′(φ)

= d
dφ log

 1
3G(φ) − 2G(φ) + G′(φ)

2G(φ) −
G′(φ)

2
(
G(φ) + 4V (φ)

3V ′(φ)

)
 . (3.3)

1The function H(φ) appearing in this section should not be confused with the Hubble rate H appearing
throughout the whole paper.

2As in [22], we normalise the scalar field differently than in [26], which is the reason why some of the
coefficients in (3.3) differ from those in the corresponding master equation in [26].
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Close to the horizon a solution to the master equation can be expressed as a power series:

G(φ) = − 4V (φh)
3V ′(φh) + 2

3(φ− φh)
(
V (φh)V ′′(φh)
V ′(φh)2 − 1

)
+O

(
(φ− φh)2

)
. (3.4)

Close to the boundary, φ→ 0, the master field can be expanded as

G(φ) = − 1
φ

+ · · · . (3.5)

In practice we obtain a one-parameter family of solutions for G(φ), parametrised by
the value of φh, by numerically integrating (3.3) from a value of φ close to the horizon to a
value close to the boundary using boundary conditions for G and G′ constructed from (3.4).
The metric functions in (3.1) can then be obtained through the relations

A(φ) = − log
(
φ

M

)
+
∫ φ

0
dφ̃
(
G(φ̃) + 1

φ̃

)
, (3.6)

B(φ) = log (|G(φ)|) +
∫ φ

0
dφ̃ 2

3G(φ̃)
, (3.7)

H(φ) = −e
2B(φ) (4V (φ) + 3G(φ)V ′(φ))

3G′(φ) . (3.8)

The temperature and the entropy density of field theory states dual to these numerically
constructed geometries can be expressed in terms of (3.6) and (3.7) evaluated at the horizon
(see [22, 26] for details):

T = A(φh)−B(φh)
4π , s = 2π

(
N2

4π2

)
e3A(φh) . (3.9)

In figure 1 (left) we show the reduced entropy density S ≡ 2π2s/N2 divided by T 3 as a
function of T/M for φM = 2. The dotted and the dashed black lines indicate, respectively,
the infinite- and the zero-temperature limits (recall that we are setting L = 1)

lim
T→∞

S
π4T 3 = 1 , lim

T→0

S
π4T 3 = L3

IR = 27
125 , (3.10)

with LIR given by (2.9). As explored in detail in [22], for real values of φM the model has
a smooth crossover between the IR and UV fixed point.

The energy density and the pressure can be extracted from the stress tensor discussed
in section 2. In thermal equilibrium they can be equivalently obtained from the knowledge
of the entropy density as a function of the temperature via the thermodynamic relations

peq ≡ p0 +
∫ T

0
dT ′ s(T ′) , (3.11a)

h ≡ ε+ peq = Ts , (3.11b)

where p0 is the pressure of the vacuum state in the T → 0 limit and h is the enthalpy
density. The value of p0 is not fixed by thermodynamic considerations or by the equations
of motion. In contrast, T and s are uniquely defined via (3.9), and hence so is the enthalpy
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Figure 1. (Left) Entropy density as function of temperature for φM = 2. The black dashed
and dotted lines indicate respectively the IR- and the UV-limits (3.10). (Center) Ratio of reduced
pressure to energy density as a function of the reduced energy density. (Right) Ratio of bulk
viscosity to energy density as a function of the reduced energy density.

density. It follows that the energy density is also defined up to an arbitrary constant equal
to −p0. As we saw towards the end of section 2, the choice of renormalisation scheme
in flat space boils down precisely to the choice of this constant. Thus one way to fix the
scheme in flat space and uniquely determine the stress tensor is to impose that the vacuum
energy density and pressure vanish. As discussed in section 2, this corresponds to the
choice β = 1/4φ2

M and this is what we implicitly assume in the rest of this section.
In figure 1 (center) we show the ratio of reduced pressure and energy density. The

equilibrium values for p and ε constitute the equation of state (EoS) peq(ε). We use the
deviation of the ratio w ≡ p/ε = P/E from 1/3 as a measure of the amount of conformal
symmetry breaking. Similarly, we could measure it via the deviation of the speed of sound
squared c2

s ≡ dpeq/dε from its conformal value c2
s,CFT ≡ 1/(d− 1) = 1/3. One advantage of

w over c2
s is that the former can be computed without taking derivatives, and hence it is

defined instantaneously, which will be useful when we study the model in de Sitter space.
In flat space, w asymptotes to the conformal value w = 1/3 in the low- and high-energy
density regimes. In between, at energy densities comparable to the scale of the theory,
E ≈M4, w deviates significantly from its conformal value.

At leading order in the hydrodynamic expansion (see below) the transport properties in
flat space are determined by two coefficients: the shear viscosity and the bulk viscosity. The
ratio of shear viscosity over entropy density, η/s = 1/4π, is universal in all holographic
theories with an Einstein gravity dual [27]. This means that knowledge of the entropy
density (3.11) is sufficient to determine the shear viscosity in our case. The bulk viscosity
can be obtained from the logarithmic derivative of the entropy density with respect to the
value of the scalar field at the horizon [28]:

ζ

s
= 1
π

(d log s
dφh

)−2
. (3.12)

In figure (1) (right) we plot the ratio of bulk viscosity and energy density as a function
of the reduced energy density. As we will see in section 4.4, the specific combination
9Mζ/ε measures the viscous contribution to w in dS4. The bulk viscosity vanishes at small
and large energy densities where the model is conformal. In between, at energy densities
comparable to the scale of the theory, E ≈M4, ζ is non-zero.
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3.2 Hydrodynamics

The thermodynamic analysis of the previous section only applies to static equilibrium
states. It serves as a starting point for describing the long wavelength dynamics of the
system in a hydrodynamic approximation. The modern interpretation of hydrodynamics
as an effective theory in terms of a gradient expansion has been reviewed many times (see
e.g. [29] and references therein). The purpose of this section is to review some of the basic
definitions in order to fix notation and to show how scheme dependence manifests itself in
the hydrodynamic expansion.

In the absence of other conserved charges, long-wavelength excitations in the gauge
theory are solely controlled by the dynamics of the energy-momentum tensor. In this limit
the stress tensor can be approximated in terms of a derivative expansion

〈T̂ ij〉 = ε uiuj + peq(ε)∆ij − η(ε)σij − ζ(ε)∆ij∇kuk +O(∇2) , (3.13)

σij = ∆ik∆jl(∇kul +∇luk)−
2
3∆ij∇kuk , (3.14)

where ui is the fluid velocity and ∇i ≡ ∆ij∇j , with ∆ij = gij(0) + uiuj , is the projection of
the covariant derivative to the spatial components in the local rest frame of the fluid. The
EoS peq(ε) and the transport coefficients η(ε) and ζ(ε) are functions of the energy density
that depend on the microscopic details of the theory. The hydrodynamic approximation
involves a choice of hydrodynamic variables and specifying these variables is called a choice
of frame. We choose the Landau frame, in which the velocity ui and energy density ε are
defined as the timelike eigenvector and the eigenvalue, respectively, of the stress tensor,
namely 〈T̂ ij〉uj = −εui.

The leading term in the expansion (3.13) is called the ideal hydrodynamic part. It
describes the flow of energy and momentum in terms of a locally equilibrated ensemble
locally boosted to non-vanishing velocity ui. Higher-order terms are expressed in terms
of gradients of energy density and fluid velocity. In the following we will neglect terms of
O(∇2) and only consider the leading ideal and sub-leading viscous part of (3.13). We will
write this term as

〈T̂ ij〉 =
(
ε+ peq(ε)

)
uiuj + peq(ε) gij(0) + Πij , (3.15)

where the viscous tensor Πij in general contains contributions due to bulk and shear vis-
cosity.3 In this work we will only consider homogeneous and isotropic flows without shear
stresses, in which case the viscous tensor simplifies to

Πij = −
(
gij(0) + uiuj

)
ζ(ε)∇kuk . (3.16)

The possible scheme dependence of the microscopic energy-momentum tensor also
manifests itself in the hydrodynamic approximation. As discussed in section 3.1, peq given
in (3.11) is not uniquely defined but contains an arbitrary contribution p0 identified as the
vacuum pressure. As explained above, in flat space the entire freedom in the choice of

3The appearance of shear and bulk viscosity as leading contributions in Πij is specific to our choice of
Landau frame. In other frames these contributions are different [30].
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renormalisation scheme reduces to the choice of this constant. Thus one way to proceed is
to make an explicit choice and perform all calculations in that scheme. Alternatively, we
may work with manifestly scheme-independent quantities as follows. We first define the
excess pressure and the excess energy density over the vacuum as

∆ε ≡ ε+ p0 , ∆peq = peq − p0 . (3.17)

These are scheme-independent, and we may then view the EoS as a relation of the form
∆peq = ∆peq(∆ε). Next we rewrite the second term in (3.15) as

peqg
ij
(0) = ∆peqg

ij
(0) + 〈T̂ ijvac〉 , 〈T̂ ijvac〉 ≡ p0g

ij
(0) . (3.18)

This separates (3.15) into a scheme-dependent vacuum contribution 〈T̂ ijvac〉 and a scheme-
independent contribution

〈∆T̂ ij〉 ≡ 〈T̂ ij〉 − 〈T̂ ijvac〉 . (3.19)

Note that the fact that 〈T̂ ijvac〉 is proportional to the background metric gij(0) is consistent
with the expectation that the vacuum must respect the symmetries of this background.
Since 〈∆T̂ ij〉 and ∆ε are scheme-independent, we can now define a scheme-independent
velocity field defined through the relation

〈∆T̂ ij〉uj = −∆ε ui . (3.20)

The scheme-independent part of (3.15) is then given by

〈∆T̂ ij〉 =
(
∆ε+ ∆peq(∆ε)

)
uiuj + ∆peq(∆ε)gij(0) −

(
gij(0) + uiuj

)
ζ(∆ε)∇kuk . (3.21)

4 Dynamics in de Sitter space

4.1 The dual gravity problem

We now turn to the main subject of this work: the far-from-equilibrium dynamics of our
strongly coupled non-conformal gauge theory on a time-dependent background geometry.
For this we numerically solve the fully non-linear equations of motion (2.3) of the dual
gravity theory, following the method reviewed in e.g. [31–33], and extract the time evolution
of the expectation values of the energy momentum tensor and the scalar operator from the
solution near the boundary.

We are ultimately interested in the evolution of field theory observables on dS4. How-
ever, it is useful to set up the problem with a slightly more general boundary metric of
Friedmann-Lemaître-Robertson-Walker type

ds2
b = g(0)ijdxidxj = −dt2 + S0(t)2d~x2 . (4.1)

For S0(t) = eHt the boundary metric (4.1) becomes the dS4 (2.14) with curvature scalar
R = 12H2.
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We use generalised Eddington-Finkelstein (EF) coordinates to parametrise the bulk
geometry and the scalar field

ds2 = −A(r, t)dt2 + 2drdt+ S(r, t)2d~x2 , φ = φ(r, t) , (4.2)

where the asymptotic boundary is located at r =∞. The line element (4.2) has a residual
gauge freedom in the radial coordinate

r → r̄ ≡ r + ξ(t) , (4.3a)
A(r, t)→ Ā(r̄, t) ≡ A(r̄ − ξ(t), t) + 2∂tξ(t) , (4.3b)
S(r, t)→ S̄(r̄, t) ≡ S(r̄ − ξ(t), t) , (4.3c)

which we exploit in our numerical scheme to fix the coordinate value rAH at the apparent
horizon, defined by the condition Ṡ(rAH, t) = 0, to a constant.

Using (4.2) the equations of motion (2.3) result in the following set of equations

S′′ = −2
3S

(
φ′
)2
, (4.4a)

Ṡ′ = −2ṠS′

S
− 2SV

3 , (4.4b)

φ̇′ = V ′

2 −
3Ṡφ′

2S − 3S′φ̇
2S , (4.4c)

A′′ = 12ṠS′

S2 + 4V
3 − 4φ̇φ′ , (4.4d)

S̈ = ṠA′

2 − 2Sφ̇2

3 , (4.4e)

where a prime denotes a radial derivative, f ′ ≡ ∂rf , and an overdot is short-hand for the
modified derivative ḟ ≡ ∂tf + 1

2A∂rf .
Imposing the metric (4.1) and the asymptotic behaviour of the scalar field

lim
r→∞

φ(r, t) = M

rd−∆UV
= M

r
(4.5)

as boundary conditions, solutions of (4.4) can be expressed near the boundary as gener-
alised power series:

A(r, t) = r2 +2rξ(t)+ξ(t)2−2ξ′(t)+ S′0(t)2−2S0(t)S′′0 (t)
S0(t)2 − 2M2

3 +
a(4)(t)
r2

+ 2M2S′′0 (t)
3S0(t)

log(r)
r2 +O(r−3) , (4.6a)

S(r, t) =S0(t)r+S′0(t)+ξ(t)S0(t)−M
2S0(t)
3r +M2(3ξ(t)S0(t)−S′0(t))

9r2

+
M(4M3S0(t)2−72φ̄(2)(t)S0(t)2 +48Mξ(t)S0(t)S′0(t)+9M(S′0(t)2 +S0(t)S′′0 (t)))

216S0(t)r3

+M2(S′0(t)2 +S0(t)S′′0 (t))
6S0(t)

log(r)
r3 +O(r−4) , (4.6b)

φ(r, t) = M

r
−Mξ(t)

r2 +
φ̄(2)(t)
r3 −M

(
S′0(t)2 +S0(t)S′′0 (t)

)
2S0(t)2

log(r)
r3 +O(r−4) . (4.6c)
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Note that the fall-off coefficient φ̄(2) in EF coordinates is generically different from the
one in FG coordinates φ(2). The coefficients a(4)(t) and φ̄(2)(t) in these series cannot be
determined from the near-boundary analysis but need to be extracted from the full bulk
solution. The equations of motion impose the following relation on these coefficients

a′(4)(t) + 4a(4)(t)
S′0(t)
S0(t) = −4

3M
(

2φ̄(2)(t)
S′0(t)
S0(t) + φ̄′(2)(t)

)
+ 16M4S′0(t)

27S0(t) (4.7)

+2
3M

2
(
S′0(t)S′′0 (t)
S0(t)2 + 4S0

(3)(t)
3S0(t) + 4ξ(t)2S′0(t)

S0(t) + 4ξ(t)ξ′(t)
)
.

This relation follows from the momentum constraint (4.4e) and implies covariant conserva-
tion of the holographic stress tensor in the boundary theory, namely the first Ward identity
in (2.41).

The EF coordinate system (4.2) is useful to obtain time-dependent solutions of the
equations of motion numerically. However, our expressions for the expectation values of the
stress tensor (2.32) and the scalar operator (2.35) assume the FG coordinate system (2.12).
Although we could recompute the corresponding expressions in EF gauge, it will prove more
convenient to relate the EF and the FG coefficients. For this purpose we need to find the
asymptotic coordinate transformation between the EF and the FG coordinate systems. We
first write a series ansatz for the EF coordinates rEF and tEF in powers of the radial FG
coordinate rFG, related to ρ in (2.12) through ρ = 1/r2

FG:

rEF (rFG, tFG) =
∞∑
n=1

[
rn(tFG) + ρn(tFG) log(rFG) + · · ·

]
(rFG)n , (4.8a)

tEF (rFG, tFG) = tFG +
∞∑
n=1

[
tn(tFG) + τn(tFG) log(rFG) + · · ·

]
(rFG)−n , (4.8b)

where dots stand for therms with higher powers of log(rFG). All these logarithmic terms
appear because we are working with a curved boundary metric. The metric transforms as
follows

gFGµν = ∂xαEF
∂xµFG

∂xβEF
∂xνFG

gEFαβ , (4.9)

where xµEF = (rEF , tEF ) and xµFG = (rFG, tFG). Substituting the general expressions for
metrics in EF and FG coordinates

gEFµν =
(

0 1
1 gEF1,1

)
, gFGµν =

(
r2
FG 0
0 gFG1,1

)
(4.10)

into the transformation law (4.9) leads to a set of two equations

0 = ∂tEF
∂rFG

∂tEF
∂tFG

gEF1,1 + ∂rEF
∂rFG

∂tEF
∂tFG

+ ∂tEF
∂rFG

∂rEF
∂tFG

, (4.11a)

0 = r2
FG − 2∂rEF

∂rFG

∂tEF
∂rFG

−
(
∂tEF
∂rFG

)2
gEF1,1 , (4.11b)
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which can be solved order by order in rFG and rFG log(rFG) for the expansion coefficients
in (4.8). For the leading behaviour of the metric in FG coordinates we find the following
expressions

gFG1,1 =−r2+
φ̄2

(0)
3 −

S′0(t)2−2S0(t)S′′0 (t)
2S0(t)2 −

φ̄2
(0)S

′′
0 (t)

2S0(t)
log(r)
r2 −

 φ̄4
(0)

36 +
3a(4)(t)

4

 1
r2 (4.12a)

+
2φ̄2

(0)S0(t)2(2S′0(t)2−3S0(t)S′′0 (t)
)
−3(S′0(t)2−2S0(t)S′′0 (t))2)

48S0(t)4
1
r2 +O(r−4),

gFG2,2 =r2S0(t)2− 1
3 φ̄

2
(0)S0(t)2− 1

2S
′
0(t)2+

φ̄2
(0)
6
(
2S′0(t)2+S0(t)S′′0 (t)

) log(r)
r2 (4.12b)

+S0(t)2
( 19

108 φ̄
4
(0)−

1
4a(4)(t)−

2
3 φ̄(0)φ̄(2)(t)

) 1
r2

+

27S′0(t)4+186φ̄2
(0)S0(t)3S′′0 (t)+288φ̄2

(0)S0(t)4ξ(t)2

432S0(t)2

 1
r2 +O(r−4),

where we have set r ≡ rFG and t ≡ tFG to shorten notation. After replacing the ra-
dial coordinate by ρ ≡ 1/r2 we obtain explicit expressions for the non-vanishing metric
components in FG coordinates (2.12) in terms of the coefficients in EF gauge

g(0)tt = −1, g(0)xx = S0(t)2 , (4.13)

g(2)tt =
φ̄2

(0)
3 − S′0(t)2 − 2S0(t)S′′0 (t)

2S0(t)2 , g(2)xx = −
2φ̄2

(0)S0(t)2 + 3S′0(t)2

6 , (4.14)

g(4)tt =−
3a(4)

4 −
φ̄4

(0)
36 +

φ̄2
(0)
(
2S′0(t)2−3S0(t)S′′0 (t)

)
24S0(t)2 −

(
S′0(t)2−2S0(t)S′′0 (t)

)2

16S0(t)4 , (4.15a)

g(4)xx =−
a(4)(t)S0(v)2

4 −
2φ̄(0)φ̄(2)(t)S0(t)2

3 + 2
3 φ̄

2
(0)ξ(v)2S0(v)2

+
31φ2

(0)S0(t)S′′0 (t)
72 +

19φ̄4
(0)S0(v)2

108 + S′0(v)4

16S0(v)2 , (4.15b)

h(4)tt =
φ̄2

(0)S
′′
0 (t)

4S0(t) , h(4)xx = −
φ̄2

(0)
(
2S′0(v)2 + S0(t)S′′0 (t)

)
12 . (4.16)

The corresponding near-boundary expansion of the scalar field reads

φ(r, t) = φ̄(0)ρ
1/2 +

φ̄(2)(t)−
φ̄3

(0)
6 +

φ̄(0)
(
S′0(t)2 − 2S0(t)S′′0 (t)

)
4S0(t)2 − φ̄(0)ξ(t)2

 ρ3/2

+
φ̄(0)

(
S′0(t)2 + S0(t)S′′0 (t)

)
4S0(t)2 ρ3/2 log(ρ) +O(ρ5/2) . (4.17)
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From the above expression one can now read off the relations between the expansion coef-
ficients in FG and EF coordinates

φ(0) = φ̄(0) = M , (4.18)

ψ(2)(t) = −1
2 ψ̄(2)(t) , (4.19)

φ(2)(t) = φ̄(2)(t)−
φ̄3

(0)
6 +

φ̄(0)
(
S′0(t)2 − 2S0(t)S′′0 (t)− 4ξ(t)2S0(t)2)

4S0(t)2 . (4.20)

Using these relations we can express the non-vanishing components of the holographic
stress tensor in terms of the coefficients in the near boundary expansion in EF gauge:

E(t) =−
3a(4)(t)

4 −Mφ̄(2)(t)+ 3S′0(t)4

16S0(t)4 +M2
(
ξ(t)2 + S′0(t)2

8S0(t)2 + 2S′′0 (t)
3S0(t)

)
(4.21a)

−M2α
S′0(t)2

2S0(t)2 −M
4
(
β− 7

36

)
,

P(t) =−
a(4)(t)

4 + 1
3Mφ̄(2)(t)+ S′0(t)2 (S′0(t)2−4S0(t)S′′0 (t)

)
16S0(t)4 (4.21b)

−M
2

3

(
ξ(t)2 + S′0(t)2

8S0(t)2 + 13S′′0 (t)
12S0(t)

)
+M2α

(
S′0(t)2

6S0(t)2 + S′′0 (t)
3S0(t)

)
+M4

(
β− 5

108

)
.

Similarly, the expectation value of the operator Ô is given by

O(t) = −2φ̄(2)(t) +M

(
2ξ(t)2 − S′0(t)2

4S0(t)2 + 5S′′0 (t)
4S0(t)

)

−Mα

(
S′0(t)2

S0(t)2 + S′′0 (t)
S0(t)

)
−M3

(
4β − 1

3

)
. (4.22)

As mentioned above, the coefficients α and β in (4.21) and (4.22) encode the scheme-
dependence of E ,P and O.

4.2 Numerical procedure

Our main interest is to compute the time evolution of P, E and O in a dynamical back-
ground geometry. For this purpose we have to solve the set of equations (4.4) with consis-
tent initial and boundary conditions for the metric and the scalar field. The preparation
of initial states and our specific choice of time-dependent boundary conditions for the met-
ric will be discussed in the next section. Here we concentrate on the evolution algorithm
assuming that the initial data and the boundary metric are known.

The set of equations (4.4) has a nested structure that allows us to treat them on every
slice of constant EF time as ordinary differential equations in the radial coordinate for the
functions S, Ṡ, φ, φ̇ and A. Knowing these functions on a single time slice is sufficient
to evolve them to the next slice. In practice we do not directly solve (4.4) but rather
a set of equations for a new set of functions {S̃, ˜̇S, φ̃, ˜̇φ, Ã}. These are obtained from the
original variables by subtracting all the divergent terms, as well as some finite ones, that are
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explicitly known from the near-boundary analysis (4.6). The new functions are therefore
manifestly finite and take the form

A(r, t) = r2 +2rξ(t)+ξ(t)2−2ξ′(t)+ S′0(t)2−2S0(t)S′′0 (t)
S0(t)2 − 2M2

3

+log(r)
(
Alog,1(t)

r2 +Alog,2(t)
r3

)
+ Ã(r, t)

r2 , (4.23a)

S(r, t) =S0(t)r+S′0(t)+ξ(t)S0(t)−M
2S0(t)
3r +M2(3ξ(t)S0(t)−S′0(t))

9r2

+log(r)
(
Slog,1(t)
r3 + Slog,2(t)

r4 + Slog,3(t)
r5

)
+ log(r)2

r5 Slog,4(t)+ S̃(r, t)
r3 , (4.23b)

φ(r, t) = M

r
−Mξ(t)

r2 +log(r)
(
φlog,1(t)
r3 + φlog,2(t)

r4

)
+ φ̃(r, t)

r3 , (4.23c)

Ṡ(r, t) = 1
2r

2S0(t)+r
(
S0(t)ξ(t)+S′0(t)

)
+ 3(S0(t)ξ(t)+S′0(t))2−M2S0(t)2

6S0(t) − 2M2S′0(t)
9r

+log(r)
(
Ṡlog,1(t)
r2 + Ṡlog,2(t)

r3

)
+

˜̇S(r, t)
r2 , (4.23d)

φ̇(r, t) =−M2 +log(r)
(
φ̇log,1(t)
r2 + φ̇log,2(t)

r3

)
+

˜̇φ(r, t)
r2 . (4.23e)

The functions Alog,1(t), Alog,2(t), etc. are explicitly known from the near-boundary anal-
ysis but are too long to be displayed here. Furthermore, we switch to the inverse radial
coordinate z ≡ 1/r where the boundary is located a z = 0.

We now implement the following procedure to solve the initial value problem:

1. For a given radial profile of the scalar field φ̃(z, t0) at some initial time t0 we first
solve the second-order Hamiltonian constraint equation (4.4a) for S̃(z, t0). In prin-
ciple this differential equation requires boundary conditions, but in our (subtracted)
formulation this equation (and the following except the one for ˜̇S) has regular sin-
gular points, and demanding regularity of the solution fixes the boundary condition.
The simplest way to achieve this is to use spectral methods (see below), which are
by construction regular.

2. Next we use φ̃(z, t0) and S̃(z, t0) in (4.4b) and solve for ˜̇S(z, t0). The boundary
condition for this function reads

˜̇S(z = 0, t0) = 1
36S0(t0)

[
18M

(
φ̄2(t0)−Mξ(t0)2

)
+ 18a4(t0)− 5M4

]
+ 1

144M
2
[
32ξ(t0)S′0(t0)− 61S′′0 (t0)

]
+ 3M2S′0(t0)2

16S0(t0) . (4.24)

Evaluating this requires knowledge of a4(t0) and φ̄2(t0), whereby a4(t0) is required
as a separate initial condition and φ̄2(t0) needs to be extracted from the initial data
for the scalar field.

3. Once φ̃(z, t0), S̃(z, t0) and ˜̇S(z, t0) are known we solve (4.4c) for ˜̇φ(z, t0).
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4. Once φ̃(z, t0), S̃(z, t0), ˜̇S(z, t0) and ˜̇φ(z, t0) are known we can solve (4.4d) for Ã(z, t0).

5. Once Ã(z, t0) and ˜̇φ(z, t0) are known, we use the definition of the dot-derivative

˜̇φ(z, t0) = ∂tφ̃(z, t0) + 1
2z

2Ã(z, t0)∂zφ̃(z, t0) (4.25)

to solve for time derivative of the initial data, ∂tφ̃(z, t0). This equation depends on
the gauge choice ξ′(t0), which we fix by demanding that the apparent horizon stays
at a constant value of the radial coordinate. This is done by solving ∂tṠ(zAH, t) = 0
for ξ′(t0).

6. Finally, we compute a′4(t0) from (4.7), whereby we obtain φ′2(t0) from the near-
boundary expansion of ∂tφ̃(z, t0). We subsequently evolve the initial data to the next
time slice t1 = t0 + ∆t for example via

a4(t1) = a4(t0) + a′4(t0)∆t , φ̃(z, t1) = φ̃(z, t0) + ∂tφ̃(z, t0)∆t , (4.26)

and the start over at the first entry in this list.

The only element missing in the above discussion is the initial value of the gauge
function ξ(t). We use this freedom to fix the initial apparent horizon (AH) at zAH = 1/2.
This is done by computing Ṡ for the gauge ξ0(t0) = 0 first, and then numerically solving
the apparent horizon equation Ṡ(zhor, t0) = 0 (see also (4.45)). We then update

ξ1(t0) = rAH − rhor = ξ0(t0) + 2− 1/zhor , (4.27)

where zhor = 1/rhor is the current location of the apparent horizon. To increase precision
this procedure is repeated a few times, each time using an updated ξ(t0).

We solve the resulting equations numerically with a Chebyshev pseudo-spectral method
(see e.g. [34]) using typically N = 60 grid points in the radial direction. For the stepping
between time slices (sixth entry in the list above) we use a fourth-order Adams-Bashforth
method [35] with a time step ∆t = 1/(10N2). After each time step we evaluate the
momentum constraint (4.4e) to monitor the accuracy of the numerical evolution.

4.3 Initial states and time evolution

We are interested in studying the time evolution of gauge theory states in dS4. There are
of course many ways to construct initial states for this evolution. The strategy that we
will follow is to start with thermal equilibrium states in flat space. We will then smoothly
increase the value of H at the boundary from H = 0 to its desired value in each case.
This leads to a transient period of time in which dH/dt 6= 0 and the boundary geometry
interpolates between flat space and dS4. After this time H becomes constant and we are
in the desired situation of studying the dynamics of an excited gauge theory state in de
Sitter space. A natural question that arises is whether the resulting state at late times is
sensitive to the specific way in which we prepare the initial state. One of our main results
is that the answer to this question is negative. In this sense the way in which we initialise
the evolution implies no loss of generality.
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Figure 2. Construction of initial states in flat space. All dimensionful quantities are given in units
of M and we choose the renormalisation scheme β = 1/16. (Left) Initial guess (red) and resulting
thermalised equilibrium configuration (blue) for the scalar field profile. (Center) Evolution of E(t),
P(t) and O(t). (Right) Ring-down of |O(t)−O(5)| (blue) and |P(t)−P(5)| (red) together with an
exponential fit for the lowest quasinomal mode ω1 ≈ 6.00 + 4.64i (doted black).

The thermal equilibrium states in flat space could be constructed in FG coordinates
with the procedure presented in section 3.1 and then numerically transformed to the EF
gauge (4.2), which is better suited for time evolution. However, in practice it is simpler to
construct the solutions directly in EF coordinates by relaxation. To do this, we start with
some initial guess for a4(t0) and for the scalar field profile φ̃(z, t0). This is in general an
excited state, which we then evolve with flat boundary conditions for the metric (S0 = 1)
using the algorithm outlined in the previous section. After a few units of tM the state
relaxes to thermal equilibrium. An example of this procedure is shown in figure 2, where
all dimensionful quantities are given in units of M and we have chosen β = 1/16. In
the left plot we show the initial guess φ̃(z, t0) = 0 (red) together with the thermalised
equilibrium result φ̃(z, t = 5) (blue). Dots indicate the non-equidistant distribution of
points on the Chebyshev grid in the radial direction. For the subsequent evolution with
time-dependent boundary metric at least 60 grid points together with 70-digit-accurate
arithmetic is used. In the middle plot we show how E , P and O evolve towards their
equilibrium values. Energy conservation in flat space and homogeneity of the state imply
that the energy density E remains constant during the evolution. The evolutions of P
and O are not independent but are constrained by the Ward identity (2.55). Close to
the equilibrium state both oscillate according to the quasinormal ring-down shown in the
plot on the right. Our numeric evolution allows us to extract an estimate for this lowest
quasinormal mode at zero momentum given by ω1 ≈ 6.00 + 4.64i.

We now turn on the Hubble rate at the boundary so that the boundary metric changes
smoothly from Minkowski to dS4. We implement this by imposing the following relation
on the function S0(t) in the boundary metric (4.1)

S′0(t)
S0(t) = H

[
1 + tanh

(
Ω (t− t∗)

)]
2 . (4.28)

This relation mimics a time-dependent Hubble rate that changes from zero at t� t∗ to H
at t� t∗ in a time of order 1/Ω. We will refer to this transient period as “the quench”. The
corresponding form of S0(t) follows from integrating (4.28) subject to the initial condition
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Figure 3. (Left) Different protocols for S′0(t)/S0(t), all using our maximal value of H = 3. (Right)
All protocols lead to the same late-time value of E .

S0(t = 0) = 1

S0(t) = e
Ht
2

cosh
(
Ω(t− t∗)

)
cosh(Ωt∗)


H
2Ω

. (4.29)

In figure 3 we illustrate this procedure for several choices of parameters. We will refer to
each of these choices as a “protocol”. We choose a theory with H/M = 3, we measure all
dimensionful quantities in the figure in units of M and we fix the renormalisation scheme
by choosing α = 0, β = 1/16. On the left plot we show the ratio S′0(t)/S0(t) and on
the right the evolution of the energy density. We vary both the “quench parameter” Ω,
which controls the length of the transient period, and the parameter a4, which controls the
initial energy density. We find that the state at t � t∗ does not depend on the values of
these parameters. In particular, we see in figure 3 (right) that the energy density at late
times always approaches the same value. This convergence to the same late-time state is
remarkable in view of the vastly different values of the initial energy density, and it means
that the late-time state only depends on H and M . We will explore this dependence in
our subsequent simulations. Given the independence of the initial conditions, in most
simulations we will use the same values Ω = 4, t∗ = 1 and a4(t = 0) = −100. The only
exception will be when H ≥ 2, in which case we will use Ω = 8 in order to have a quench
time Ω−1 that is sufficiently shorter than the expansion rate H−1.

After a time t − t∗ � Ω−1 the boundary geometry settles down to dS4 and we can
analyse the evolution of field theory states on this expanding background. In figure 4
we show the evolution of E , P, O and E + P (which in equilibrium would be enthalpy)
for a number of different values for the expansion rate H. Shortly after the quench, the
energy density and the pressure start to decrease rapidly due to the expansion of space.
At some later time the initial energy of the plasma is almost entirely depleted. From this
point onward the energy and the pressure are dominated by their (scheme-dependent, see
below) vacuum contributions equivalent to a pure cosmological constant, meaning that at
late-times E = −P . The evolution of O is entirely fixed in terms of the energy density and
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Figure 4. (Top) Energy density (left) and pressure (right) as functions of time for different values
of H. (Bottom) Expectation value of the scalar operator (left) and the combination E + P as
functions of time for different values of H. The black dashed line is the expansion factor e−3Ht

of a fluid with zero pressure. All dimensionful quantities are measured in units of M and we set
α = 0, β = 1/16.

the pressure by the Ward identity (2.40). The scheme-dependence of the late-time limits

E∞ ≡ lim
t→∞
E(t) , P∞ ≡ lim

t→∞
P(t) , O∞ ≡ lim

t→∞
O(t) (4.30)

is encoded in the dependence on α and β of eqs. (4.21). As mentioned above, in order to fix
the scheme we choose β = 1/4φ2

M = 1/16 throughout the paper. Moreover, in this section
(but not elsewhere) we set α = 0. Note that the enthalpy E + P is scheme-independent
because the dependence on α and β cancels out in this combination. In figure 4 (bottom
right) we see that E +P decays for any value of H, where to guide the eye we have added
a black dashed line proportional to e−3Ht (appropriate for a pressureless fluid).

As mentioned above, we set α = 0 only in this section. In the following we will use
variables which have their late time values subtracted. In other words, we will measure
energy, pressure, etc with respect to their late-time asymptotic values. These subtracted
quantities have the advantage that they are scheme-independent because the dependence
on α, β cancels out. Conceptually, the reason for this is that the scheme dependence is the
same for any state. For any given values of H,M , working with subtracted variables is
equivalent to choosing a scheme in which

α = − 2
M2H2E∞|α=0, (4.31)
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with E∞|α=0 the final numerical value of E in figure 4. Note that we treat different values
of H,M as corresponding to different theories for each of which a separate renormalization
scheme can be chosen. None of our later results will hence directly compare stress tensors
for different values of H or M . The logic behind the choice (4.31) is similar to the logic
behind the choice β = 1/4φ2

M . In the latter case we require the energy and pressure of the
vacuum state to vanish. In the case of (4.31) we require the energy and the pressure of the
late-time, asymptotic state to vanish. In this scheme, the values of the energy density and
the pressure during the evolution can be interpreted as those of excitations on top of the
late-time state. In the next subsection we will study the dynamics of these excitations.

4.4 Hydrodynamic regime

One of the lessons of holographic studies is that hydrodynamics becomes a good description
of a plasma once the quasi-normal modes of the system have decayed. At strong coupling,
the decay time is of order of the inverse temperature 1/T in both conformal [3, 4, 36] and
non-conformal [22, 37] theories. Since the expansion rate is of order 1/H, we expect that
hydrodynamics will provide a good description provided that T > H. In this regime the
expansion can then be seen as an almost-adiabatic process in which local properties of
matter are close to those in equilibrium. Under these circumstances the expectation value
of the energy-momentum tensor of the system can be approximated in terms of the gradient
expansion discussed in section 3.2. If H �M or H �M then the energy density at which
the hydrodynamic description ceases to be valid is close to the UV or to the IR fixed point
of the gauge theory. In these regions the dynamics is quasi-conformal, the bulk viscosity
is close to zero, and the relation between energy and pressure is essentially determined by
symmetry. It follows that the most interesting range of parameters is H ∼M , which in our
units means H ∼ 1. Therefore we will focus on the evolution of states with initial energy
densities of order 1 and we will vary the value of H from a few times larger to a few times
smaller than 1. As suggested by the discussion above, we will find a qualitative change in
the applicability of hydrodynamics around H = 1.

In order to compare the evolution of the holographic energy-momentum tensor to the
hydrodynamic approximation it is convenient to work with hydrodynamic variables that
are manifestly scheme-independent, namely independent of α. To do this we start with the
general form of the energy-momentum tensor for homogeneous and isotropic states

〈T̂ ij〉 = N2

2π2

{
(E(t) + P(t))uiuj + P(t)gij(0)

}
, (4.32)

where ui =
(
1, ~0

)
is a future pointing time-like vector and E(t) and P(t) are reduced

energy density and pressure in the rest frame defined by ui, respectively. This general
form is independent of the hydrodynamic approximation and applies in particular to states
preserving the symmetries of dS4, which in addition to (4.32) also satisfy the relation
E(t) = −P(t). As shown in figure 4 (bottom right) and studied in more detail in section 4.6,
all our states are attracted to states preserving the symmetries of dS4 such that the energy-
momentum tensor of these late-time states can be written as

〈T̂ ij∞〉 = N2

2π2 P∞g
ij
(0) , (4.33)
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where P∞ is scheme-dependent because it depends on α. In the spirit of section 3.2 we
build scheme-independent combinations of the energy-momentum tensor components in
which all dependencies on α cancel out:

〈∆T̂ ij〉 = 〈T̂ ij〉 − 〈T̂ ij∞〉 , ∆E = E + P∞ , ∆P = P − P∞ . (4.34)

These are the variables we use to build the hydrodynamic benchmark we compare to the
evolution obtained from solving the time-dependent dual gravity problem. Using (4.34)
in (3.21) we obtain the hydrodynamic approximation for the pressure in the Landau frame4

∆Phydro(t) ≡ N2

2π2

{
∆peq(∆E(t))− 3Hζ(∆E(t))

}
+O(H2) , (4.35)

where we have used ∇iui = 3H. This expression shows that H controls the size of spatial
gradients in the velocity field, where H = 0 gives the leading term in the gradient expansion
which only depends on the equilibrium pressure on flat space. In the following we study
a number of specific examples to see how well this approximation with and without the
viscous contribution agrees with the exact solution obtained from the full holographic
simulation.

Figure 5 shows the time evolution of the excess pressure divided by the excess energy
density, which in equilibrium is determined by the equation of state, for six different val-
ues of H.5 Recall that all dimensionful quantites are measured in units of M . The black
lines show the exact, strongly coupled evolutions obtained holographically, the red dashed
lines show the viscous hydrodynamic approximation according to (4.35) and the blue dot-
ted lines show the ideal hydrodynamic approximation according to the equation of state
∆Peq(∆E(t)). Note that the latter approaches unity at very early and very late times,
as expected from the existence of the UV and IR fixed points in the gauge theory (see
figure 1), but deviates from this value in between due to the non-conformal nature of the
gauge theory. Before the quench all states are in thermal equilibrium on Minkowski and as
expected all curves agree. Although after the quench the gradients due to the dS expansion
become important, for H < 1 there is a period of time during which the results are well de-
scribed by viscous hydrodynamics. For example, for H = 1/3, 1/2 this agreement extends
to times around H(t − t∗) ∼ 1.4. It is remarkable that around these times the difference
between ideal and viscous hydrodynamics is of order one, indicating that the first-order
viscous corrections are as large as the ideal terms. This provides another example of hy-
drodynamics working with large gradients [3–5], in this case in a dynamical spacetime. For
H > 1 the evolution after the quench is never well described by hydrodynamics and we
conclude that the evolution is far from equilibrium.

4Both bulk viscosities in (4.35) and (3.13) are manifestly scheme independent. A subtle question regard-
ing scheme dependence is however if these two functions are truly the same functions. Even though they
have both been obtained by the same prescription (defining energy densities with respect to the maximally
symmetric state), these backgrounds are not precisely equal. Nevertheless, since the scheme dependence
has the form αH2 any difference will scale as H2 and can hence be attributed to higher order viscous effects
that we do not take into account in this paper.

5More precisely, what is shown is actually 3P/E for the value of α specified in (4.31) which, after the
quench, coincides with 3∆P/∆E .
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Figure 5. Scheme-independent ratio of the excess pressure over the excess energy density defined
in (4.34) as a function of time for the same initial state but different values of H.5 The vertical
grey bands indicate the duration of the quench. The solid black curves labelled “strong coupling”
correspond to the exact result obtained holographically. Dotted blue and dashed red curves corre-
spond to the ideal and viscous hydrodynamic approximations, respectively. In the plots with H < 1
viscous hydrodynamics provides a good approximation to the exact result for some time after the
quench. During part of this period the difference between ideal and viscous hydrodynamics is of
order unity, meaning that gradient corrections are as large as the ideal terms. In the plots with
H ≥ 1 viscous hydrodynamics never provides a good approximation to the exact result.
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Figure 6. For H = 1 (left) and H = 2 (right) we compare the result of figure 5 with an equivalent
run that starts with an energy density 19.3 times higher. The original run is displayed in lighter col-
ors and gray, whereas the high-energy run is displayed in dark colors and black. The high-energy run
is shifted by an extra time of H∆t = 0.76 for both figures, in order to guarantee that the energy evo-
lution of both simulations agree at late times. After this shift in time there is virtually no difference
between the results, except small differences before the quenches (displayed gray and dark gray).

It is interesting to ask how the results of figure 5 would change when using a higher
initial energy density, which for H = 1, 2 and a 19.3 times higher initial energy density is
shown in figure 6. In that case the quench has a more moderate effect on the state and the
energy density will take longer to cool down under the exponential expansion. Both these
effects can at late times be incorporated by an extra shift of H∆t ≈ 0.76, after which the
∆E evolutions agree and hence also the viscous hydrodynamic results. Before the quench
the energy densities are different and correspondingly the equation of state, as visible in
the figure. It is also visible that the lower energy density has a larger effect from the quench
(small wiggle around t = 0), even though the effect is modest. This comparison clearly
shows that the statement that viscous hydrodynamics provides a good approximation at
early times for small expansion rates H is valid independent of the initial energy density,
but it has to be interpreted at a time where viscous corrections are sizeable, whereby this
time can depend on the initial energy density.

Importantly, as time passes the energy density in the expanding background decreases.
At some point the energy density will become of the same scale as the gradients, and
hydrodynamics need no longer apply. Indeed, we find that at later time as ∆E → 0 the
full evolution always deviates from the hydrodynamic evolution and can characteristically
develop a negative pressure excess for H & 1. Note that since we compare the pressure
excess the sign of this pressure is unrelated to the negative pressure of a cosmological
constant contribution, rather it means that the final pressure in figure 4 is approached
from below. We stress that this negative pressure is a completely out-of-equilibrium effect
which may not be inferred directly from the equilibrium dynamics of the plasma in flat
space. The next subsection will describe this late time evolution in more detail.

4.5 Effective equation of state and quasinormal modes

In the previous section we have shown that the late-time evolution of our system is not well
described by hydrodynamics. In this section we will demonstrate that it is instead possible
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to describe the dynamics in terms of small perturbations around the maximally symmetric
late-time state. Because the late-time state has a dual description in terms of a geometry
with a horizon, the dynamics of small perturbations in the gauge theory is determined by
“quasi-normal modes” (QNM) of the dual black brane. We have used quotation marks in
the previous sentence to emphasize that we are slightly abusing the nomenclature, because
the term QNM is normally used in the context of stationary solutions, whereas the late-
time, black brane solution of to us is not stationary. Nevertheless, the fact that the time
dependence of our solution is only “along the spatial gauge theory directions” leads to
many familiar properties for excitations that are homogeneous along these directions. The
spectrum of such excitations for a different non-conformal theory on de Sitter space was
computed holographically in [17] via a perturbative expansion around the conformal limit.
The low-lying QNMs were found to be purely imaginary, with the mysterious exception of
the third mode, which was found to have non-vanishing real and imaginary part. While
we will not attempt a direct calculation of the QNM spectrum of our model in this paper,
we will extract an estimate for the lowest QNM from the numerical solution and confirm
its purely dissipative nature.

Once the excess energy density as a function of time is known we can obtain the
pressure from the covariant conservation of the energy-momentum tensor ∇i〈∆T̂ij〉 = 0,
which for the dS4 metric (2.14) evaluates to

∆P(t) = −∆E(t)− ∆E ′(t)
3H . (4.36)

At late times ∆E(t) is well described by

∆E(t) = Ae−iωt , (4.37)

where A is the amplitude of the fluctuation and ω is a purely imaginary quasinormal mode
with Imω < 0. By (4.36), this implies that ∆P(t) and ∆E(t) satisfy at sufficiently late
times an EoS-like relation of the form

∆P(t) = weff∆E(t) (4.38)

with
weff = −1 + iω

3H = −1 + (−Imω)
3H . (4.39)

This effective EoS explains the constant late-time ratio 3∆P(t)/∆E(t) in figure 5. We can
extract an estimate for weff from our numerical results at late times. In figure 7 we show
two examples for this. We find ω = −3.398H i (−2.782H i) for H = 1/2 (2) which gives
3weff = 0.398 (−0.218) in precise agreement with the final values of 3∆P(t)/∆E(t) shown
in the middle plot in the top (bottom) row of figure 5.

Since the dS expansion dilutes the energy density of the initial state, one can think of
the time evolution in dS as a dynamical implementation of the gauge theory RG group. It
may therefore seem surprising that, in general, weff 6= 1/3 at late times, given that our gauge
theory is conformal in the infrared when formulated in flat space. The reason is that, when
the theory is placed in a dS spacetime, the Hubble rate H acts as an IR cut-off [38], in a way
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Figure 7. Decay of E + P (solid blue) for H = 1/2 (left) and H = 2 (right), together with the
QNM fit (dashed black) and their absolute difference (dashed red).

similar to the effect of placing the theory at finite temperature. As a consequence, the IR be-
haviour of the gauge theory on dS is approximately conformal only in the limits H �M or
H � 1. In the first case the RG flow of the gauge theory in dS is similar to that in flat space,
in the sense that it explores almost all possible energy scales and is only cut-off very close
to the IR fixed point of the theory. This behaviour is consistent with the top row of figure 5
(recall that M = 1), where we see from the late-time behaviour that weff grows towards 1
as we move from the right plot (H = 1) to the left plot (H = 1/3). In the second case the
IR cut-off is so close to the UV fixed point that the entire RG flow is approximately confor-
mal. This is supported by the perturbative analysis of [17], which suggests that conformal
symmetry is restored at late times in the limit of large expansion rates H �M . We indeed
find evidence for this behaviour in figure 5: weff obtains its minimal value wmin

eff = −0.298
for H = 1 (top-right plot) and grows monotonically for H > 1 (bottom row). Although
we were not able to obtain numerical results for H � 3 because the numerics becomes
increasingly challenging, we expect weff to approach the value 1/3 in the limit of large H.

To strengthen our conclusion that the late-time geometry is determined by quasi-
normal modes we show in figure 8 three evolutions for H = 1 in which we quench the
boundary metric function S0(t) by a factor 1 +Ae−32(t−tq)2 with amplitudes A = 0.05, 0.01
and 0.005 at quenching times tq = 3.5, 5 and 7, respectively. The quenches shown perform
work on the system, which leads to an increase of energy and, as a consequence, also to an
increase of E + P. Quenching the late-time dynamics of the system excites higher QNMs.
The curves in figure 8 show the decay of these modes within a time of order 1/H, after
which the system returns to a state whose late-time dynamics is entirely characterized
by weff , i.e. by the first QNM. In the next section we discuss the maximally symmetric
late-time state in more detail.

4.6 Late-time solution

At late times the geometry and the scalar field approach the following form (see also [18])

ds2
∞ = −A∞(r)dt2 + 2drdt+ e2HtS∞(r)2d~x2 , φ = φ∞(r) , (4.40)
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Figure 8. Evolution of E + P (left) and 3∆P/E (right) for H = 1 quenched with different
amplitude at different times. The quenches are realised by exciting the boundary metric with
Gaussian perturbations whose widths are indicated by the red, green and blue bands. The quench
performs work on the system, which leads to an increase of E and explains the increase of E + P.
After the quench the ratio of pressure and energy density quickly returns to the late-time value of
the unquenced evolution (the small oscillations are verified to be numerical artefacts).

where A∞, S∞ and φ∞ are the time independent late-time limits of the metric functions
and the scalar field defined as

A∞(r) ≡ lim
t→∞

A(t, r) , S∞(r) ≡ lim
t→∞

e−HtS(t, r) , φ∞(r) ≡ lim
t→∞

φ(t, r) . (4.41)

In the following we will drop the index “∞” and implicitly assume this limit in all ap-
pearances of A, S and φ. Under these conditions the equations of motion simplify to

0 = Aφ′′ +
(
A′ + 3

(
AS′

S
+H

))
φ′ − V ′ , (4.42a)

0 = φ′2 + 3S′′

2S , (4.42b)

0 = A′′ + 4 (S′ (A′ + 3H) +AS′′)
S

+ 2AS′2

S2 + 2Aφ′2 + 4V , (4.42c)

0 = A2
(

2
(
S S′′ + S′2

)
S2 + 2φ′2

3

)
+ AS′ (A′ + 8H)

S
+H

(
2H −A′

)
+ 4AV

3 , (4.42d)

0 = 3 (S′ (A′ + 6H) + 2AS′′)
2S + 3AS′2

S2 +Aφ′2 + 2V . (4.42e)

The late time geometry (4.40) possesses an event horizon located at r = rEH defined
by the condition

A(rEH) = 0 . (4.43)

Using this condition in (4.42d) one finds that the surface gravity at the event horizon equals
the Hubble rate (see also [39] where this is obtained for N = 4 SYM)

κEH = 1
2A
′(rEH) = H . (4.44)
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Because the geometry depends on time, the apparent horizon, i.e. the outermost trapped
lightlike surface, does not coincide with the event horizon. Note that [40] also considered
both apparent and event horizons on expanding (boost invariant) geometries, but in this
case the expansion is not as fast as our exponential expansion and hence the apparent
and event horizons agree at late times. The radial position of the apparent horizon rAH is
determined by Ṡ|rAH = 0, which in the coordinate system (4.41) gives the condition

0 = S(rAH) d
dte

Ht + 1
2e

HtA(rAH)S′(rAH) . (4.45)

Using this condition in (4.42d) together with (4.42e) allows us to express surface gravity
at the apparent horizon

κAH = 1
2A
′(rAH) = −H . (4.46)

We arrive at the conclusion that surface gravity at the apparent horizon equals minus
surface gravity at the event horizon

κAH = −κEH . (4.47)

Above, we used the ansatz (4.40) and the equations of motion to derive the surface
gravity of the event and of the apparent horizon. This ansatz can be seen as educated guess
motivated by our numerical results which at late times agree with (4.40) very accurately.
However, it is possible to arrive at (4.44) without invoking the equations of motion or taking
guidance from numerical analysis. For this we use as starting point the assumption that
the system evolves towards a vacuum state that by definition obeys the symmetries of the
background geometry. On de Sitter space this state is known as Bunch-Davis vacuum [41].
By the holographic duality the bulk metric dual to this vacuum state has to satisfy the
isometries of dS4 as well. A domain wall parametrization in FG coordinates makes these
isometries manifest6

ds2
DW = A∞(ρ)

(
−dt2FG + e2HtFGd~x2

)
+ dρ2 , (4.48)

where the time and radial coordinate are related to those in (4.40) by

ρ(r) = −
∫ ∞
r

dr′A∞(r′)−1/2 , tFG(r, t) = t−
∫ ∞
r

dr′A∞(r′)−1 . (4.49)

Demanding that (4.40) can be transformed to the manifestly dS4-isometric domain wall
form (4.48) gives the relation

S∞(r) =
√
A∞(r) e−H

∫∞
r

dr′ A∞(r′)−1
. (4.50)

Beyond the event horizon (r < rEH) the metric function A∞(r) is negative and naively one
could expect the right-hand side of (4.50) to acquire an imaginary part. The exponent,
however, diverges as r approaches the event horizon, which leads to a term a log(r −
rEH) when assuming a regular near horizon expansion of the form A∞(r) = a(r − rEH) +

6Solutions of this type have been constructed in [38] for a variety of gauge theories.
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Figure 9. Surface gravity κ (left) and area density (right) of event and apparent horizons for two
different values of the Hubble rate.

O
(
(r − rEH)2). The imaginary parts exactly cancel and S∞ remains real inside the event

horizon if
A∞(r) = 2H (r − rEH) +O

(
(r − rEH)2

)
. (4.51)

This gives precisely the same result for κEH = lim
r→rEH

1
2A
′(r) as (4.44), only by demanding

dS4 symmetry and regularity of the solution at the horizon. It is possible to derive (4.46)
in an analogous way as well.

In figure 9 we show surface gravity (left) and area density (right) of event and apparent
horizon for H = 1 and H = 2.5. Initially, when the geometry is static and dual to a thermal
state on flat space, the event and apparent horizon coincide and therefore have equal surface
gravity and area density that depends on the choice of the initial temperature. On the
expanding background the locations of apparent and event horizon deviate and so do the
respective surface gravities and area densities. In accordance with the analytic analysis, the
numeric evolution evolves towards a solution where surface gravity of event and apparent
horizon precisely satisfy κEH = −κAH = H. For the gravity dual of N = 4 SYM theory on
de Sitter space apparent and event horizon densities can be straightforwardly computed
because the bulk geometry is known explicitly [16, 42]. This geometry has no apparent
horizon but an event horizon whose area density is given by

S(rEH, t)3 = 8H3S0(t)3 = 8κ3
EHS0(t)3 . (4.52)

For comparison, a thermal state in N = 4 SYM on flat space has S(rEH)3 = κ3
EH/8.

Indeed, we show in figure 9 (right) that as H increases from 1 to 2.5 and thereby
approaching the conformal UV fixed point (M/H → 0), the apparent horizon area density
(S(rhor, t)3/S0(t)3) decreases and the normalised event horizon area density approaches
the conformal value at late times. The properties of the late time solution are solely
determined by the value of H and M , but the way they are approached depends on the
initial conditions. Thermal initial states with large entropy, and therefore with large initial
event and apparent horizons area, lead to decreasing area densities of both, apparent and
event horizons. An example for this is the simulation for H = 1 shown in figure 9 (right).
However, if the initial entropy is such that the corresponding horizon area is smaller than
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the area density of the late-time horizon, the area density grows. This is precisely what
we find for example for the event horizon area density for H = 2.5 (dashed black) shown
in figure 9 (right). It may seem surprising that the event horizon area density increases
even though the surface gravity decreases substantially. This, however, can qualitatively be
explained by comparing the analytic area densities of N = 4 SYM in flat space to de Sitter
space, where indeed at fixed surface gravity the area density is much smaller on flat space.
The area density of the apparent horizon (blue) decreases monotonically in all cases shown.

This is a clear indication that the holographic interpretation of bulk horizons areas
as entropy in the dual field theory is subtle when the boundary theory is expanding. We
will elaborate on this in the discussion. However, we emphasize that the comoving area
density of the apparent horizon S(rhor, t)3 is a monotonously growing function of time in
accordance with Hawinkgs area theorem [43] and the more recent discussion7 [18, 20] in
the context of a holographic model similar to the one we use here.

In the next section we analyse the entanglement properties of the de Sitter vacua
constructed in this section and comment on the subtleties involved in the assignment of an
effective entropy to their horizon area densities.

5 Entanglement and horizon entropies

The holographic duality maps the area of event horizons in time independent bulk ge-
ometries to the thermodynamic entropy of thermal states in the dual field theory. In time-
dependent geometries this mapping is obscured, firstly because the dual field theory is not in
thermal equilibrium and thermodynamic concepts of entropy and temperature do not apply
and secondly because the mapping of the horizon to the boundary is not necessarily unique.
To study the time evolution of non-equilibrium states in the field theory it can nevertheless
be useful to define an effective temperature in terms of surface gravity of the event horizon.8

In time independent geometries event and apparent horizon coincide and the entropy
density in the dual field theory is uniquely defined in terms of the area density of the event
horizon in the bulk. Because de Sitter space is expanding it is non-trivial to map points in
the boundary to points on the horizon in the bulk whose area density changes due to the
exponentially growing scale factor (see also [19] for related difficulties in interpreting the
apparent horizon area).

A robust and gauge independent notion of entropy is given by entanglement en-
tropy [45] of spatial subregions R in the QFT defined as

SR = −TrRρ̂R log ρ̂R , (5.1)

where ρ̂R = TrR̄ρ̂ denotes the reduced density matrix obtained by performing on the full
density matrix ρ̂ a partial trace over the degrees of freedom outside R. For simplicity we

7We are grateful to Alex Buchel for bringing this to our attention.
8We will also look at the apparent horizon, even though the physical interpretation of temperatures

defined in terms of apparent horizons is not obvious, because it in general depends on the slicing of spacetime.
See however [44] for an interpretation of its area as coarse grained entropy.
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will assume these subregions to be spatial balls at some fixed time t = t0 with radius `

R = {t = t0, 0 ≤ r ≤ `, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π} . (5.2)

The coordinate r in this section is the radial coordinate at the boundary and should not
be confused with the holographic coordinate. Since the density matrix ρ̂ can be time-
dependent, i.e. defined in terms of time-dependent states, entanglement entropy is also
well defined for states that are not in thermal equilibrium. For H = 0 and ` → ∞ the
entangling region R covers an entire spacelike slice of Minkowski space. In this limit
ρ̂R = ρ̂ and (5.1) equals the von Neumann entropy of the full density matrix, i.e., the
thermodynamic entropy of a quantum state in thermal equilibrium. For H 6= 0 the QFT
inherits the causal structure of de Sitter background which has a cosmological event horizon
located at r = H−1. Although spatial regions of size ` > H−1 are causally disconnected,
quantum states on such regions can be entangled [46].

Direct field theory computations of entanglement entropy are only possible in excep-
tional cases like for example in two-dimensional CFTs [47] and in dimensions higher than
two only in non-interacting QFTs [48]. The holographic duality replaces the field theory
computation of entanglement entropy by a much simpler extremisation problem for the sur-
face area AR of a codimension two surface, homologous to R, in the bulk theory [49, 50]

SR = AR4G . (5.3)

The boundary of the relevant surface coincides with the boundary of the entangling region
R in the field theory and extremises the area functional in the bulk theory

AR[X] =
∫

d3σ
√

Det (∂aXµ∂bXνgµν) . (5.4)

The surface embedding Xµ = Xµ(σa) is parametrised by three intrinsic coordinates for
which we choose σa = {r, θ, ϕ}. The entangling regions (5.2) do not break spherical sym-
metry in the boundary theory. We can then parametrise the bulk surface with

Xµ(z) = {z(r), t(r), r, θ, ϕ} . (5.5)

This choice simplifies the area functional considerably. Integration over the angular coor-
dinates θ and φ can be performed explicitly and the remaining expression takes the form
of a geodesic action

AR[X] = 4π
∫

dr

√
ḡαβ(z(r), t(r))dXα

dr
dXβ

dr s.t. Xµ(0) = {0, t0, `, θ, ϕ} , (5.6)

where the metric ḡαβ is related by a conformal factor to a three dimensional subspace
(α, β = {t, z, r}) of the bulk metric (4.40) (see also [51])

d̄s
2 = ḡαβdxαdxβ = (r S(z) a(t))4 gαβdxαdxβ . (5.7)
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where we use a(t) ≡ eHt in the following to simplify notation. The equations of motion
that follow from δAR = 0 take the form of a non-affine geodesic equation

d2Xα

dr2 + Γαβγ
dXβ

dr
dXγ

dr = J
dXα

dr , (5.8)

where Γαβγ is the Levi-Civitá connection associated to ḡαβ and is meant to be evaluated at
the location of the surface Xα(r); the viscous friction term on the right hand side includes
the Jacobian J = d2τ(r)

dr2 /d2τ(r)
dr2 that originates from transforming from the affine parameter

τ defined by dXα(τ)
dτ

dXβ(τ)
dτ ḡαβ = 1 to the non-affine parameter r.

For φ = 0 the field theory is N = 4 SYM theory and (5.8) has a simple analytic
solution z(r) =

√
`2 − r2 and t(r) = − log (1 + z(r)) in a gauge where A(z) = z−2 − 1.

In this case the de Sitter vacuum can be mapped by a conformal transformation to the
Minkowski vacuum [18] and the holographic entanglement entropy is equal to the area of
a hemisphere in AdS5 [49].

For the non-conformal case with φ 6= 0 the geodesic equations are too long to display
here and no closed solutions are available. At the turning point of the bulk surface located
at z∗ ≡ z(r = 0) the equations simplify by symmetry z′(r = 0) = t′(r = 0) = 0 to

t′′(r) = −3z(r)2a(t(r))2S(z(r))S′(z(r)) (5.9a)

z′′(r) = 3z(r)2a(t(r))S(z(r))
[
z(r)2a(t(r))A(z(r))S′(z(r))− S(z(r))a′(t(r))

]
. (5.9b)

The sign of z′′(r = 0) determines if the bulk surface can reach the boundary (z′′(r = 0) < 0)
or not (z′′(r = 0) > 0). The condition z′′(r) = 0 defines the ‘entanglement horizon’, i.e.,
a barrier in the bulk that extremal surfaces attached to the boundary do not cross (this
equals the boundary of the entanglement shadow as studied in [52, 53]). Its location is
determined by

0 = z2a(t)A(z)S′(z)− S(z)a′(t) = z2A(z)S′(z)−HS(z) . (5.10)

Plugging this relation into the definition of Ṡ gives

Ṡ + 1
2z(r)2A(z(r))a(t(r))S′(z(r)) = 0 . (5.11)

Except for the second term, this relation is equal to equation (4.45) that determines the
location of the apparent horizon. Since z(r)2A(z(r))S′(z(r)) is positive and monotonic
in z(r) the entanglement horizon is located between event and apparent horizon. For
boundary geometries that are de Sitter the entanglement horizon is a Lagrangian surface
of the bulk geometry, or in other words a surface with zero surface gravity (see also [54]
for similar results on extremal surface barriers). This can be shown by combining (5.10)
with the Einstein equations (4.42b) to (4.42e) which gives

κEnt = −z
2

2 A
′(z) = 0 . (5.12)

Furthermore, when the geometry is static (H = 0), we know from (4.45) that the apparent
horizon (Ṡ = 0) and event horizon (A = 0) coincide. From (5.11) we then see that
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this also solves the entanglement horizon equation, so that all three horizons coincide as
expected [55].

We compute the entanglement entropy numerically by shooting, i.e., by integrat-
ing (5.8) from the turning point z∗ of the geodesics to a cutoff-value for the holographic
coordinate zcut = ε/(1 − ξε) close to the boundary located at z = 0. Note that the gauge
freedom ξ in S(r) = r+ξ+O(1/r) near the boundary leads to an additional 1/ε dependent
divergence in the entanglement entropy. We eliminate the 1/ε divergence with the gauge
transformation r → r− ξ that ensures S(r) = r+O(1/r) and in addition fixes the residual
gauge freedom (r → r + ξ) in the radial coordinate. The cutoff regulated value for the
entanglement entropy can then be obtained by numerically solving the following integral

Scut
R = π

G

∫ z∗

zcut
dz (S(z)a(t(z))r(z))2

√
−A(z)t′(z)2 − 2t′(z)

z2 + (S(z)a(t(z))r′(z))2 . (5.13)

In figure 10 we show extremal surfaces in the gauge where the apparent horizon is
fixed at zAH = 1/2, obtained by shooting from different values of z∗, for several spherical
entangling regions of different radius `. Interestingly, surfaces with z∗ = zEH end on
the boundary precisely at r = 1/H where the cosmological horizon is located. The red
dashed curves in figure 10 are two examples for such surfaces with z∗ = 0.3597 (0.1961)
for H = 1 (2.5). Extremal surfaces of entangling regions larger than the cosmological
horizon (` > 1/H) probe regions behind the event horizon (solid black), but never beyond
the entanglement horizon (black dotted). In our gauge, where the apparent horizon (black
dashed) is located at zAH = 1/2, the entanglement horizon is located at z = 0.4554 (0.3434)
and zEH = 0.3597 (0.1961) for H = 1 (2.5). For comparison, in the gravity dual of N = 4
SYM theory on de Sitter the event horizon is located at zEH = 1/(2H − ξ) and extremal
surfaces can probe until z = 1/(H − ξ) in the gauge where zAH = −1/ξ.

In time independent geometries the apparent, event and entanglement horizon coincide
and bound the region that is causally connected to the boundary, as well as the region that
can be probed by extremal surfaces anchored at the boundary. For de Sitter we find that ex-
tremal surfaces can penetrate the event horizon, but only if their entangling region is super-
horizon, i.e. larger than the cosmological horizon. This implies that only a ‘super-observer’
with access to information in a region larger than the observable universe could in principle
be able to reconstruct the dual spacetime behind the event horizon from field theory data.

A physical explanation for this phenomenon is that the extremal surface corresponding
to the observable universe in the boundary is itself a cosmological horizon in the bulk, this
time of an observer at the origin on the boundary. This is illustrated in figure 11, where we
shoot a family of null geodesics (blue) from a generic point on the bulk extremal surface
(dashed red). This family is indeed just able to reach the origin at the boundary, which
asserts our statement that this point is an element of the (bulk) cosmological horizon
of an observer at the origin. The green curves on the other hand represent a family of
null geodesics that originate from a generic point beyond the cosmological horizon and are
therefore unable to reach the origin. The starting point of this second family of geodesics is
then element of a cosmological horizon in the bulk for an observer located at Hr = 0.4. We
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Figure 10. Extremal surfaces with various values of z∗ in the z − r plane (left) and t − r plane
(right) for H = 1 (top) and H = 2.5 (bottom). Solid, dotted and dashed black lines indicate
the radial location of event, entangling and apparent horizon, respectively. Red dashed curves are
extremal surfaces with z∗ = zEH which end on the boundary precisely at the location (r = 1/H) of
the cosmological horizon.

stress that the origin is not a special place, but only defined as the origin of the entangling
region used in this example.

Figure 12 shows the areas associated to the extremal surfaces for various values of the
cut-off ε. Asymptotically the area equals [46]

A = 4π`2
( 1

2ε2 + 1
3 log(ε) +O(1)

)
+O(log(`)). (5.14)

The leading divergence is clear from the left figure, whereas the subtracted version (right)
shows the difference with the leading order divergence. Unfortunately it is numerically
difficult to extract higher order coefficients that depend on the non-conformality of the
theory. Naively from figure 10 it may seem that for large ` we should obtain a volume law
scaling, by the usual argument that the extremal surface hovers at the entanglement horizon
and hence gets a contribution proportional to S(zEnt, t)3 times the volume of the region.
For time independent geometries this is indeed the case, but interestingly our extremal
surfaces have a non-trivial time dependence through S(z, t) = S0(z)a(t(r)) and t(r). In
fact, as illustrated in figure 10 and more explicitly in figure 13 the time as the surface hovers
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Figure 11. Blue and green curves are two families of null geodesics, originating on a generic point
of the extremal surface with z∗ = zEH and a generic point in the bulk that is not enclosed by the
extremal surface. The fact that this family just reaches the observer at the origin implies that the
extremal surface is the (bulk) cosmological horizon of an observer at the origin (r = 0).
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Figure 12. Entanglement entropy for our H = 1.0 (left), rescaled by the area and cut-off ε2,
together with the leading order divergence subtracted (right), for different values of the cut-off.

the horizon is for H = 1 approximately given by tEnt ≈ −0.3− log(`). In combination with
a(t) = eHt and S0(zEnt) ≈ 0.69 this implies that the part of the surface9 hovering the
entanglement horizon has an area 4

3π`
30.134/`3 ≈ 0.559 which is only a constant term as

opposed to the usual volume scaling of the time independent setting.

6 Discussion

We have used a holographic model to study the dynamics of a strongly coupled non-
conformal gauge theory in four-dimensional de Sitter space. The four-dimensional dS
metric is prescribed a priori and is probed by the strongly coupled matter. In other words,
the five-dimensional gravitational model provides a dual description of the dynamics of

9In the following we assume that this is the entire surface, which is valid for `� 1/H.
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Figure 13. Minimum time reached on the extremal surface (see also figure 10) as a function of
length. At large ` this time grows logarithmically with `.

the gauge theory matter but not of the four-dimensional gravitational field on which this
matter propagates.

We have carefully explained the holographic renormalisation of the model and the
anomalies that arise in the dual field theory due to the curved boundary geometry and
the scalar field. After reviewing thermodynamic and transport properties of the model in
flat space, we have presented numerical results for the fully non-linear time evolution of
finite-temperature states towards the Bunch-Davis vacuum at late times. We have shown
that the approach to the de Sitter vacuum is characterised by an effective relation of the
form P = wE . This is different from the equilibrium equation of state in flat space, so
much so that actually w is negative if the ratio H/M is close to unity.

We have studied in detail the properties of the de Sitter vacua of the holographic
model and we have analyzed the different horizons that arise in the bulk geometry. The
connection between event horizons and thermodynamics found for black holes [56] also
applies to cosmological horizons [57]. Therefore, in analogy with the Bekenstein-Hawking
temperature of black holes [56, 58], an observer living at the boundary would associate a
temperature to the cosmological horizon of de Sitter space

TdS = κdS
2π = H

2π , (6.1)

where the surface gravity κdS is evaluated at the horizon and equals the Hubble rate H.
Interestingly, we found two temperatures in our five-dimensional dual description: one at
the bulk event horizon, equal to the result by Hawking and Gibbons of H/2π, and another
temperature at the deeper apparent horizon, equal to −H/2π (also found in [19]). In the
literature there are several works [59–61] suggesting such a negative temperature based
on the first law. In our case the apparent horizon is however causally disconnected from
the boundary as well as time-slicing dependent, which suggests that indeed the positive
temperature of the event horizon is the physical temperature. We also compared the areas
of the event and apparent horizons, whereby we found that the area density of the event
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horizon can be much larger than the one of the apparent horizon. It would be interesting
to study the holographic coarse grained entropy proposal of [44] in our setup.

In analogy with the Bekenstein-Hawking law, which relates the entropy of a black hole
to the area of its event horizon, one can also associate a gravitational entropy to de Sitter
space

SdS = AdS
4G4

= π

H2G4
, (6.2)

where AdS = 4π/H2 is the area of the cosmological horizon and G4 is the Newton’s constant
of the four-dimensional boundary theory. Note that this entropy is formally infinite in
our case since the boundary metric is non-dynamical and hence implicitly we are setting
G4 = 0. Therefore the gravitational entropy (6.2) should not be confused with the entropy
that one may want to assign to the area densities of the event, entanglement and apparent
horizons that we studied in sections (4.6) and (5). In principle these would be related to
the entropy of the matter in de Sitter space, but this relation is not straight-forward. For a
stationary geometry the three areas agree and can be identified with the entropy density of
the boundary gauge theory. Firstly, in our expanding geometry the horizons do not coincide
with one another, and furthermore the mapping between points at the horizon and at the
boundary is ambiguous. Secondly, such an entropy density interpretation suggests a volume
law, whereas we showed in figure 12 in combination with figure 13 that for large regions
the entanglement horizon contribution to the entanglement entropy is just a constant term.
The divergent piece of the entanglement entropy satisfies an area law, which prohibits a
direct extraction of the IR part of the entropy (see also [46]). It is hence difficult to
have a direct interpretation of the entropy of de Sitter itself (see however [62], where a
thermodynamic interpretation with a suitable regulated free energy is proposed), but we
note that in a theory with dynamical gravity it is conjectured that this entropy is limited by
a Bekenstein-Hawking term of A/4G4. This entropy, or part thereof, can then potentially be
identified with the entanglement entropy whereby 1/G4 plays the role of the UV cut-off [63].

A further result of our analysis of the entanglement entropy of boundary regions was
that the extremal surfaces corresponding to entangling regions that coincide with the
boundary observable universe exactly touch the bulk event horizon and are in fact a bulk
cosmological horizon. It would be interesting to understand analytically why the extremal
surface associated with the boundary cosmological horizon is itself a bulk cosmological
horizon.

Our analysis of perturbations around the late-time state showed that, after a quench,
the state relaxes within a time 1/T ∼ 1/H (see figure 7 and 8), in agreement with [17]. In
our case this time can be a parametrically different from ∆E1/4. This hence gives further
credibility that the de Sitter temperature provides a physical temperature. On the holo-
graphic side this can be understood by the fact that the relaxation time is determined by the
distance between the boundary and the event horizon, which is indeed proportional to 1/H.

For our late-time solution the energy density excess over the asymptotic late-time
solution decreases exponentially. As a consequence, at the time when the negative excess
pressure becomes relevant the energy density excess ∆E will quickly become smaller than
T 4, with T ∼ H the background de Sitter temperature (note that this temperature is
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the minimal temperature, accelerating observers will see an even higher temperature [64]).
This raises the question of whether the energy and pressure excesses in this regime can
be measured by an actual observer, since the relevant modes will have wavelengths larger
than the observable Universe.
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