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We present a novel framework for the equation of state of dense and hot quantum chromodynamics
(QCD), which focuses on the region of the phase diagram relevant for neutron star mergers and core-
collapse supernovae. The model combines predictions from the gauge/gravity duality with input from
lattice field theory, QCD perturbation theory, chiral effective theory, and statistical modeling. It is
therefore, by construction, in good agreement with theoretical constraints both at low and high densities
and temperatures. The main ingredients of our setup are the nonperturbative V-QCD model based on the
gauge/gravity duality, a van der Waals model for nucleon liquid, and the DD2 version of the Hempel-
Schaffner-Bielich statistical model of nuclear matter. By consistently combining these models, we also
obtain a description for the nuclear to quark matter phase transition and its critical end point. The
parameter dependence of the model is represented by three (soft, intermediate, and stiff) variants of the
equation of state, all of which agree with observational constraints from neutron stars and their mergers.
We discuss resulting constraints for the equation of state, predictions for neutron stars, and the location of
the critical point.
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I. INTRODUCTION

Solving QCD at intermediate density and temperature is a
long-standing open problem. Recent and upcoming develop-
ments in relativistic heavy ion collision experiments and
astrophysical observations of compact stars as well as their
mergers urgently demand progress in the theoretic modeling
of QCD at few times nuclear saturation density ns ¼
0.16 fm−3 and temperatures up to around 100 MeV. First-
principles approaches such as lattice QCD and perturbation
theory are not applicable in the relevant regime, and effective
field theory only works up to densities around the nuclear
saturation density. Despite recent progress in finite-
temperature chiral effective theory (CET) computations at
high loop order [1], typical densities and temperatures such
as estimated by realistic binary neutron star merger simu-
lations [2–7] remain currently out of reach.

A central quantity that is absolutely crucial in the
modeling of compact stars is the equation of state (EOS).
Because of the aforementioned lack of first-principles
results, the QCD EOS at intermediate densities currently
has large uncertainties at zero temperature, and even less is
known about the temperature dependence. These uncertain-
ties motivate us to formulate a novel framework, which
combines predictions from various different approaches in
different temperature and density regions of the QCD phase
diagram where they are expected to work best. The main
idea is to use gauge/gravity duality to model the physics at
large and intermediate densities, and combine this with
effective theory at low densities. This combination allows us
to establish a unified description of QCD matter for a wide
range of densities and temperatures including, but not
limited to, the ranges relevant for core-collapse supernovae
and neutron star mergers.
The QCD phase diagram is conjectured to include a

critical point where the nuclear to quark matter (QM)
transition ends. Ongoing experiments at RHIC (the beam
energy scan) already probe the region of the phase diagram
where the critical point may lie [8]. Future experiments at
FAIR [9,10] and NICA [11] will provide more detailed
information about this region, and will reach substantially
higher densities, i.e., densities well above the nuclear
saturation density. Consequently, it is timely to improve
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theoretical predictions for the location of the critical point
and theEOS in its vicinity.Our approach leads toEOSwhich
are in good agreement, among other things, with lattice
data at small density aswell aswith ab initio calculations and
observational data from neutron star measurements at
finite density and small temperature. Therefore we are
able to obtain controlled interpolations of the EOS to the
theoretically challenging region of intermediate densities
(ns ≲ nb ≲ 10ns) and low temperatures (T ≲ 150 MeV),
and sound estimates for the location of the critical point.
The model, which we construct in this article, is a

thermodynamically consistent combination of three main
approaches: the holographic V-QCD model [12,13], an
adjusted van der Waals (vdW) model of nuclear matter
[14], and the nuclear theory model Hempel-Schaffner-
Bielich (HS) EOS [15] with DD2 relativistic mean-field
(RMF) theory interactions [16]. We also use the Akmal-
Pandharipande-Ravenhall (APR) model [17] of cold nuclear
matter and a meson gas model near the QCD crossover
region (see Fig. 1), but they play a smaller role in the final
EOS. The reason we use the APR model rather than HS
(DD2) for cold nuclear matter near the saturation density is
because if we used HS(DD2) only, the resulting EOS would
be so stiff that it would be in conflict with the LIGO-Virgo
measurement of the tidal deformability for GW170817.
We use V-QCD [12,13], which is a nonperturbative

model for QCD that is based on the gauge/gravity duality,
at intermediate and high densities, i.e., densities above the
nuclear saturation density. This model allows us to describe
both the nuclear and quark matter phases and therefore the
phase transition in a single framework. It has been shown
[18,19] to lead to a feasible EOS for cold QCD matter
which is in good agreement with all available data.
Its extension to finite temperature is, however, problem-

atic due to a generic limitation in gauge/gravity duality that
the EOS in confined phases, including the nuclear matter
phase, is independent of temperature and therefore not
fully realistic. In the absence of other reliable ways to
estimate the temperature dependence of the EOS for dense
nuclear matter, we use essentially the simplest approach: a

van der Waals type model of nuclear matter, i.e., a gas of
nucleons and electrons with excluded volume (EV) cor-
rections and an effective potential. The effective potential is
tailored for the model to agree with V-QCD at zero
temperature, and therefore the van der Waals model gives
an extrapolation of the V-QCD nuclear matter result to
finite temperatures. The third and final main constituent of
the model is the nuclear theory model at low densities
(below and around nuclear saturation density). In this
article, we use the HS(DD2) model.
Figure 1 shows a sketch of the building blocks and the

resulting phase structure [20] of our model and their
dependence on temperature and density, which is the main
topic of this article. This dependence is completed by the
dependence on the charge fractionYq, i.e., allowing deviation
from β equilibrium, while imposing charge neutrality, which
is required for realistic simulations of neutron star mergers
and core-collapse supernovae. For this dependenceweuse the
prediction of the HS(DD2)model in the nuclear matter (NM)
phase and a simple model, arising from the pressure of free
electrons, in the QM phase whose construction we discuss in
Sec. III. D.We provide three tabulated variants of the density,
temperature, and charge-fraction-dependent EOS of this
article in the CompOSE database [21,22].
Naturally, constructing such a complicated model, which

covers regions of the phase diagram where direct theoreti-
cal input from QCD is lacking, requires use of approxi-
mations and simplifications. In particular the use of the
vdWmodel for the temperature dependence does not reflect
the complicated dynamics of QCD in the regime of dense
nuclear matter. However, in the absence of reliable first-
principles computations of the temperature dependence,
using simple models might be the most reasonable option.
Similar comments apply to the dependence on charge
fraction, which we adopt from the HS(DD2) model using
mean-field theory in this region, and from an even simpler
model in the quark matter phase. We also remark that the
region near the critical point in Fig. 1 is modeled through a
combination of three different models, which suggests that
only rough features of the EOS can be reliable.
The final model depends on a large number of param-

eters arising from the various approaches that it uses, and
from choices on how they are merged. While the parameter
space is subject to severe observational and theoretical
constraints, it is important to analyze the remaining
dependence on the parameters. Because of the complexity
of the model, we limit the study of this article to the largest
uncertainty arising from the parameter dependence on the
holographic V-QCD model. We remark, however, that one
of the main motivations of the combined framework of this
article is the overall reduced parameter dependence of the
final predictions. While we do not carry out a complete
analysis of this dependence here, it has been studied in
detail for the zero temperature reduction of the model.
Indeed, our hybrid method of using the most suitable model

FIG. 1. A schematic diagram that shows the construction for the
temperature dependence in the model. See text for details.
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in each region of the phase diagram together with imposing
constraints from neutron star observations leads to signifi-
cantly more constrained predictions and less arbitrary final
results than generic (polytropic) EOS models for cold QCD
matter [19,23].
Finally, let us comment on how the model of this article

is related to other recent research on the EOS of QCD.
The cold versions of the model, i.e., hybrid EOS using
V-QCD for dense nuclear and quark matter at zero
temperature and at β equilibrium, and various models
for the low density nuclear matter, were established and
studied in Refs. [18,19].
They have been applied in simulations of binary neutron

star mergers [18] and the study of rapidly rotating isolated
stars [24]. A related work [25] combined the HS(DD2)
model and two other general purpose models for the EOS
directly with the quark matter EOS from V-QCD, produc-
ing models for the EOS with dependence on temperature
and charge fraction outside β equilibrium. In the current
article, we extend this work, among other things, by
including the description of nuclear matter from gauge/
gravity duality and its temperature dependence, which is
our main focus, and also allows a consistent description of
the mixed nuclear-quark matter phase. Another framework
for the transition where nuclear and quark matter are
described on an equal footing is Ref. [26], where cluster
expansion was used (see also Ref. [27]). A recent article
[28] considered models in the van der Waals class for hot
and dense nuclear matter. Their focus was matching the
predictions of chiral effective theory with the vdW models
at low density, and to use the vdW models to extend the
results to higher densities and temperatures, whereas in
the current work we use the vdW model to extrapolate the
holographic cold hybrid EOS (which is feasible for all
densities) to finite temperatures.
There are several earlier studies of dense QCD matter

which combine equations of state from different models.
In models of nuclear matter, it is typical to use different
approaches for densities above and below the nuclear
saturation density, and the approach of Ref. [15], which
we also use in part in our construction, is an example of
this. When including quark matter it is likewise typical to
use combinations of models: examples of such approaches
are Refs. [29,30], which combine different approaches for
dense nuclear matter with the Nambu-Jona-Lasinio model
for quark matter at finite temperature, and Ref. [31], which
uses a similar approach but includes color superconducting
and color-flavor locked phases. Examples of other hybrid
approaches are Refs. [32–34]. Available general purpose
EOS, which similarly to our construction include both
nuclear and quark matter phases with dependence on
temperature and charge fraction, include two methods.
The first method uses the Shen-Toki-Oyamatsu-Sumiyoshi
EOS [35,36] for nuclear matter with the MIT bag model for
quark matter [37–40]. The second method uses the HS

(DD2) with a relativistic mean-field approach for quark
matter [41,42]. We compare our predictions to two models
in this latter class, as well as to well-established nuclear
theory models without quark matter, in Appendix D. In
addition, there is a recently constructed general purpose
EOS [43] which uses an extended bag model with the
Bombaci-Logoteta EOS [44]. See also the reviews of EOS
for supernovae and compact stars [45,46].
The article is organized as follows. In Sec. II, we review

the various building blocks of our approach. In Sec. III, we
show how the results for the EOS from these building blocks
can be combined into a single thermodynamically consistent
EOS. In Sec. IV, we analyze the EOS, predictions for the
critical point, and predictions for nonrotating neutron stars.
Our conclusions and future directions are given in Sec. V.We
additionally provide technical details on the construction
of our EOS (Appendix A), compare the vdW model to the
nuclear matter part of V-QCD (Appendix B), explain how
we determine our predictions for the QCD critical point
(Appendix C), and carry out a detailed comparison of our
EOS to earlier work (Appendix D).
Throughout this article we use Planck units where

c ¼ ℏ ¼ kB ¼ 1.

II. BUILDING BLOCKS OF THE MODEL

We start the discussion of our model by briefly reviewing
the various building blocks of the model.

A. Holographic V-QCD

A central ingredient in our setup is the use of the gauge/
gravity duality. It maps, in general, strongly coupled four-
dimensional field theory to classical five-dimensional
gravity. Therefore, challenging questions on the field
theory side can be solved by carrying out a simple classical
analysis on the dual gravity side. In this work we use the
V-QCD model in regions which do not admit a weakly
coupled description in terms of quarks, gluons, or hadrons.
V-QCD is an effective gauge-gravity model in the sense
that it contains a relatively large number of parameters
that are tuned to match with QCD data from experiments,
lattice analysis, and perturbation theory. This is particularly
useful in the context of hot and dense QCD as there
are plenty of lattice data available at low density, and
gauge-gravity models can be used to extrapolate these
data to higher densities at which first-principles methods
are not available [47–50]. Similar approaches have also
been implemented by using field theory, e.g., within the
Polyakov-loop extended Nambu–Jona-Lasinio model [51]
and the Polyakov-quark-meson model of Refs. [52,53].
Applying these ideas to V-QCD has been shown to lead to
feasible and well-constrained EOS for both dense quark
[54] and nuclear matter [13,18,19]. This means the model is
also able to describe the nuclear to quark matter phase
transition in a single framework.
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Let us then explain briefly how V-QCD is constructed.
We discuss here only the main features of the model and
refer the reader to Ref. [55] for a complete review with
precise definitions. The model contains both a gluon sector,
given by the improved holographic QCD model (five-
dimensional dilaton gravity) [56,57], and a flavor sector
arising through a pair of space filling flavor branes [58,59].
The flavors are dynamical: full backreaction of the branes
to the geometry is included formally by working in the
Veneziano limit [60,61] where both the number of colors
Nc and flavors Nf is large but their ratio isOð1Þ [12]. Note
that while the theory in the Veneziano limit is the starting
point, in the end one switches to a bottom-up approach,
where the contact of the holographic model to any specific
field theory is lost. As we stressed above, the final mode
should be seen as an effective model that is fitted to QCD at
physical values of Nc and Nf.
A basic feature of the gauge/gravity duality is that

various phases in the field theory map to different geom-
etries in the five-dimensional gravity theory. In the case of
V-QCD, there are two possible geometries. The first is a
horizonless geometry ending at a “good” kind of infrared
singularity [62] and the second is “planar” black hole
solution. The black holes can be charged, which is
interpreted as a nonzero baryon number arising from
deconfined quark matter [63,64]. The gravitational solution
includes a scalar condensate in the confined phase, which is
dual to the chiral condensate of QCD therefore implement-
ing chiral symmetry breaking [12,58,59]. These geometries
are therefore dual to a chirally broken confined hadron gas
(HG) phase and a chirally symmetric deconfined quark-
gluon plasma phase, respectively. For the plain confined
geometry, the thermodynamics is trivial in the sense that,
for example, the pressure is independent of temperature and
chemical potential; we will use other methods in this region
as we discuss below. For the deconfined phase, the temper-
ature and entropy density are calculated through black hole
thermodynamics [63–66]. Apart from hadron gas and quark
matter, we consider nuclear matter by employing the
approach of Ref. [13]. The nuclear matter phase is obtained
in an approximation that is based on a homogeneous
five-dimensional bulk field in the confined horizonless
geometry. The five-dimensional action of the model is then
obtained schematically as a sum of three terms:

SV-QCD ¼ Sg þ Sf þ SNM; ð1Þ

where the first one (Sg) is the action for improved holo-
graphic QCD, i.e., the gluon sector of the model, the
second one (Sf) is the flavor brane action important in the
quark-gluon plasma and quark matter phases, and (SNM) is
the action for homogeneous nuclear matter derived
in Ref. [13].
We do not present the details of the actions here, but as

we pointed out above, they contain a relatively high number

of parameters that need to be tuned to match the model
with QCD data. First, the model must agree with known
features of QCD such as asymptotic freedom, confine-
ment, linear glueball and meson trajectories, and chiral
symmetry breaking. Second, those parameters that are
left free after considering such qualitative constraints are
fitted to lattice data for thermodynamics of QCD [54,67].
Specifically, we use lattice data for the equation of state
of large-Nc pure Yang-Mills [68] and data for Nc ¼ 3
QCD with Nf ¼ 2þ 1 flavors at physical quark masses
[69,70] at small baryon number density. Interestingly, the
fit is stiff in the sense that the dependence of the various
model parameters is mild, but despite this a fit of high
quality is possible with all the parameter values remain-
ing in a natural range. At the moment, the fit uses flavor-
independent quarks with zero mass. See the review [55]
for a detailed discussion of this fit and the comparison of
the model with QCD in general.
After determining the model parameters, V-QCD has a

natural phase diagram that includes both nuclear and quark
matter [13,55]. The EOS for quark matter agrees with QCD
lattice data at zero density and finite temperature, with
perturbative QCD for high values of the baryon number
chemical potential and/or temperature, and with constraints
for the EOS of cold quark matter EOS at low density
[25,54]. Note, however, that we have not included electrons
or photons, and as the quark flavors are identical, there is no
dependence on charge fraction. For the full model EOS
in the quark matter phase, we also need to model these
features, i.e., the electron pressure and the dependence on
charge fraction. We discuss this in Sec. II.
In the nuclear matter phase, the model is feasible at zero

temperature and can be used to construct phenomenologi-
cally viable EOS for cold QCD matter as was done in
Refs. [18,19,23]. However, there is an issue with the
extension to finite temperature: the thermodynamics is
temperature independent in the confined phases, as we
pointed out above. This is a rather generic feature of gauge/
gravity duality and arises due to taking the limit of largeNc:
the pressure of confined color singlet hadron states, which
are the constituents of the confined matter, is suppressed
by 1=N2

c with respect to the pressure of the deconfined
matter [71]. Because of this issue, the thermodynamics in
the confined “hadron gas” phase without nuclear matter is
trivial, i.e., that of empty space. But also in the nuclear
matter phase, the temperature dependence is absent. While
this result may be a rather good zeroth-order approxima-
tion, it prevents us from building a fully realistic EOS
directly based on V-QCD. In order to cure this issue, we use
a vdW model instead for the temperature dependence,
which we discuss next.

B. van der Waals hadron gas model

The vdW model consists of a bosonic and a fermionic
sector. The ideal gas pressure of the whole system is
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pidðT; fμkgÞ ¼
X
i

pðiÞ
FDðT; μi; miÞ

þ
X
j

pðjÞ
BEðT;mjÞ þ pγðTÞ: ð2Þ

The first term pðiÞ
FD is the fermionic contribution that

describes nucleons, antinucleons, electrons, and positrons
denoted by the index i ∈ fn; n̄; p; p̄; e; ēg. The bosonic

sector is given by the last two terms, where pðjÞ
BE and pγ are

the contributions of mesons and photons, respectively.
We include all mesons with mj ≤ 1 GeV from the particle
data group listings [72]. The photon contribution pγðTÞ ¼
π2T4=45 is simply that of a blackbody photon gas. The
pressure of a relativistic ideal Fermi (Bose) gas is given by

pðkÞ
FD or BEðT; μk; mkÞ ¼

gk
6π2

Z
∞

0

p4

Ek

dp

eðEk−μkÞ=T � 1
; ð3Þ

wherein the index k denotes the fermion (boson) species

with relativistic dispersion relation Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

k

q
,þð−Þ

is for fermions (bosons), and gk is the spin degeneracy
factor. We also note that different fermion and antifermion
species have different chemical potentials while μk ¼ 0 for
the bosonic sector.
It is well known that the ideal hadron gas (IHG) picture

has vital shortcomings. Perhaps most importantly, it fails in
describing the ground state of NM, viz., saturation of NM at
T ¼ 0 and n ¼ ns. The reason for this shortcoming is the
fact that the IHG does not capture repulsive and attractive
vdW interactions of nucleons. Repulsive vdW interactions
are often implemented via excluded volume corrections
describing a hard-core repulsion of nucleons. The thermo-
dynamically consistent formulation of an IHG with EV
correction was developed in Ref. [73] (see also Ref. [74]).
A more natural picture of vdW interactions that realizes
both the short-range repulsive and the intermediate-range
attractive interactions was formulated in Refs. [75,76]
(see Ref. [14] for a more complete list of references).
The parameters of the vdW interactions are typically
fixed by requiring consistency with the saturation density
ns and binding energy per nucleon of the ground state
ϵB=nb ¼ −16 MeV [77,78].
In our construction, we follow a different strategy and

use holography as guidance to model vdW interactions. In
the rest of this section, we present our implementation of
repulsive vdW interactions via EV corrections by employ-
ing the formulation in Ref. [73]. Attractive vdW inter-
actions are incorporated by a direct matching to the cold
V-QCD hybrid EOS at β equilibrium described in
Sec. III B.
The excluded volume corrected pressure is defined

implicitly by introducing a shifted chemical potential μ̃i:

pexðT; fμkgÞ ¼ pidðT; fμ̃kgÞ; ð4Þ

μ̃i ¼ μi − vipexðT; fμkgÞ: ð5Þ

We choose vp ¼ vp̄ ¼ vn ¼ vn̄ ¼ v0, ve ¼ vē ¼ 0 and set
v0 ¼ 0.56 fm3. The choice of v0 is motivated by compari-
son with V-QCD EOS at T ¼ 0. More details about our
choice and a comparison of different values for v0 are given
in Appendix B.
The number density is found by differentiating Eq. (4):

nðiÞex ðT; fμkgÞ ¼
∂pexðT; fμkgÞ

∂μi

¼ nðiÞid ðT; fμ̃kgÞ
1þ v0

P
ln

ðlÞ
id ðT; fμ̃kgÞ

; ð6Þ

where nðiÞid ¼ ∂pidðT; fμ̃kgÞ=∂μi and i denotes the fermion
species, while the index l runs over only nucleons and
antinucleons. At this point, we fix the chemical potentials
of antifermions as μī ¼ −μi. The total number density
for each fermion species is then given by the difference
between the corresponding particle and antiparticle number
densities:

ñðiÞex ðT; fμ̃kgÞ ¼ nðiÞex ðT; fμ̃kgÞ − nðīÞex ðT; fμ̃kgÞ; ð7Þ

where i ∈ fp; n; eg. Requiring charge neutrality in addition,

ñðeÞex ðT; fμkgÞ ¼ ñðpÞex ðT; fμ̃kgÞ; ð8Þ

leaves only two free chemical potentials which we choose to
be μp and μn. By using Eqs. (6) and (7), the definitions for
the baryon number density nb, the charge fractions Yq, and
charge neutrality condition are obtained as

nbðT; μp; μnÞ ¼ ñðpÞex ðT; μp; μnÞ þ ñðnÞex ðT; μp; μnÞ; ð9Þ

YqðT; μp; μnÞ ¼ ñðpÞex ðT; μp; μnÞ=nbðT; μp; μnÞ: ð10Þ

For future convenience, we conclude this section by
giving the definition of the free energy, which is the natural
thermodynamic potential in the canonical ensemble:

fexðT; nb; YqÞ ¼
X
i

nðiÞexμiðT; nb; YqÞ − pexðT; nb; YqÞ;

ð11Þ

where the thermodynamics is expressed in terms of
variables nb and Yq instead of μp and μn.
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C. HS(DD2) model

HS(DD2) is a commonly used EOS that was originally
developed to simulate core collapse of supernovae [15,16].
It provides reliable modeling of NM below and around the
saturation density, with a consistent description for the
transition from nonuniform to uniform nuclear matter.
HS(DD2) consists of two different sectors. The first

sector models light and heavy nuclear clusters in nuclear
statistical equilibrium with EV correction. The second
sector describes unbound nucleons in relativistic mean-
field theory. HS(DD2) includes all possible light nuclei
(e.g., deuterium, tritium, etc.) in addition to α particles and
heavy nuclei up to mass number A ∼ 330.
The RMF approach is used to model interactions of

unbound nucleons with the exchange of σ, ω, and ρ
mesons. At low densities, the interactions become negli-
gible and the system reduces to an ideal Fermi-Dirac gas of
nucleons. Photons are added separately as a free Bose gas
and the Wigner-Seitz approximation is employed for the
Coulomb interaction between electrons and nuclei. EV
effects are implemented in a way to treat unbound nucleons
and nuclei in a different manner: while the volume of all
baryons is excluded for nuclei, unbound nucleons only feel
the volume of nuclei since the interaction among them is
already modeled by the RMF model.
The parameters of the RMF model are the masses of

the nucleons and the mesons, and the coupling constants. In
HS(DD2), the so-called TMA parameter set is used [79].
For the masses of nuclei, the experimental data [80] are
used when they are available, otherwise the data are taken
from nuclear calculations [81].
By construction, HS(DD2) is a thermodynamically

consistent model for both nonuniform matter of light
and heavy clusters within the gas of unbound nucleons
at low density, uniform matter described by the RMFmodel
above densities higher than ns, and the transition between
them. The resulting EOS are provided in three-dimensional
(T,nb,Yq) tabular form covering a wide range. The EOS
tables are publicly available on the CompOSE database
[21,22]. Different variants of the model were constructed
by using different sets of RMF parameters [82,83].

III. COMBINING THE BUILDING BLOCKS

In this section we discuss in detail how the various
building blocks of the model are combined into a unified
model (see Fig. 1).

A. Construction of the cold EOS

We start from the construction of the nuclear matter EOS
at zero temperature, which mostly follows Refs. [18,19].
That is, we first construct cold hybrid EOS by combining
the predictions of V-QCD with nuclear theory models at β
equilibrium.

Our prescription for dense nuclear matter in the V-QCD
model is based on a homogeneous bulk field in the dual
gravity model, which is natural for densities well above ns.
At such high densities the average distance between
neighboring nucleons is comparable to or smaller than
their diameters, so that their wave functions overlap, and
approximating the system as homogeneous matter is
expected to work. However, this is not the case at densities
below ns, wherein homogeneous approximations will break
down. This is not a problem, since in this region traditional
NM models have proven to be reliable and feasible. In this
sense traditional NM models and homogeneous NM in
V-QCD complement each other. In Refs. [18,19], this idea
was implemented to construct hybrid EOS: low density
EOS from various traditional nuclear theory models
were combined with the high density V-QCD NM EOS,
matching them continuously at an intermediate density
around 1.5ns–2ns.
A potential weakness of the construction of Refs. [18,19]

is that the matching point between the low and high density
models introduces, in effect, a second-order phase tran-
sition, where, for example, the speed of sound is discon-
tinuous. Since this matching within a single phase is not
physically motivated, but only a technical necessity in our
construction, it should not give rise to a sudden change in
the material properties as would be the case for discon-
tinuous sound speed. In order to smooth it out, we consider
an improved matching setup with two separate matching
densities in the same region of densities slightly above the
saturation density. The EOS in the intermediate region
between the two matching densities is chosen to have a
speed of sound which is linear in the baryon number
density, whereas the low and high density regions are
treated as before. The slope of the speed of sound in the
intermediate region is determined by requiring continuity
of the speed of sound, i.e., third-order phase transitions at
both the transition densities. See Appendix A 1 for details.
The resulting EOS (free energy as a function of baryon
number density) is denoted below as fcoldðnbÞ.
In this work, we use three variants of hybrid EOS for

nuclear matter at zero temperature. We select the Akmal-
Pandharipande-Ravenhall model [84] for the low density
regime and three variants of V-QCD at high density: these
variants are defined by the data fits 5b, 7a, and 8b of
Refs. [19,54]. These choices represent the leftover param-
eter dependence of V-QCD after the comparison with
lattice data and taking into account observational con-
straints. If we used the approach of Refs. [18,19] with a
single transition density 1.6ns the hybrids with these three
choices would be exactly the soft, intermediate, and stiff
variants of the V-QCD (APR) EOS published in the
CompOSE database [85–87]. Here the stiffness refers to
a property of dense nuclear matter: the stiff EOS reaches a
noticeably higher speed of sound than the soft one. In the
improved approach of this article, we choose the two
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transition densities to be 1.4ns and 1.8ns. That is, the
choices of the cold nuclear matter EOS in this article are
practically the same as the published V-QCD (APR)
variants, but the kink (say, in pressure as a function of
density) at the transition density has been smoothed out.

B. Matching the vdW HG model with holography

We now discuss how the EOS for cold nuclear matter is
extrapolated to finite temperatures, and also outside β
equilibrium. As pointed out above, we use the vdW HG
model for the temperature dependence in the dense nuclear
matter phase. This approach is motivated by the fact that,
for an appropriate choice of the excluded volume v0, the
EOS of the vdW model and the nuclear matter of the
V-QCD model are relatively close (see Appendix B).
Therefore, adding only a small, mostly attractive potential
is required to match the vdW model with the cold hybrid
EOS. Moreover, we add the dependence on the charge
fraction outside β equilibrium by using the HS(DD2)
model. In principle, one could use the vdW model also
for the charge fraction. The vdW model is, however, too
simple to satisfy the experimental constraints for nuclear
matter below and around saturation density. In particular,
the symmetry energy is too low—this is known to happen
for a free gas, and excluded volume effects alone are not
sufficient to improve the result [88]. We could in principle
use the vdW model at higher densities, where experimental
constraints do not apply, but for simplicity we adopt the Yq

dependence from HS(DD2) everywhere in the nuclear
matter regime.
The above adjustments are taken into account by

redefining the free energy of the dense NM phase as

fvdWðT; nb; YqÞ ¼ fexðT; nb; YqÞ þ Δfðnb; YqÞ; ð12Þ

where Δf models the mean contribution from an attractive
potential. It is simpler to specify the free energy difference
Δf directly rather than start from the definition of the
potential. Because the contribution from the potential
separates (see, e.g., Ref. [14]), the two ways of formulating
this contribution are practically equivalent. That is, we
take [89]

Δfðnb; YqÞ ¼ fcoldðnbÞ
− fexðT ¼ 0; nb; YqÞ
þ fHSðDD2ÞðT ¼ 0; nb; YqÞ
− fHSðDD2Þ(T ¼ 0; nb; Y

eq
q ðnbÞ); ð13Þ

where fcold is the free energy of the one-dimensional cold
hybrid EOS constructed as discussed above, fHSðDD2Þ is the
free energy of the HS(DD2) model, and Yeq

q is the value at β
equilibrium for the HS(DD2) EOS.

The first two lines on the right-hand side of Eq. (13)
adjust the dependence of the EOS on nb such that it
matches with the cold hybrid EOS at zero temperature. The
last two lines in Eq. (13) adjust the dependence on Yq such
that it agrees with that of the HS(DD2) EOS at low
temperatures, without changing the EOS at β equilibrium.

C. Transition between the vdW model and HS(DD2)

At low densities, such as is relevant, for example, in the
crust of the neutron stars, the combination of the holo-
graphic model with the vdW gas becomes unreliable, so we
use instead directly the HS(DD2) EOS. We implement this
by switching from the vdW model of Eq. (12), which
already borrows the Yq dependence from HS(DD2),
smoothly to the exact HS(DD2) EOS at a well-chosen
transition density. However, before this is possible it is
necessary to adjust the HS(DD2) EOS by adding the
contribution from the mesons of QCD as indicated in
Fig. 1. This contribution is important only in the region of
low density and high temperatures (i.e., close to the
transition temperature in QCD), which is far from the
regime relevant for neutron stars and core-collapse super-
novae. We however add this contribution since it affects
the study of the critical point, which we carry out below.
We write the “improved” HS(DD2) EOS as

f̂HSðDD2ÞðT; nb; YqÞ ¼ fHSðDD2ÞðT; nb; YqÞ
þ
X
j

pðjÞ
BEðT;mjÞ; ð14Þ

where the sum goes over all mesons from the particle data
group [72] with masses below 1 GeV.
After this modification, we define the final nuclear

matter EOS as

fNMðT; nb; YqÞ ¼ ½1 − wðnbÞ�f̂HSðDD2ÞðT; nb; YqÞ
þ wðnbÞfvdWðT; nb; YqÞ; ð15Þ

where the weight function is

wðnbÞ ¼
1

2

�
1þ tanh

�
logðnb=n0Þ

1.75

��
¼ ðnb=n0Þ8=7

1þ ðnb=n0Þ8=7
;

ð16Þ

with n0 ≈ 0.0694ns. The numerical coefficients were
chosen such that the transition from HS(DD2) to vdW is
smooth for all temperatures and charge fractions.

D. Mixed phase and the critical point

The final step in our construction is to combine the NM
and QM components into a single EOS. In order to do this,
we first need to adjust the V-QCD QM result: the EOS
constructed in Ref. [54] includes neither dependence on the
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charge fraction nor electron pressure. It would be possible
to compute the charge fraction dependence from the model
directly, but this would require a significant extension of
the model, which is beyond the scope of this article in
which the focus is on temperature dependence. Therefore
we resort to approximations.
There are two simple approximation schemes. The first is

to assume that the free energy of strongly interacting matter
only depends on the total baryon number, given as the sum
over the quark number densities as nb ¼ ðnu þ nd þ nsÞ=3.
In this case the free energy of QM arises as the sum over the
electromagnetic contribution and the V-QCD pressure:

fQMðT; nb; YqÞ ¼ feēγðT; YqnbÞ þ fV-QCDðT; nbÞ; ð17Þ

where the electron density is ne ¼ Yqnb by charge neutral-
ity. The electromagnetic term feēγ is estimated as the sum
of the ideal gas free energies of electrons, positrons, and
photons at the given electron density.
The second scheme (which was used in Ref. [25])

assumes that the free energy arises as a direct sum of
the free energies of different quark flavors with equal
amount of down and strange quarks. This gives

fQMðT;nb;YqÞ ¼ feēγðT;YqnbÞþ
1

3
fV-QCD(T; ð1þYqÞnb)

þ 2

3
fV-QCD(T; ð1−Yq=2Þnb); ð18Þ

where the last term in the first line and the term in the
second line are the contributions from up-type and down-
type quarks, respectively. Note that this approach includes a
simple approximation for the symmetry energy of quark
matter, which assumes no interactions between the different
quark flavors, and therefore corresponds to the probe limit
where the backreaction of the flavors to the gluon dynamics
is neglected. However, there is no reason to expect that the
effect of the backreaction is small. In this article, we use the
simplest approximation of Ref. (17).
The final EOS and phase diagram, including the mixed

phase between NM and QM, is then found by carrying out
a Gibbs construction, neglecting effects of finite surface
tension (see Appendix A 2 for details). As it turns out, two
different regimes can be clearly identified from the result.
At low temperatures, there is a very strong first-order phase
transition, which becomes weaker with increasing temper-
ature. At higher temperatures there is a weak first-order
transition. We interpret this weak transition as the signal of
crossover: continuity over the phases is not possible
because this would require a precise match between the
EOS of the meson gas (in the NM phase) with the V-QCD
QM EOS. We have not tried to carry out such matching
here; this is left for future work. The transition between the
two regimes is therefore interpreted as the critical end point
of the nuclear to quark matter transition line. We illustrate

the mixed phase and the critical point in detail in Sec. IV
and in Appendix C.

IV. RESULTS

We now analyze the thermodynamic properties of the
constructed EOS. We have carried out the steps outlined in
Sec. III for all three versions of the cold hybrid EOS,
leading likewise to three versions of the final equation of
state which depends on baryon number density, temper-
ature, and charge fraction. The naming of the models is
inherited from the cold EOS, so that we refer to the three
EOS as “soft,” “intermediate,” and “stiff,” according to the
stiffness (i.e., basically the values of the speed of sound) of
the EOS in the region of dense nuclear matter. The stiffness
is directly related to the maximal radii and masses of
neutron stars described by the corresponding EOS.
Before going to the analysis of our EOS, let us

summarize how they agree with known constraints from
various sources. Since the V-QCD QM model was fitted to
lattice data, good agreement with lattice results at low
density, including the first nontrivial Taylor expansion
coefficient in the chemical potential, is guaranteed above
the crossover temperature, T ≳ 150 MeV. Because the
meson gas contribution is added to HS(DD2) at lower
temperatures, agreement with QCD in this opposite region
is obtained as well: it is known that even with our simple
approximation, good agreement with lattice data, including
higher-order Taylor coefficients in chemical potential, is
found [75,90–92]. Moreover, the QM EOS agrees by
construction [63,64] with leading perturbative QCD results
both at high temperatures and high chemical potentials (see
Refs. [25,54] for explicit comparison); since V-QCD is a
strongly coupled model, more detailed agreement with
higher-order perturbative results is not possible. The hybrid
EOS, which we use for the cold EOS, agree by construction
with models at low density such as chiral effective theory
computations. Actually, the cold hybrid EOS are in
excellent agreement (see Refs. [19,23]) at all densities
with model independent constructions of the EOS such as
polytropic interpolations between the known low and high
density limits [93–96] (see also Ref. [97]), and conse-
quently also agree with constraints from neutron star
measurements and from the GW170817 merger event
[98,99]; see, e.g., Ref. [100]. We also discuss these
constraints explicitly below. Furthermore, our predictions
for cold matter are in remarkably good agreement with the
predictions from the functional renormalization group
approach [101–103] both in the quark matter and dense
nuclear matter phases. Lastly, our model is in good
agreement with finite-temperature calculations in chiral
effective theory, as we discuss in more detail below.
Let us now discuss some details of the final EOS. Recall

that while we mostly illustrate our results at β equilibrium,
the constructed EOS are defined for generic charge frac-
tions Yq and are therefore also valid outside β equilibrium.
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This is important for applications in neutron star mergers
and in heavy-ion collisions. In Fig. 2 we plot the adiabatic
speed of sound squared for our three models in β equilib-
rium as a function of baryon number density and temper-
ature. Solid black lines at intermediate densities represent
phase boundaries between baryonic, mixed, and quark
phase, while dashed lines correspond to the artificial phase
boundary of our construction at low densities and temper-
atures close to the crossover between baryonic and quark
phase in QCD (see Appendix C). The speed of sound
squared can be expressed in terms of first derivatives as

c2s ¼
n2
h
ð s
nb
− ∂s

∂nb
Þ2 þ ∂s

∂T
∂μ̂
∂nb

i
∂s
∂T ðϵþ pÞ ; ð19Þ

where we assumed charge neutrality, and all quantities
are assumed to be functions of T, nb, and Yq. The chemical
potential is defined as μ̂ ¼ μb þ Yqμl ¼ ∂f=∂nb, where
μb (μl) is the baryon number (electron lepton number)
chemical potential. In all three models c2s exceeds the value
of c2s;CFT ¼ 1=3 in conformal field theory close to the onset
of the mixed phase. The maximal values for c2s are 0.42,
0.47, and 0.59 for soft, intermediate, and stiff variants,
respectively. The contours in the mixed phase are also
determined by Eq. (19), but note that this expression is not
the physical speed of sound in this phase.
Yellow stars in Fig. 2 mark the location (Tc,nbc) of

the critical point in the respective models whose precise
values are listed in Table I. The critical point has been
analyzed in various models in the literature, and the results
for the location vary in a wide range depending on the
model [47,104–106]. Recent results in a simpler holo-
graphic approach [47], which extrapolates results for
thermodynamics of QCD from lattice QCD to higher
values of baryon chemical potential by using a bottom-
up setup, are given by fTc; μbcg ¼ f112; 612g MeV [48]

and fTc; μbcg ¼ f89; 724g MeV [49,50]. These numbers
are in the same ballpark with ours: we obtain on average
slightly higher critical temperatures and lower critical
chemical potentials. Note also that the critical point in
all three variants is outside the regime probed by the second
phase of the beam energy scan at RHIC [107], but will be
probed in future experiments at FAIR and at NICA. Finally,
our numbers lie close to the chemical freeze-out curve
extracted from heavy-ion experiments (see, e.g.,
Refs. [108,109]). Our numbers are actually slightly below
the experimental data, but consistent with the curve if the
precision of the data and our approach are taken into
account.
In Fig. 3 we plot the latent heatΔϵ ¼ ϵQM − ϵNM, i.e., the

difference between the energy density in the quark phase
ϵQM and the nuclear matter phase ϵNM, as a function of the
temperature. For the three models we have analyzed, the
soft (stiff) model leads to the smallest (largest) latent heat at
small temperatures. Curiously, at T ≈ 100 MeV all three
models lead to approximately the same value of Δϵ. The
vanishing of the latent heat Δϵ ¼ 0 determines the location
of the critical point. As noted above, the phase transition in
our model is always of first order, which meansΔϵ does not
vanish exactly. However, Δϵ becomes small above certain
temperatures and the point where Δϵ ¼ 0 is obtained via
extrapolation (see Appendix C for details).
The temperature Tc of the critical point is correlated with

the stiffness of the respective model: larger stiffness results

FIG. 2. Contours of the speed of sound squared in β equilibrium for soft (left), intermediate (middle), and stiff (right) EOS. Solid black
lines separate the mixed phase from NM and QM phases; yellow stars mark the locations of critical points whose numerical values are
listed in Table I.

TABLE I. EOS and neutron star properties in β equilibrium.

Model
nbc
ns

μbc
MeV

Tc
MeV

MTOV
M⊙

Re;1.4

km Λ1.4

Soft 0.46 485 128 2.02 12.41 483
Intermediate 0.62 575 118 2.14 12.50 511
Stiff 0.32 565 112 2.34 12.64 560

HS(DD2) 2.45 13.2 686
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in lower values of Tc. However, there is no clear relation
between the critical density and stiffness, as the highest
value of nbc is found for the intermediate model. In this
case we interpret the variation of nbc as a rough measure of
the precision for the value of the critical density.
We note that the vdWHG part of our model also captures

the critical end point of the liquid-gas transition in the QCD
phase diagram. The location of this critical point is around
T ¼ 21 MeV and nb ¼ 0.07 fm−3 for symmetric nuclear
matter (Yq ¼ 0.5), which is similar to the predictions of
other models in this class [14]. The critical temperature in
our construction turns out to be a bit higher than typical
numbers, presumably because our potential is determined
by the matching to HSðDD2Þ þ APR and therefore differ-
ent than in other models. However, our value for the critical
density agrees well with the numbers in Ref. [14].
In Fig. 4 we plot the pressure as a function of the baryon

number density at different values of the temperature in β
equilibrium. The lower (upper) bounds of the colored bands
represent the soft (stiff) model, while the central curves

correspond to the intermediate version. The results in the
nuclear matter phase for nb=ns < 1.4 are the same for all
three models as there is no input from holography in this
region. The uppermost curve (T ¼ 150 MeV) shows the
EOS in the quark matter phase entirely described by
V-QCD, which is therefore slightly different for all three
models even at low nb. The plateau at intermediate densities
is a manifestation of the strong first-order phase transition
of the V-QCD model. The transition density decreases with
increasing temperature, and the transition becomes weaker,
as also can be seen from Fig. 3.
To illustrate the impact of Yq outside β equilibrium we

plot in Fig. 5 the range in pressure that is covered by the
intermediate model at various values of the temperature.
Solid curves show the pressure in β equilibrium, while
upper and lower bounds of the hatched colored bands are
maximum and minimum values, respectively, at given
density and temperature. Overall the pressure is lowest
close to and increases away from β equilibrium, except
close to the onset of the mixed phase, where the pressure
can take smaller values also away from β equilibrium. The
variation of the pressure as a function of Yq is largest in the
mixed phase.
A quantity that is useful to explore the thermal con-

tributions to the energy density and the pressure is the
thermal index defined as

ΓthðT; nb; YqÞ ¼ 1þ pðT; nb; YqÞ − pð0; nb; YqÞ
ϵðT; nb; YqÞ − ϵð0; nb; YqÞ

: ð20Þ

In Fig. 6 we show the thermal index on the β equilibrium
slice for various values of the temperature. As in Fig. 4,
the upper (lower) bound of the colored bands represents the
stiff (soft) model, while the central curves represent the
intermediate case. The dashed gray line is the thermal index
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FIG. 3. Latent heat as function of T is shown for the three
variants of EOS. The location of the critical end point is
determined via the condition ΔϵðTc; nbcÞ ¼ 0.

FIG. 4. Pressure as function of the baryon number density in β
equilibrium for different values of the temperatures. The lower
(upper) bounds of the colored bands represent the soft (stiff)
model, while central curves correspond to the intermediate version.

FIG. 5. Pressure for the intermediate model for different values
of the temperatures. Solid curves are β equilibrium, while upper
and lower bounds of the hatched colored bands represent
maximum and minimum values of the pressure at given temper-
ature and density.
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of a free Fermi gas ΓðFDÞ
th ¼ 5=3, which is independent of

density and temperature. Any deviations of ΓthðT; nb; YqÞ
from ΓðFDÞ

th are due to thermal interaction effects. Results for
the thermal index were computed at low temperatures and
up to densities between 1ns and 2ns by using chiral
effective theory in Refs. [1,110]. It is important to compare
our EOS to these results in particular because the temper-
ature dependence in our setup in this region is based on
the vdW setup, which is not guaranteed to be realistic
enough to agree with the CET calculations. Interestingly,
our results show good overall agreement with the CET
predictions; i.e., deviations are mostly below 10% in the
relevant region. Below ∼ 0.5ns the CET predicts values
above 1.6 which are slightly higher than our T ¼ 20 MeV
curve. Also the CET analysis predicts mild decrease of the
thermal index with increasing density, whereas in our
model the index mildly increases with increasing density.
In neutron star simulations a constant thermal index Γth ¼
1–2 is often assumed to mimic such finite-temperature
effects [111–113], where Γth ≈ 1.7 has been argued [114] to
best approximate the dynamical and thermodynamical
behavior of neutron star merger simulations with micro-
scopic prescription of finite-temperature effects. The ther-
mal index in our construction remains also well within
these bounds at temperatures relevant in such simulations,
except in and close to the mixed phase, where Γth can take
values smaller than one. As expected, thermal interaction
effects become more important at higher temperature,

where the deviations of the thermal index from ΓðFDÞ
th are

largest.
Finally, in Fig. 7 we show the mass-radius relation of

cold isolated nonrotating neutron stars for the soft (red),
intermediate (green), and stiff (blue) model, together with
the relevant observational constraints. Solid parts of the
curves represent purely baryonic stars, while dashed parts
belong to stars with quark matter cores, which in our model
turn out to be unstable. Circles mark the maximum mass of
stable nonrotating stars (MTOV) of the respective model.

For the soft and intermediate modelMTOV is determined by
the onset of the phase transition at which the star becomes
unstable to black hole collapse. For the stiff model the
maximum mass is already reached in the baryonic phase,
and the phase transition is realized only in the unstable
branch of the mass-radius sequence. The green band shows
the result MTOV ¼ 2.08� 0.07 M⊙ from direct mass
measurements of the pulsar J0740þ 6620 [115,116],
which sets a lower bound on the maximum mass of
nonrotating neutron stars. Pink ellipses are radius mea-
surements from the NICER experiment for the pulsars
J0030þ 0451 [117,118] and J0740þ 6620 [119,120],
while the cyan area is from the measurement of the
x-ray binary 4U 1702-429 [121]. All three examples pass
the observational constraints shown in the plot in addition
to the constraint on the tidal deformability Λ1.4 < 580 of a
M ¼ 1.4 M⊙ star deduced from the analysis of GW170817
by LIGO-Virgo (low-spin prior at 90% confidence level)
[122] (see also Table I and the detailed analysis
in Ref. [23]).

V. CONCLUSION AND OUTLOOK

In this article, we presented a novel framework for the
EOS of hot and dense QCD which combines ingredients
from various approaches in different regions of the phase
diagram including gauge/gravity duality, van der Waals
model of nuclear matter, statistical models, and relativistic
mean-field theory. The aim was to establish an EOS which
uses the best available modeling in each of the regimes. An
essential new input here was the holographic V-QCD
model, which we used to cover the region of intermediate
densities where computing theoretical predictions is par-
ticularly hard. We presented three versions of the EOS
which are in good agreement with QCD data and con-
straints from measurements of neutron stars and neutron

FIG. 6. Thermal index in β equilibrium. Notation for the bands
as in Fig. 4.

FIG. 7. Mass-radius relation of nonrotating stars.
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star mergers. Using these models we derived, apart from the
properties of the EOS itself, predictions for the location
of the critical end point of the nuclear to quark matter
transition.
Some details in our approach merit further study. It is

expected (see, e.g., Ref. [123]) that at low temperatures in
the quark matter phase, pairing of quarks takes place,
leading to a potentially complex phase diagram with
various paired, color superconducting phases. Recently,
there has been a lot of interest in the analysis of such phases
in gauge/gravity duality [124–129]. Future work will study
the inclusion of such phases in the V-QCD model and their
effect on the EOS.
While the main focus in this article was the temperature

dependence, we also included the dependence on the
charge fraction following the HS(DD2) model in the
nuclear matter phase, and by using a simple approximation
assuming a strongly interacting component of free energy
only depending on the total baryon number (and with free
electron gas) in the quark matter phase. This latter approach
can be improved by including proper flavor dependence in
the holographic model, so that one can consider states with
unequal amount of different quark flavors. This extension
of the model is the topic of ongoing research.
The inclusion of flavor dependence will also help to

generalize the model to analyze transport properties
of QCD matter, at least in the region covered by V-QCD.
The strongly interacting components of conductivities
and viscosities of QM at high density were solved in
Refs. [130,131]. Including flavor dependence will help to
properly analyze the correlators of electric and weak
currents, which are necessary to estimate the effects of
electron and neutrino transport, known to be important,
among other things, for neutron star cooling, in core-
collapse supernovae, and for the behavior of ejected matter
in neutron star mergers (see, e.g., Ref. [132]).
We also want to comment on the impact of surface

tension in the mixed phase, which we have neglected in this
work. In general, first-order phase transitions proceed as a
dynamic bubble nucleation process, which cannot be
necessarily described in terms of a single equation of state.
However, the corresponding surface tension can in princi-
ple be computed in the V-QCDmodel, but the calculation is
technically extremely difficult. Such calculations have been
carried out for the deconfinement transition in a different
gauge/gravity model (without quarks) in Ref. [133]. In this
case the value of the surface tension (or more precisely, the
corresponding contribution to the energy density at the
domain wall) is clearly suppressed with respect to the latent
heat. Our values for the latent heat in Fig. 3 are also clearly
larger than the estimates of Refs. [53,134] assuming any
reasonable estimates for the domain wall width. In sum-
mary, we expect surface tension to play a minor role in
our setup, but it would certainly be desirable to substrate
our expectation by an explicit calculation. Similarly, it

would be interesting to study how important Coulomb
effects [135] are in our setup.
We should stress that the framework presented here

admits immediate natural generalizations where one repla-
ces some of the building blocks of the model by other
approaches. As for the strongly coupled gauge/gravity
duality model, there is (to our knowledge) currently no
alternative to V-QCD that would allow one to repeat the
analysis as done in this article. This field is however
evolving rapidly [136–142]. For example, very recently
it was demonstrated that a setup with nuclear matter in the
Witten-Sakai-Sugimoto model may lead to realistic neutron
stars [143]. For the temperature dependence of dense
nuclear matter, we used the vdW model for two reasons:
it is simple and agrees reasonably well with the holographic
model at zero temperature. A simple model may be the best
guess for the temperature dependence at densities around
and above the saturation density, where none of the known
approaches are reliable. However, other choices are also
possible. We have checked that using (for example) the
temperature dependence of the HS(DD2) model instead
only leads to rather mildly modified EOS. It would also be
interesting to study the Carnahan-Starling generalization of
the excluded volume effect in the vdW model, recently
considered in Ref. [28], since it may improve the temper-
ature dependence of the EOS at low but nonzero temper-
atures near the saturation density, where ab initio results are
available. Another simple generalization of our approach is
to use some other general purpose EOS for the low density
region than the HS(DD2) model.
The focus in the construction of our EOS model was on

the parameter space of low or intermediate temperature and
high density that is relevant for neutron star simulations, but
in principle the model can also be applied in the context of
heavy-ion collisions. However, in its current version there
are some limitations to this, due to the rather simple
description of the hadronic phase near the crossover region
at low densities in terms of the (HS)DD2 EOS in combi-
nation with a free meson gas. This part of the model could
be improved, e.g., by gluing in the methods of Ref. [14] in
the relevant region of the phase diagram, or by extending
the methods of Ref. [67] to finite density. Recall that the
current model has a weak first-order phase transition at low
densities instead of a crossover, which could be improved
in such extensions of the model. We plan to prepare and
provide EOS tables dedicated to heavy-ion collisions with
improved resolution in the low density and high temper-
ature region around the critical point in the future.
Apart from varying the building blocks of the model, a

future study could further explore the parameter space of
the model presented in this article. Recall that here we
restricted to the main uncertainty of our construction,
which arises from the precise choice of the holographic
V-QCD action. Therefore, the extended study would mean
including additional variants of the V-QCD model [54],
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studying the effect of varying the excluded volume para-
meter v0 in the vdW model, analyzing the dependence on
the choices of matching densities between the building
blocks, and finally the dependence on the parameters of the
low density nuclear theory model, which could perhaps
most easily be done by replacing HS(DD2) by a set of
models from the literature.
The EOS constructed in this article will be published in

the standard format in the CompOSE database, and can
therefore immediately be used in state-of-the-art simula-
tions of neutron star mergers and core-collapse supernovae.
Indeed, there is growing interest in effects arising due to the
temperature dependence and the phase transition in merger
simulations [2,7,43,144]. Work on applying the EOS of this
article in such simulations is already in progress.
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APPENDIX A: TECHNICAL DETAILS
ON THE EOS

In this appendix, we discuss minor technical details
which are not important for our conclusions but need to be
discussed for all the results to be fully reproducible.

1. Details of the construction of the cold EOS

We first give more details on the construction of the cold
hybrid EOS. Recall that the EOS of cold nuclear matter, as
explained in Sec. III A, requires matching between EOS
from a nuclear theory model (in this article, the APR
model) at low density with V-QCD nuclear matter at higher
density. As we explained in the main text, in order for
the cold EOS to be smoother, we choose two matching
densities, instead of the single density approach of
Refs. [18,19], and connect the speeds of sound from the
two approaches through a linear interpolation of the
squared speed of sound c2s as a function of the baryon

number density nb, therefore avoiding a discontinuity in the
speed of sound.
To be precise, the matching is carried out as follows. For

nb < 1.4ns ≡ nð1Þtr we use the APR EOS as such. We then

take the speed of sound for nð1Þtr < nb < 1.8ns ≡ nð2Þtr to be

½csðnbÞ�2 ¼
h
cs
�
nð1Þtr

�i
2 þ κðn − nð1Þtr Þ; ðA1Þ

where the slope κ is a free parameter. The rest of the
thermodynamic functions are then obtained by integration

for nð1Þtr < nb < nð2Þtr so that κ is the only free parameter.
We then require that the pressure, the baryon number
chemical potential, and the speed of sound are continuous

at nb ¼ nð2Þtr . These three conditions then determine κ as
well as the two parameters of V-QCD nuclear matter cb and
b [these parameters appear in the nuclear matter action SNM
of Eq. (1); see Ref. [19] for their definitions]. These latter
two parameters were also determined by matching in the
simpler approach of Refs. [18,19].
We also modify the cold hybrid EOS in the crust region,

nb ≪ ns, before using it to construct the adjusted vdW EOS
through Eq. (13), in order to remove some noise from the
vdW EOS. This noise would appear because the fine details
of the β-equilibrium, zero temperature APR EOS, which
turns out to be inconsistent with the Yq dependence of the
HS(DD2) EOS at low density. One might wonder why we
need to do this, since we replace the vdW EOS with the
exact HS(DD2) through Eq. (15) at low densities. However,
since we use a smooth weight function instead of an abrupt
cutoff, noise in the vdW EOS at low densities would remain
in the final matched EOS even if it would be heavily
suppressed. We therefore implement the correction by
using the HS(DD2) at β equilibrium for the cold EOS
fcoldðnbÞ when nb < 0.008ns. At this value the pressures
of the APR and HS(DD2) EOS cross, and we further
introduce a small shift in the baryon chemical potential
for nb < 0.008ns in order to make it continuous at
nb ¼ 0.008ns. That is, we in effect introduce a second-
order phase transition. We stress, however, that these
modifications only remove noise from heavily suppressed
terms at low density in our final results.

2. Details of the construction
of the three-dimensional EOS

We now discuss some technical details on the
determination of the final three-dimensional EOS and its
components.
We carried out some minor but nontrivial modifications

in the three-dimensional nuclear matter EOS fNMðT; nb;
YqÞ. The transition from nonuniform to uniform nuclear
matter in HS(DD2) proceeds via a first-order phase
transition at around 0.3ns ≲ nb ≲ 0.5ns, at small temper-
atures T ≤ 5 MeV, and values of Yq (mostly) far from β
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equilibrium [15]. Because of the smooth matching of
Eq. (15), the mixed phase from this transition causes the
resulting nuclear matter to be inconsistent in this narrow
range of parameters, so that a thermodynamically unstable
region appears. In order to fix this, we carried out a simple
one-dimensional Maxwell construction for each value of
T and Yq which removed the inconsistency.
Let us also specify how the EOS for the mixed phase

between the NM and QM phases was calculated. It arises
from requiring full chemical equilibrium, so that the
coexisting phases have the same pressure as well as baryon
number and electron lepton number chemical potentials:

μl ¼
1

nb

∂f
∂Yq

				
nb;T

; ðA2Þ

μb ¼
∂f
∂nb

				
nbYq;T

¼ ∂f
∂nb

				
Yq;T

− Yqμl: ðA3Þ

In practice, the mixed phase is found as follows.
Demanding equilibrium between the phases, we need to
solve the following set of equations:

pNMðT; nð1Þb ; Yð1Þ
q Þ ¼ pQMðT; nð2Þb ; Yð2Þ

q Þ; ðA4Þ

μðNMÞ
b ðT; nð1Þb ; Yð1Þ

q Þ ¼ μðQMÞ
b ðT; nð2Þb ; Yð2Þ

q Þ; ðA5Þ

μðNMÞ
l ðT; nð1Þb ; Yð1Þ

q Þ ¼ μðQMÞ
l ðT; nð2Þb ; Yð2Þ

q Þ: ðA6Þ

We have three conditions and four variables nðiÞb , YðiÞ
q , so the

solution will involve one parameter which we call γ. The
solution defines two curves on the ðnb; YqÞ plane, para-
metrized in terms of γ, and a mapping between the curves.
The mixed phase is found between the curves. The temper-
ature is a “trivial” parameter in these equations and we will
not denote the dependence on it explicitly below. The
construction can be carried out independently for each
value of the temperature.
The mixed phase is then a mixture of NM and QMmatter

in the equilibrium defined by Eqs. (A4)–(A6). The thermo-
dynamic functions are most easily written in a parametric
representation using the γ parameter and the volume
fraction α of the NM phase. That is, we may write

nbðα; γÞ ¼ αnð1Þb ðγÞ þ ð1 − αÞnð2Þb ðγÞ; ðA7Þ

Yqðα; γÞnbðα; γÞ ¼ αYð1Þ
q ðγÞnð1Þb ðγÞ

þ ð1 − αÞYð2Þ
q ðγÞnð2Þb ðγÞ; ðA8Þ

fðα; γÞ ¼ αfNM(n
ð1Þ
b ðγÞ; Yð1Þ

q ðγÞ)
þ ð1 − αÞfQM(nð2Þb ðγÞ; Yð2Þ

q ðγÞ) ðA9Þ

separately for each temperature slice. Note that curves
of constant γ are straight lines on the ðnb; YqnbÞ plane.
By construction, p, μb, and μl take constant values on
these lines.
Note that in the main text we focused on defining the free

energy, which is the natural thermodynamic potential in the
canonical ensemble with the parameters T, nb, and Yq.
Determining first numerically the free energy, and comput-
ing the other thermodynamic functions by using it as input,
is indeed enough to determine all thermodynamics.
However, this procedure requires taking numerical deriv-
atives, which tend to increase numerical noise. When
computing the final results for other observables (such
as the entropy and the chemical potentials), we have
therefore first computed analytically the consequences of
the various matching formulas, and computed these quan-
tities directly from the corresponding quantities of the EOS
being matched, avoiding the use of numerical derivatives as
much as possible.

APPENDIX B: COMPARISON OF THE vdW EOS
TO THE V-QCD NM EOS

A central motivation for the use of the vdW EOS in this
article is its agreement with the predicted EOS of cold NM
by V-QCD. In this appendix, we study this by comparing
the three different versions of the cold hybrid V-QCD
(APR) EOS to simple vdW EOS, i.e., those only with
electrons, protons, and neutrons with a constant excluded
volume correction for the nucleons.
The EOS are compared in Fig. 8. In both panels, stiff,

intermediate, and soft variants of V-QCD EOS up to the
onset of the phase transition are shown via blue, green,
red curves, respectively, and simple vdW EOS with EV
parameter v0 ¼ 0.56 fm−3 (our choice), v0 ¼ 1 fm−3, and
v0 ¼ 1.5 fm−3 are denoted by solid black, dotted, and
dashed curves. The figure on the left shows the baryon
chemical potential dependence of the dimensionless pres-
sure p=μ4b, and the figure on the right shows the pressure as
a function of the baryon number density. The gray curve in
the right-hand side plot shows the ideal hadron gas result.
This curve is not shown in the left-hand plot since it mostly
stays outside the plotted range. It is transparent from the
figure that the chemical potential dependence is more
sensitive to v0 at small values of the parameter.
We note that the EV corrected EOS is relatively close

to the cold hybrid V-QCD EOS, in particular when the
pressure is plotted as a function of the chemical potential.
This happens in part because the left-hand plot of Fig. 8
focuses in the region of higher densities where agreement is
better. Note that the range of values of v0 is typical for EV
corrections in nuclear matter; see, e.g., Ref. [76]. The best
fit between the EV corrected pressure and V-QCD is found
around v0 ≈ 1.5 fm−3. We however choose a smaller value
v0 ≈ 0.56 fm−3, because for this value, the potential term of
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Eq. (13) is more natural: this value corresponds to a
potential which is attractive (repulsive) at long (short)
distances, whereas for larger v0 the potential would be
attractive at both short and long distances with an inter-
mediate repulsive range in between. This unnatural behav-
ior is reflected in the nonmonotonic dependence of the
pressure difference between the EV corrected and V-QCD
pressures as a function of nb in the left-hand plot of Fig. 8.

APPENDIX C: DETERMINATION OF THE
CRITICAL POINT

As discussed in Sec. III D, the EOS have a strong phase
transition at low temperature that becomes weaker at higher
temperature. Continuity over the phases is not possible due
to limitation of our construction. Hence, we interpret the
weakening in the transition as a signal for a crossover at
high temperature. Using this interpretation, it is possible to
calculate the latent heat and obtain an estimate for the
location of the critical end point. The latent heat is

ΔϵðTÞ ¼ ϵQM(T; n
ð2Þ
b ; Yeq

q ðnð2Þb Þ) − ϵNM(T; n
ð1Þ
b ; Yeq

q ðnð1Þb Þ);
ðC1Þ

where Yeq
q is the value at β equilibrium and nð2Þb , nð1Þb are,

respectively, the values for the baryon number density at the
onset and the end of the phase transition for a given value
of T. Because of the absence of a crossover, the transition
lines get close, but do not intersect. However, the latent heat
as a function of temperature shows a clean trend. By using
it, we perform a fifth-order polynomial fit to the data in the
range of strong first-order transition, i.e., T ≲ 115 MeV.
The fit functions that we obtained are

Δϵstiff ¼ 1.37 × 103 − 1.41 × 10T þ 1.53 × 10−1T2

− 4.36 × 10−3T3 þ 6.26 × 10−5T4

− 3.10 × 10−7T5;

Δϵinterm ¼ 1.05 × 103 − 8.85T þ 5.01 × 10−2T2

− 9.04 × 10−4T3 þ 1.28 × 10−5T4

− 7.53 × 10−8T5;

Δϵsoft ¼ 9.23 × 102 − 7.07T þ 1.40 × 10−2T2

− 2.90 × 10−4T3 − 3.40 × 10−6T4

þ 1.53 × 10−9T5:

The critical temperature is then found by extrapolating to
the point where the latent heat vanishes: ΔϵðTcÞ ¼ 0.
To determine the value of the baryon number density at
the critical end point nbc, we use the geometric mean of the
density values on the two transition lines at Tc. We estimate
the uncertainty of this procedure to be below 0.05ns for the
soft EOS and 0.1ns for the intermediate and stiff EOS
by studying the variation caused by varying the choice of
the mean. While this uncertainty is arguably sizable, it is
smaller than the differences between the numbers for the
different EOS in Table I. Then for the phase diagram,
crossover (dashed) lines are also computed by calculating
the geometric mean of nb on the transition lines at the
temperature values above Tc.

APPENDIX D: COMPARISON TO OTHER
EOS MODELS

In this appendix, we compare the three V-QCD EOS
variants introduced in the main text with a selection of other
temperature-dependent EOS. For the comparison, we chose
several different nuclear theory models which are widely

FIG. 8. Comparison of cold V-QCD EOS and EOS of hadron gas with excluded volume correction. Left: normalized pressure (p=μ4b)
in terms of baryon chemical potential μb. Right: pressure in terms of baryon number density nb in units of ns. In both panels, stiff,
intermediate, and soft variants are denoted by blue, green, and red curves, respectively, and hadron gas with excluded volume of
v0 ¼ 0.56 fm−3, v0 ¼ 1 fm−3, and v0 ¼ 1.5 fm−3 are exhibited by solid, dotted, and dashed black curves. In addition, ideal hadron gas
result is shown with the gray solid curve in the panel on the right.
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used in astrophysical applications: HS(DD2) [15,16,145],
Steiner-Fischer-Hempel (SFH) (SFHO) [15,83,145],
HS (IUF) [15,146,147], Lattimer-Swesty (LS) (LS220)
[148,149], Du-Steiner-Holt (DSH) [150,151], and Bastian-
Blaschke-Kaltenborn-Fischer relativistic density functional
BBKF(DD2F-SF) RDF 1.4 and BBKF(DD2F-SF) RDF 1.9
[15,152]. The tabulated data for these EOS are publicly
available in the online databases [22,153]. The comparison
is presented in Figs. 9 and 10. In all the plots, stiff,
intermediate, and soft V-QCD variants are shown as solid
blue, red, and green curves, respectively, while the other
EOS without (with) phase transitions are shown as dashed
(dot-dashed) curves.
In Fig. 9, we show β-equilibrium pressure as a function

of energy density at low temperature. In the figure,
uncertainties in nuclear theory [154] and perturbative
QCD [155] are marked by orange and green bands. The
light blue band encloses all EOS that are consistent with the
astrophysical constraints [156]. While most of the EOS are
consistent with the bands in low and intermediate density,
V-QCD variants are the only ones that meet with uncer-
tainty band of perturbative QCD.
In the top row of Fig. 10, we plot the pressure in β

equilibrium as a function of the baryon number density at
low (left) and intermediate temperature (right). In the low
density regime (nb ≲ ns) the pressure of the V-QCD models
is lower than in the other EOS. This is because we use the
relatively soft APR model in this regime of our hybrid
construction, which is necessary to satisfy the constraint on
the tidal deformability obtained from the binary neutron star
merger event GW170817 (see discussion in the main text).

Another important difference is that the stiffness of the
V-QCD baryon part, indicated by the slope of the pressure,
rises significantly faster in the intermediate density regime

(ns < nb < nð1Þb ) than in the other models. However, the
stiffness and the pressure of stiff V-QCD and HS(DD2) are
similar in this regime, in particular at intermediate temper-
ature (right-hand plot), where the blue and dashed black line
become almost identical. The most prominent difference is

the plateau in pressure at high density (nð1Þb < nb < nð2Þb ) due
to the strong first-order phase transition in the V-QCD
model. BBKF(DD2F-SF) RDF 1.4 and BBKF(DD2F-SF)
RDF 1.9 (dot-dashed curves) also have similar plateaus since
they are hadron-quark models with the first-order phase
transition. However, the phase structure of these models is
very different than V-QCD predictions. The phase transition
in these models occurs at much lower temperature and
baryon number density values. There is even no hadronic
phase in low density intermediate temperature in BBKF
(DD2F-SF) RDF 1.9. The properties of the pure quark matter

phases (nb > nð2Þb ) in the three V-QCD variants are very
similar. However, the pressure and stiffness of V-QCD quark
matter are significantly lower than those of the other models
including the quark-hadron models. The soft V-QCD quark
matter phase and the predicted large latent heat when
crossing the mixed phase have important consequences on
the collapse time of binary neutron star merger remnants and
the emitted gravitational wave signal, as we have demon-
strated recently in Ref. [157].
In the left-hand panel of the bottom row, we plot

the β-equilibrium pressure as a function of temperature

FIG. 9. Comparison of the three variants of V-QCD finite EOS and the chosen set of the other existing finite-temperature nuclear
theory EOS: energy density dependence of β-equilibrium pressure at low temperature. Orange and blue bands show the uncertainties in
pressure in nuclear theory [154] and perturbative QCD (pQCD) [155], respectively. Blue band indicates all EOS satisfying astrophysical
constraints [156].
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at nb ¼ 3ns. Until the onset of the phase transition, the
pressure in the three versions of V-QCD is larger than in
the other nuclear theory models, with the exception of HS
(DD2). After the onset of the phase transition, this trend
changes: the V-QCD pressure decreases until it reaches
the end of the mixed phase at T ≈ 100 MeV, while the
pressure in the nuclear matter models keeps increasing
monotonically with temperature. Finally, in the pure quark
matter phase the pressure starts rising again monotonically
with T and reaches comparable values as the other models
around T ≈ 150 MeV (we also note that the BBKF
hadron-quark models exhibit qualitatively similar behav-
ior with V-QCD variants in this regime). In the right-hand
panel we plot the pressure at nb ¼ 3ns and T ¼ 50 MeV
as a function of the charge fraction. The curves for the
hadron-quark models are excluded in the plot since their

pressures are much lower than the other models [maxi-
mum values are p ≈ 45 MeV=fm3 and p ≈ 65 MeV=fm3

for BBKF(DD2F-SF) RDF 1.4 and BBKF(DD2F-SF)
RDF 1.9, respectively]. Different nuclear models exhibit
different trends. V-QCD variants and HS(DD2) have
significantly larger pressure than the other nuclear matter
models. Since the Yq dependence of our V-QCD hybrids is
inherited from HS(DD2), these models have qualitatively
similar behavior in the relevant region—the dip of the
V-QCD curves at small Yq is due to the mixed phase.
However, intermediate and soft V-QCD have lower
pressure than HS(DD2) in the whole Yq range. Finally,
comparing the top and bottom row of Fig. 10 shows that
the density dependence of the pressure dominates, while
the dependence on temperature and the charge fraction are
much weaker.

FIG. 10. Comparison of the three variants of V-QCD finite EOS and the chosen set of the other existing finite-temperature nuclear
theory EOS: baryon number density dependence of β-equilibrium pressure at low temperature (top left) and intermediate temperature
(top right), temperature dependence of β-equilibrium pressure at nb ¼ 3ns (bottom left), charge fraction dependence of pressure at
nb ¼ 3ns and T ¼ 50 MeV (bottom right).
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