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Motivated by the on-going discussion on the nature of magnetism in the quantum Ising chain CoNb2O6,
we present a first-principles-based analysis of its exchange interactions by applying an ab initio approach
with additional modelling that accounts for various drawbacks of a purely density functional theory ansatz.
With this method we are able to extract and understand the origin of the magnetic couplings under
inclusion of all symmetry-allowed terms, and to resolve the conflicting model descriptions in CoNb2O6.
We find that the twisted Kitaev chain and the transverse-field ferromagnetic Ising chain views are mutually
compatible, although additional off-diagonal exchanges are necessary to provide a complete picture. We
show that the dominant exchange interaction is a ligand-centered exchange process - involving the eg
electrons -, which is rendered anisotropic by the low-symmetry crystal fields environments in CoNb2O6,
giving rise to the dominant Ising exchange, while the smaller bond-dependent anisotropies are found to
originate from d − d kinetic exchange processes involving the t2g electrons. We demonstrate the validity
of our approach by comparing the predictions of the obtained low-energy model to measured THz and
inelastic neutron scattering spectra.

INTRODUCTION

For more than a decade, the quasi-one-dimensional Ising fer-
romagnet CoNb2O6 has been considered as a good experi-
mental realization of the transverse-field ferromagnetic Ising
chain (TFFIC) [1–12], showing the expected features of a
transversal-field-induced quantum critical point at 5Tesla
between a magnetically ordered and a quantum param-
agnetic phase. At the critical field, the spin excitations
change in character from domain-wall pairs in the ordered
phase to spin-flips in the paramagnetic phase [6, 10]. Such
a scenario has been confirmed by inelastic neutron scat-
tering (INS) [6, 13, 14], specific heat [15], nuclear mag-
netic resonance (NMR) [16] and THz spectroscopy [17–
20] experiments. These early studies of CoNb2O6 were
largely interpreted in terms of bond-independent XXZ-type
anisotropic couplings, following expectations from classic
works on Co2+ magnetism [21, 22].
However, while the dominant physics of CoNb2O6 can

be described by the TFFIC model, a (symmetry-allowed)
staggered off-diagonal exchange contribution was proposed
to be required to capture the details of the INS spec-
trum [10], and a further refined TFFIC model was re-
cently extracted from fitting to the INS spectrum at zero
and high fields [13, 14]. A similar assertion was made on
the basis of the field-evolution of the excitations in THz
spectroscopy [19], with the authors favoring an alterna-
tive twisted Kitaev chain model [23] to parameterize the
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bond-dependent interactions. The latter model was moti-
vated, in part, by proposals of possible Kitaev-type bond-
dependent couplings in high-spin Co2+ compounds [24–27],
provided that a specific balance between competing ex-
change interactions is met. These proposals are in analogy
with important developments in the last decades on the na-
ture of exchange interactions in spin-orbit-coupled 4d and
5d transition-metal-based magnets in the context of bond-
dependent Kitaev models [28–35]. At present, the validity
of this scenario for specific Co2+ materials and the role of
different exchange contributions remains a subject of discus-
sion across multiple Co2+ materials [36–44]. Adding to the
discussion of CoNb2O6, further refinements of the model
were recently suggested [45] through a perturbation theory
study and refitting of the experimental spectra. On the
other hand, based on symmetry arguments, the authors of
Ref. [46] provided valuable insights into the general struc-
ture of the spin-anisotropic model of CoNb2O6 and studied
effects of magnon interactions in its excitation spectrum by
adopting the model parameters from Ref. [13, 14].

In reality, the various experimentally motivated
parametrizations of the couplings in CoNb2O6 lead to
similar Hamiltonians, but the apparently conflicting inter-
pretations call for a detailed microscopic analysis of the
exchange contributions.

In this work we present a detailed study of the exchange
interactions in CoNb2O6, obtained by applying an ab-initio
approach with additional modelling that accounts for vari-
ous drawbacks of a purely density functional theory (DFT)-
type ansatz. The method allows us to extract and under-
stand the origin of the magnetic couplings under inclusion
of all symmetry-allowed terms, and to resolve the conflicting
model descriptions above. We find that the twisted Kitaev
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FIG. 1: CoNb2O6 structure with Co2+ zigzag chains expanding
along the c-axis. The octahedral oxygen environment of the
Co-ions is visible. The Co2+ chains align antiferromagnetically
to each other forming an antiferromagnetic system.

FIG. 2: Different coordinate systems shown in a Co-chain with
surrounding oxygen octahedra. Due to the antiferromagnetic
alignment of the chains the local coordinate systems depend
on the choice of the chain. a Cubic axes x, y, z. They corre-
spond to the conventional Kitaev coordinates. The glide plane
perpendicular to the crystallographic b-axis is visible, as well as
the two bonds defined in the twisted Kitaev notation. Bond 1
is perpendicular to the x-axis, bond 2 to the z-axis. b Principal
axes X,Y,Z as described in Eq. 2 for φ = 30◦.

chain and TFFIC views are microscopically consistent only
if the dominant exchange interaction is a ligand-centered
exchange process, which is rendered anisotropic by the low-
symmetry crystal fields environments in CoNb2O6, giving
rise to the dominant Ising exchange. The smaller bond-
dependent anisotropies are found to arise from a combi-
nation of terms we discuss in detail. We demonstrate the
validity of our approach by comparing the predictions of the
obtained low-energy model to measured THz and INS spec-
tra. Finally, this model is compared to previously proposed
models in the perspectives of both TFFIC and twisted Ki-
taev chain descriptions.

FIRST PRINCIPLES CALCULATIONS

Structure and Symmetries

In the following sections, all calculations are based on the
crystal structure reported in Ref. [4]. CoNb2O6 crystallizes
in the orthorhombic space group Pbcn featuring pseudospin
1/2 Co2+ zigzag chains extending along the crystallographic
c-axis (Fig. 1). The magnetic Co2+ ions are linked through
edge-sharing oxygen octahedra, forming chains character-
ized by alternating bonds. The ferromagnetic alignment of
Co2+ spins within each chain occurs at temperatures below
1.97K. The octahedral environments in adjacent chains are
crystallographically equivalent, though their opposing align-
ment results in a weak antiferromagnetic exchange between
the chains, as well as in the presence of two distinct easy
axes [4, 47–49].
In the discussion of the electronic Hamiltonian and mag-

netic couplings, it is useful to refer to two sets of coordinate
systems. The “cubic” axes are defined as an orthonormal
basis of vectors x, y and z, which point approximately along
the octahedral Co-O bonds, as shown in Fig. 2 a. In terms
of the global crystallographic axes (a, b, c), these are:

x =

 1/
√
3

1/
√
2

−1/
√
6

 , y =
 1/√30
2/
√
6

 , z =
 1/

√
3

−1/
√
2

−1/
√
6


(1)

In this coordinate system, the y-axis lies within the c-glide
plane, which lies halfway between the x- and z-axes.
As is visible in Fig. 2 a, one of the cubic axes is situated

within the a-c plane with an angle of around ±30◦ from the
c-axis, where the sign of the angle alternates from chain
to chain. Initial studies assumed that each easy axis would
align with this cubic axis, leading to some disagreement in
the literature (see [4, 47–49]) on that matter. As discussed
below in further detail, we find that the direction of each
easy axis lies in opposition to the corresponding cubic axis,
meaning that for an angle of ±30◦ for the cubic axis, the
easy axis lies at ∓30◦ from the c-axis (see Fig. 2).
In order to enable comparisons between our results and

those obtained experimentally in Refs. [14, 19], we also re-
fer to a coordinate system of “principal” axes denoted by
uppercase letters X, Y and Z, where Z is aligned with the
easy axis, as depicted in Fig. 2 b. With respect to (a, b,
c), these “principal” axes are defined as:

X =

 cosφ0
sinφ

 , Y =
 01
0

 , Z =
 − sinφ0
cosφ

 (2)

where φ = +30◦ is the canting angle. This definition sets
the local Z-axis to be tilted by φ from the crystallographic
c-axis in the negative a-direction. This choice of direction
for Z is based on our estimates on the Ising axis orientation
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from determining the g-tensor. In this coordinate system,
the Y-axis is perpendicular to the c-glide plane, while the
X- and Z-axes lie within it.

Multi-Orbital Hubbard Model

In order to estimate the magnetic couplings, we apply an ab-
initio based approach [50] (projED), which has been shown
to yield reliable results for highly anisotropic spin Hamilto-
nians [51–54]. The method is based on two steps. First,
an electronic multi-orbital Hubbard Hamiltonian is obtained
from a full-relativistic DFT calculation on the basis of ap-
propriately constructed Wannier orbitals, as well as suitably
defined Coulomb interactions. Second, the multi-orbital
Hubbard Hamiltonian is exactly diagonalized on finite-size
clusters. The eigenstates are then projected into the low-
energy space and mapped to an effective spin Hamiltonian.
For this purpose, we employ ideal j1/2 states described in
Appendix A.

We start with the description of all necessary terms con-
tributing to the multi-orbital Hubbard Hamiltonian. The
Hamiltonian in the basis of Co 3d-orbitals is given by:

H = Hhop +Hnn−U +
∑
i

Hi (3)

The first term in Eq. (3) describes the hoppings between
orbitals a and b on two Co-sites i and j :

Hhop =
∑
σσ′

∑
ab

tabij,σσ′d
†
iaσdjbσ′ (4)

Hnn-U describes the Coulomb interaction between different
Co-ions i and j through the ligands. This is given by:

Hnn−U =
∑
ab

[
Ũ1 (nia↑njb↓ + nja↑nib↓) + 2Ũ2

∑
σ

niaσnjbσ

+ J̃
(
d†ia↑d

†
jb↓dia↓djb↑ + d

†
ja↑d

†
ib↓dja↓dib↑

)]
,

(5)

which resembles the typical intersite Coulomb term con-
sisting of diagonal density-density contributions as well as
a “Hund’s”-type coupling. Explicit inclusion of this lat-
ter term to the electronic Hamiltonian is crucial in order
to account for ligand-centered exchange processes down-
folded into the Co d-orbital basis. Especially the eg-orbitals
hybridize strongly with the ligands and produce large con-
tributions to this term, which are manifestly important for
correctly describing the magnetism of edge-sharing 3d ma-
terials (see, for example, [55]). The terms Ũ1, Ũ2 and J̃
as well as the details of the derivation are discussed in the
Intersite Coulomb Interactions section.
Finally, the last term in Eq. (3) includes all relevant on-

site effects for each site i :

Hi = HCF +HSOC +HU (6)

First, HCF accounts for the crystal field splitting and HSOC
refers to spin-orbit coupling. The interaction term HU in-
cludes all on-site contributions to the Coulomb interaction,
which in its most general form is:

HU =
1

2

∑
σ,σ′

∑
a,b,c,d

Uabcdd
†
iaσd

†
ibσ′dicσ′didσ (7)

Here a, b, c and d label the d-orbitals while σ and σ′ define
the spin orientation. The U-matrix-elements are considered
within the spherically symmetric approximation and are fully
determined by the Slater integrals F0, F2 and F4 via

Uavg =F0 +
8

7
Javg and Javg =

F2 + F4
14

. (8)

Following Ref. [56], the ratio F4 =
5
8F2 is applied, which is

a frequently used assumption for 3d orbitals. For the com-
putations, the parameters Uavg = 5.1eV and Javg = 0.9eV
will be used, which have been obtained from constrained
DFT calculations for CoO in Ref. [57].
The material-specific contributions to the Hamiltonian

contained in Hhop, HCF, HSOC, and Hnn−U were estimated
on the basis of DFT calculations. To that end, for Hhop,
and HCF+HSOC we perform a non-magnetic fully relativis-
tic FPLO (see Ref. [58]) calculation on a 12x12x12 grid
within the generalized gradient approximation (GGA). Pro-
jective Wannier functions were used to obtain hopping pa-
rameters. The nearest-neighbor spin-diagonal hoppings can
be found in Appendix B. The parametrization of the in-
tersite Coulomb interactions is discussed below. We first
refine the crystal field in order to ensure consistency with
the measured g-tensors.

Crystal Field Splitting and g-Tensor

In this section, we first discuss the modelling of the local
crystal field, and its consequences on the g-tensor.
In Co 3d7 compounds, the relative weakness of the SOC

effectively enhances the sensitivity of the low-energy spin
interactions and g-tensor to crystal-field distortions, which
influence the specific spin-orbital composition of the local
moments. As a consequence, accurate modelling of the lo-
cal single-ion state is a prerequisite for understanding the
intersite exchange couplings. As demonstrated in Ref. 59,
Wannier fitting only sometimes achieves the necessary ac-
curacy to reproduce the experimental crystal field energies.
We therefore introduce some parameter adjustments in our
electronic Hamiltonian to ensure consistency with the ex-
perimentally determined g-tensor. Experimentally, the g-
tensor has been estimated in various works. Ref. [12] fitted
g-tensor principal values and orientations from EPR and
INS spectra for two different samples. They find two of
the g-values to be relatively close to another, and a much
larger third g-value, where the principal axes are in agree-
ment with the definition in Eq. (2) for an angle φ = 37◦.
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Ref. [14] presents a similar picture, with the principal values
presented in Table I for “FitINS”. There, the principal axes
align with Eq. (2) for φ = 30◦.

In order to compute the g-tensor from first principles, we
diagonalize the on-site Hamiltonian Eq. (6) with an addi-
tional term HZeeman that describes the coupling of the an-
gular momentum L⃗ and spin S⃗ of the Co-ions to an external
magnetic field B⃗:

H = Hi +HZeeman = Hi + µBB⃗ ·
(
L⃗i + 2S⃗i

)
. (9)

After projecting the resulting low-energy (2 × 2) Hamilto-
nian onto ideal j1/2 states, the g-tensor is obtained by taking
numerical derivatives with respect to different components
of B⃗. Due to a 2-fold rotation axis parallel to the crys-
tallographic b-axis going through each Co site, one of the
principal axes of the g-tensor is enforced to be parallel to
the b-axis (coincident with the Y-axis).
As a starting point for discussion, we first consider the

crystal field splitting matrix MCF obtained directly from the
DFT calculation after Wannierization. Written in terms of
orbitals dxy , dyz , dxz , dz2 and dx2−y2 , this is (in meV):

MDFTCF =


0 −8.7 14.5 16.3 29.9

−8.7 0 14.5 17.7 29.1

14.5 14.5 89.9 12.2 21.2

16.3 17.7 12.2 915.8 −9.4
29.9 29.1 21.2 −9.4 905.1

 (10)

where for readability these values were gauged such that
Mxy,xy = Myz,yz = 0. Performing the calculation for the
g-tensor starting from MDFTCF yields principal axes of the
g-tensor corresponding to X, Y, Z of Eq. (2), but with an
incorrect canting angle of φ ≈ 45◦ (complete g-tensor given
in Appendix C), instead of φ ≈ 30◦ from experiment [4, 14].
Since the magnetic couplings depend strongly on the crystal
field, MCF does not represent an adequate starting point for
further calculations.

After investigating the effects of various alterations to
MDFTCF , we conclude that this discrepancy is likely due to an
overestimation of the splitting between the xy/yz-orbitals
and the xz-orbital. Such a discrepancy can arise in var-
ious ways. First, we rely on the accuracy of the starting
structure; small changes in the atomic positions can lead to
significant effects on the computed CFS matrix. Second,
inherent to the Wannier interpolation in DFT is an effective
inclusion of the mean-field Coulomb terms into the single-
particle Hamiltonian. In relatively undistorted local environ-
ments, these mean-field contributions to the orbital energies
can be expected to be relatively orbital-independent within
the d-orbitals, i.e. provide only a constant diagonal shift of
the orbital energies. However, with lower symmetry envi-
ronments, the mean-field contributions may instead display
significant orbital-dependence. It is therefore more appro-
priate to improve the crystal field estimates by fitting to
available experimental data, whenever possible.

FitINS ModelDFTcorr

gX 3.29(6) 2.98

gY 3.32(2) 3.13

gZ 6.90(5) 6.90

TABLE I: g-tensor principal values in XYZ coordinates
(Eq. (2), φ ≈ 30◦) from fitting to INS data (FitINS) [14] next
to our results when considering the corrected crystal field ma-
trix (ModelDFTcorr ).

In the present case, we find that the minimal modifica-
tion of MDFTCF required to reflect the major aspects of the
experimental g-tensor (see Refs. [4, 12]) is simply to set
Mxz,xz in Eq. (10) to 15meV, i.e. reducing the t2g splitting.
This results in principal axes of the g-tensor that correspond
to a canting of φ ≈ 30.8◦ in Eq. (2), and yields the prin-
cipal g-values shown in Table I under “ModelDFTcorr ” (com-
plete g-tensor is given in Appendix C). The modification
of the crystal field reduces the previously large difference
between gX and gY (see Appendix C), and reproduces the
large anisotropy of the gX/gY and gZ principal values. Alto-
gether, the comparison to experimentally fitted g-values of
Ref. [14] (“FitINS” in Table I) yields a very good agreement.

From now on, we perform all calculations of the intersite
couplings employing ModelDFTcorr that includes the corrected
crystal field splitting, setting Mxz,xz in Eq. (10) to 15meV.

Intersite Coulomb Interactions

The nearest-neighbor magnetic interactions between edge-
sharing octahedra of high-spin Co2+ ions are strongly in-
fluenced by ferromagnetic Coulomb exchange interactions
through the ligands [39], similar as for other 3d ions [55]. In
the standard picture of these contributions considering ex-
plicitly the metal d and ligand p orbitals, the ferromagnetic
contribution arises at order JpHt

4
pd/∆

4
pd , where J

p
H refers to

the Hund’s coupling of the ligands, tpd is the hopping be-
tween the p and d orbitals, and ∆pd is the charge transfer
energy. These are discussed as “charge-transfer” processes
in Ref. [24]. They capture the effect that two holes, nomi-
nally associated with different sites, may meet on the same
ligand, and experience Hund’s coupling that reduces the
energy of the triplet configuration (see Fig. 3). When pro-
jected into the basis of d Wannier functions, this term is
reinterpreted as an effective intersite Coulomb interaction.
The weight of the p-orbitals in these Wannier functions
scale like (tpd/∆pd)

2. As a consequence of the fact that
the d-orbital Wannier functions of different Co sites have
finite coefficients on the same ligand, rotation of the lig-
and Coulomb interactions into the Wannier basis results in
intersite Coulomb interactions of order JpHt

4
pd/∆

4
pd .
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FIG. 3: Two neighboring octahedra with Co-atoms at each
center. The hybridization of their eg-orbitals with ligand p-
orbitals leads to an effective inter-site Coulomb repulsion when
holes interacting at the ligand repel each other. Here the pro-
cess is visualized for dx2−y2 orbitals, in which the hybridization
is dominant.

To make this qualitative discussion concrete and to arrive
at the interaction Hnn-U summarized in Eq. (5), one can
write the creation operators associated with the bare p-
orbitals α on ligand atom n in terms of p-orbital Wannier
functions located at the same site, and d-orbital Wannier
functions a on Co site i through:

p†nασ = φnασp̃
†
nασ +

∑
i

∑
a

φnαia d̃
†
iaσ. (11)

where the tilde indicates mixed p/d Wannier orbitals. In the
downfolded basis, only the d̃ Wannier orbitals are explicitly
considered. The bare Coulomb interaction for the p-orbitals,
as it is given for p-orbitals in [60], is:

H =
1

2

∑
n

∑
σσ′

∑
αβγδ

Vαβγδp
†
nασp

†
nβσ′pnδσ′pnγσ (12)

with

Vαβγδ = Uδαγδβδ + JH (δαδδβγ + δαβδγδ) (13)

Inserting the ansatz in Eq. (11) into Eq. (12), and retaining
those terms with all d-orbital operators leads to the expres-
sion shown in Eq. (5), for which the coupling matrices Ũ1,
Ũ2 and J̃ are defined as:

Ũ1 =(U0 − 2J)Aab + 2JBab + U0Cab (14a)

Ũ2 =
U0 − 3J
2

(Aab − Bab) (14b)

J̃ =JHAab + (U0 − JH)Bab + U0Cab, (14c)

Here, Aab ≡ γ
∑
n,α ̸=β |φnαia |2|φ

nβ
jb |2, Bab ≡

γ
∑
n,α ̸=β φ

nα
ia φ

nβ
ia φ

nα
jb φ

nβ
jb and Cab ≡ γ

∑
n,α |φnαia |2|φnαjb |2.

JH =
4
25F

p
2 refers to the Hund’s exchange energy associ-

ated with the O 2p orbitals and F p2 to the according Slater
integral. Following Ref. [61], F p2 for oxygen p-orbitals is
expected to lie at 6eV. U0 corresponds to F p0 +

4
3J. For

our calculations we use J = 0.3U0 in analogy to Ref. [24],

and estimate Aab, Bab, and Cab from non-relativistic FPLO
calculations. Finally, we introduced a scaling factor γ to
the overlap integrals, in order to account for screening of
the Coulomb interactions with respect to the bare Slater
integral.

The nearest-neighbor Coulomb interactions influence the
magnetic exchange primarily through the J̃-terms, which
result in a ferromagnetic interaction when projected into
the j1/2 basis. The Ũ1 and Ũ2 represent spin-independent
density-density interactions, and have little influence on the
magnetic couplings (see Appendix C for comparison). The
obtained J̃ matrix on bond 2 (see Fig. 1 b), in terms of
dxy , dyz , dxz , dz2 and dx2−y2 , is (Ũ1 and Ũ2 are given in
Appendix B):

J̃ = JHAab + (U0 − JH)Bab + U0Cab

=


0.31 0.18 0.26 0.74 2.45

0.18 0 0.58 0.18 0.60

0.26 0.58 0 0.16 0.44

0.74 0.18 0.16 0.24 0.79

2.45 0.60 0.44 0.79 2.54

 meV (15)

The dominant contributions to intersite coupling (in all of
Ũ1, Ũ2, J̃) stem from the eg-orbitals, due to their much
larger hybridization with the ligand p-orbitals. As discussed
in [24, 27, 39], it is the presence of the eg electrons in the
high-spin d7 configuration that leads to a significant effect
of the ferromagnetic ligand exchange processes.

RESULTS

Magnetic Exchange Couplings

As introduced above, CoNb2O6 has been discussed both, in
terms of a twisted Kitaev chain as well as an Ising model
supplemented by isotropic and anisotropic couplings [6, 13,
14, 19, 45, 46]. The former perspective is made apparent
in the cubic xyz coordinate system of Fig. 2 a, while the
latter is natural in the principal XYZ-coordinates of Fig. 2
b.

Following Fig. 2 a, bond 1 is defined as perpendicular to
the cubic x-direction and bond 2 perpendicular to z. The
symmetry-allowed magnetic exchange on bond 1 can then
be cast into the form

Hbond1eff =JKS⃗i S⃗i+1 + K̄S
y
i S
y
i+1 +KS

z
i S
z
i+1

+ Γ1
(
Sxi S

y
i+1 + S

y
i S
x
i+1

)
+ Γ2

(
Sxi S

z
i+1 + S

z
i S
x
i+1

)
+ Γ3

(
Syi S

z
i+1 + S

z
i S
y
i+1

) (16)

in cubic xyz-coordinates. Here, K is the Kitaev coupling, JK
is conventional Heisenberg exchange, and Γi are off-diagonal
symmetric couplings. The exchanges on both bonds are



6

related through a glide-plane symmetry:

Sxi ⇒ −Szi+1
Syi ⇒ −S

y
i+1

Szi ⇒ −Sxi+1,
(17)

which implies for the second bond:

Hbond2eff =JKS⃗i S⃗i+1 +KS
x
i S
x
i+1 + K̄S

y
i S
y
i+1

+ Γ3
(
Sxi S

y
i+1 + S

y
i S
x
i+1

)
+ Γ2

(
Sxi S

z
i+1 + S

z
i S
x
i+1

)
+ Γ1

(
Syi S

z
i+1 + S

z
i S
y
i+1

)
.

(18)

An alternative parameterization of the Hamiltonian is
given in terms of the principal XYZ-axes of Fig. 2 b and
Eq. (2) with φ = 30◦:

Heff = −J
∑
i

{
SZi S

Z
i+1 + µY S

Y
i S
Y
i+1 + µXS

X
i S
X
i+1

+ µXZ
(
SXi S

Z
i+1 + S

Z
i S
X
i+1

)
+ (−1)i

[
µXY

(
SXi S

Y
i+1 + S

Y
i S
X
i+1

)
+ µY Z

(
SYi S

Z
i+1 + S

Z
i S
Y
i+1

)]}
(19)

with odd numbers of i on bond 1 and even ones for bond 2.
Within this parametrization J represents the overall scale of
the couplings.

As discussed in detail in Refs [24, 25, 27], there are two
main categories of contributions to the magnetic exchange.
The first involves all of those processes that can be down-
folded into kinetic exchange processes between d-orbital
Wannier functions, arising at order t2 in the downfolded
d-only picture. These terms include the main contribution
to the bond-dependent anisotropic exchange terms. The
second category of contributions are ligand-exchange terms,
involving the mixture of the ground state j1/2 configurations
with excited states having two holes in different p-orbitals on
the same ligand. When downfolded into the d-orbital basis,
such contributions appear as effective intersite Hund’s cou-
plings in the electronic Hamiltonian. In the low-energy spin
model, they produce ferromagnetic intersite couplings with
an anisotropy that is essentially bond-independent. This
anisotropy originates from the specific spin-orbital compo-
sition of the single-ion states, as revealed in the anisotropy
of the g-tensor.
In our numerical approach, discussed in the previous sec-

tion, we make an explicit approximation for the downfolded
intersite Coulomb terms, the strength of which is controlled
by a scaling parameter γ, such that Hnn−U ∝ γ. This rep-
resents the renormalization of the ligand p-orbital Coulomb
interactions relative to free ion values. Over a range of
different 3d compounds, we have found empirically that γ
values in the range 0.6-0.8 typically reproduce well experi-
mental responses (see, for example, [62]). We therefore per-
form the projED calculation of the low-energy couplings for

a range of γ values. Fig. 4 displays the development of the
magnetic couplings with varying γ for the range γ = 0.55
to 0.65. Here we considered the parametrization given in
Eq. 19. The nearest neighbor couplings are always ferro-
magnetic, with a dominant Ising anisotropy for the entire
range of reasonable γ values. µXY and µZY have matching
signs that alternate from bond to bond while µXZ is overall
positive. Following Fig. 4 and Table V, between γ = 0.60
and 1, µX and µY range between roughly 0.18 and 0.26,
which represents a relatively narrow range. µY Z varies to a
somewhat larger degree, between roughly 0.16 and 0.09.

Thus, we find that when starting from an electronic
Hamiltonian able to reproduce the main properties of the
g-tensor, we are able to reconstruct the ferromagnetic Ising
nature of the couplings and provide a relatively narrow
microscopically compatible range for the smaller non-Ising
terms, even when allowing γ to vary.

In Table II and III we display the calculated magnetic
exchange parameters in the coordinate systems presented
in Fig. 2 a and Fig. 2 b for a screening parameter γ = 0.62.
This choice allows for a good reconstruction of the overall
bandwidth of the measured excitation spectrum as shown in
the next section. Table II and III also include the exchange
interactions obtained in Refs. [14] and [19] from fitting to
experimental data. For this purpose we transformed the
notation in [14, 19] into the coordinate systems used in this
work.

Within the principal axis system (XYZ, see Table III),
following the fitted results, J is expected to be at ≈2-
2.5meV. While the Z-component exhibits the full influence
of J, the X and Y -components are diminished by a signifi-
cant amount. While Ref. [14] expects the SXSX and SY SY
components to be similar at ≈0.25J, Ref. [19] proposes a
value of ≈0.19J for the SY SY component and no contribu-
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FIG. 4: Evolution of main magnetic coupling parameters,
defined in Eq. (19), with respect to the nearest-neighbor
Coulomb screening γ. The vertical dashed line at γ = 0.62
highlights our choice of the screening parameters for the final
set of results.
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FitINS FitTHz γ = 0.62, ModelDFTcorr

JK -0.880 -0.378 -0.920

K̄ -0.069 0.013 0.051

K -1.020 -1.159 -0.499

Γ1 0.333 0.372 0.300

Γ2 -0.766 -0.763 -0.746

Γ3 0.665 0.749 0.820

TABLE II: Comparison of the magnetic exchange parameters
reported from fitting to INS data [14] (FitINS), THz data [19]
(FitTHz) and this work (ModelDFTcorr ) for γ = 0.62. The param-
eters are given in the coordinate system in Fig. 2a with the
notation in Eq. (16). All couplings are given in [meV].

FitINS FitTHz γ = 0.62, ModelDFTcorr

J 2.48(2) 2.085 2.335

µX 0.251(6) 0 0.193

µY 0.251(6) 0.0935 0.181

µXY 0 0 0.098

µY Z 0.226(3) 0.306 0.163

µXZ 0 0 0.050

TABLE III: Comparison of the magnetic exchange parameters
reported from fitting to INS data [14] (FitINS), THz data [19]
(FitTHz) and this work (ModelDFTcorr ) for γ = 0.62. The param-
eters are given in the coordinate system in Fig. 2b with the
notation in Eq. (19). All couplings are given in [meV].

tion at all from the SXSX component. Our data shows a
trend similar to “FitINS”, though with slightly smaller values
of µX and µY .

While our calculations predict small magnitudes for both
µXY and µXZ , both fitting procedures set them to zero.
Possibly, within the fitted models the effects of finite µXY
and µXZ have been reabsorbed into an increased effective
µY Z . Compared to our results, µY Z is indeed slightly larger
in both experimental fittings. In conclusion, we observe that
our calculated parameters have the strongest resemblance
to those obtained in Ref. [14].

Additional data was collected in Appendix C Table V to
visualize the influence of the parameters in the Hubbard
model on the couplings. Couplings resulting from ModelDFT

and ModelDFTcorr as well as for γ = 0, 0.6 and 1 are presented.
While µXY is very small in general, the orders of magnitude
of µXZ and µY Z vary strongly with the underlying model
parameters. µXZ changes depending on whether or not the
adjustment to the crystal field is applied. Adding screening

to the nearest-neighbor Coulomb interaction raises µY Z to
values at the same level as the diagonal elements µX and
µY .
In Table VI in Appendix C a collection of magnetic cou-

plings obtained through a selective choice of various con-
tributions in the electronic Hamiltonian is presented. This
allows for a deeper understanding of the influence of indi-
vidual terms and the origin of different exchange terms. For
example, the case of an ideal octahedral crystal field has
been investigated. In that case, all anisotropies originat-
ing from the crystal field can be ruled out and other po-
tential sources of anisotropic couplings can be uncovered.
Similarly, as has been done before, by setting γ = 0 the
ligand-mediated Hund’s exchange can be turned off while
the exact influence of the kinetic exchange can be made
visible by setting intersite hoppings to zero.
Based on the results the following conclusions can be

made:
(i) In the absence of crystal field distortions the ligand-
mediated Hund’s exchange exhibits ferromagnetic and
nearly isotropic behavior, while the kinetic exchange is an-
tiferromagnetic and displays a significant anisotropy. How-
ever, large direct hoppings between d-orbitals on adjacent
sites prevent the anisotropies from taking the Kitaev form
(which arise primarily from ligand-mediated hoppings).
(ii) In the presence of the crystal field distortion, both, the
kinetic and ligand-mediated Hund’s couplings are rendered
anisotropic. Overall, the distorted crystal field now pre-
dominantly contributes to the anisotropy of the couplings
by displaying dominant XXZ-type anisotropic behavior of
similar magnitude in both cases.
(iii) The final couplings emerge as a compromise of these
contributions. The larger magnitude of the ferromagnetic
ligand-mediated exchange term with respect to the antifer-
romagnetic hopping term leads to the overall ferromagnetic
Ising character of the system.
(iv) The smaller µXY , µY Z and µXZ terms mostly originate
from the kinetic exchange.

DISCUSSION

To benchmark our ab-initio procedure and the derived spin
exchange model, we perform exact diagonalization calcula-
tions of the j1/2 model in Eq. (19) and compare to INS [14]
and field-dependent THz spectroscopy data [19]. We there-
fore analyze the zero-temperature dynamical spin-structure
factor

SXX(q, ω) =
∑
n

∣∣⟨0|SXq |n⟩∣∣2 δ(En − E0 − ω), (20)

which we compute via the method of Ref. [52, 63] using 150
Lanczos vectors for the spectral decomposition. Results for
INS and THz data are presented in Figs. 5 and 6, respec-
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Intensity (arb. units)

ED, N=28

0.
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1.0

FIG. 5: SXX(q, ω) for the exchange parameters given in Ta-
ble III (γ = 0.62, ModelDFT

corr ) at zero magnetic field computed
via exact diagonalization on a periodic chain of N = 28 sites.
The color function is oriented at the one of the experimental
INS data in Ref.[13].

ED, N=24

0.

0.2

0.4

0.6

0.8

1.0 Intensity (arb. units)

FIG. 6: SXX(q = 0, ω) as a function of transverse magnetic
field B (B ∥ b) for the exchange parameters given in Table III
(“γ = 0.62, ModelDFTcorr ”) and gY = 3.13 from Table I. Com-
puted via exact diagonalization on a periodic chain of N = 24
sites. The color function is oriented at the one of the experi-
mental THz data in Ref. [19].

tively, both with a Gaussian broadening of σ = 0.028meV.
The weak inter-chain couplings leading to antiferromag-
netic order between the chains are incorporated on a mean-
field level through the addition of a simple term HMF =

−
∑
i hMFS

Z
i to the Hamiltonian, for which we choose

hMF = 0.04meV, oriented at the strength of mean-fields
in previous studies [13, 19]. Within ED, we find in the

γ = 0.62 model the ordered moment ⟨g · S⟩ to be within
1◦ off the Z-direction at B = 0, consistent with experiment
[4, 47–49].

The dynamical response computed within ED of our first-
principles derived exchange model (ModelDFTcorr with γ=0.62)
is in good agreement with the available experimental data
[13, 19]. In particular, the zero-field INS response [Fig. 5]
reproduces both the sharp high-energy mode near l = 1 and
the broad scattering continuum away from l = 1 [13]. The
latter is induced by the off-diagonal non-Ising exchanges and
can be understood as originating from a finite dispersion be-
ing lent to the domain-wall excitations [10, 19]. Near l = 0,
the series of discrete bound states is reproduced [13], which
are induced by the longitudinal Weiss field from interchain
coupling, that acts effectively as a confining potential for the
domain wall excitations [6, 17]. The field-dependence seen
in the THz spectrum [Fig. 6] is also qualitatively consistent
with experiment [19], featuring for the low-energy excita-
tions a minimum of the excitation bandwidth near B = 2T,
for the medium-energy excitation a weaker B-dependence,
and for the high-energy excitation a larger positive slope
with field. Nevertheless, the relative intensities of the ob-
served modes are not in perfect agreement with experiment
[19]. Below, we discuss such quantitative deviations from
the experiments in detail and provide arguments on their
origin.

The most prominent difference is the deviation in the
overall energy scale which is slightly smaller in our ab-initio
derived model compared to experiment. The peak visible
in the INS spectrum displayed in Fig. 5 lies at approxi-
mately 2.85meV while the data in [14] suggest an exper-
imentally found energy of about 3.1meV for the peak. The
ESR spectrum is shifted equivalently. This energy scale is
mainly incorporated in the size of the coupling J, which
has a strong dependence on the screening of the nearest
neighbor Coulomb terms. Smaller screening would increase
J though this in turn would lead to the worsening of other
aspects of the data. Other factors impacting J are also
the magnitudes of the U and JH Coulomb interactions on
a single site. For our computation we used the parameters
calculated in [57] though also other values can be found
in older literature, e.g. in [64]. Fig. 5 also shows that the
width of our energy distribution is smaller than in [14]. We
found the size of the off-diagonal exchange couplings to be
crucial for the width of the energy scale. Though larger off-
diagonal contributions would have broadened the width of
ω, this adjustment wasn’t possible within our framework.

Another noteworthy difference between our data and ex-
periment is visible in the ESR spectrum (see Fig. 6). Here
the lowest lying energy mode has the strongest intensity
which isn’t the case in the experimental findings in [19].
The intensity distribution could be adapted to the experi-
mental ESR spectrum through increasing off-site Coulomb
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screening though this would lower the energy scale further.

Summarizing, the ESR and THz spectra extracted from
our exact diagonalization approach of the first-principles
modelled Hamiltonian, are able to reproduce experimental
findings on a qualitative and also partially on a quantita-
tive level. We were also able to determine the microscopic
origins to particular aspects of the spectra like nearest-
neighbor Coulomb screening and on-site Coulomb interac-
tion strengths. While we obtained an overall good qualita-
tive agreement, note that we have not taken into account
further-neighbor exchanges, which are likely relevant for a
further improved quantitative agreement [13].

CONCLUSIONS
In this work, we have shown that the different refined mod-
els for the Ising spin-chain compound CoNb2O6 derived re-
cently from experimental fitting [13, 14, 19, 45] offer a mu-
tually compatible view of the material that is consistent with
microscopic considerations. Specifically, in this material,
the local Co spins are strongly perturbed j1/2 moments of
the high-spin d7 configuration. The largest and most crucial
contribution to the magnetic exchange is the ferromagnetic
Goodenough-Kanamori (ligand-mediated) exchange involv-
ing the eg electrons. This contribution acquires a bond-
independent XXZ (Ising) anisotropy as a consequence of
the strongly distorted CoO6 octahedra, which also results
in anisotropic g-tensors. The smaller bond-dependent cou-
plings, the importance of which have been highlighted by
the recent neutron and THz studies, arise as residual ef-
fects of d − d kinetic exchange processes involving the t2g
electrons. However, these residual terms do not follow pre-
cisely a Kitaev form because of the effects of the crystal field
distortion, and the specific magnitudes of the d − d hop-
pings are more conducive to off-diagonal Γ couplings. These
findings are all compatible with recent assertions about cou-
plings between high-spin d7 compounds in [39], and offer
significant insight into related Co2+ compounds currently
under study in the context of bond-dependent magnetism.

In order to derive these conclusions, we have followed
an ab-initio based approach that allows for a balanced
treatment of the relevant contributions to the magnetic
couplings, including the ligand-mediated ferromagnetic ex-
change, within a d-orbital picture. By adjusting the crys-
tal field to match the experimental g−tensor, and varying
the strength of the intersite Coulomb exchange, we have
identified a relatively narrow range of magnetic Hamilto-
nians that can be considered microscopically compatible,
and shown that they reproduce the experimentally observed
rich dynamical response of the material. Specifically, for
the bond-independent XXZ couplings, the two perpendic-
ular (X, Y) contributions are smaller than the Ising (Z)
coupling by a factor of roughly µX ≈ µY ≈ 0.2. The
largest bond-dependent coupling is of similar magnitude,

and takes the form of off-diagonal µY Z . As pointed out
in [13], additional off-diagonal µXY and µXZ are also sym-
metry allowed, but were set to zero in both Ref. [14] and
Ref. [19] for simplicity. We find these couplings to be finite,
but that they are the smallest terms in the Hamiltonian,
partially justifying their omission in these previous studies.
Overall, our derived couplings most closely resemble those
of Ref. [14], the main distinction being that Ref. [14] em-
ploys µX = µY , while Ref. [19] employs µX = 0. Thus,
while CoNb2O6 remains a very complex system to investi-
gate within a purely ab-initio approach, the utilization of
experimental input as guidance (such as the g-tensors and
overall magnetic excitation bandwidth), allows for the eluci-
dation of a microscopically consistent picture of the varied
and competing exchange contributions. After many years
of intensive research, the description of this paradigmatic
material in quantum magnetism is finally coalescing, and
continuing to hold new insights.

ACKNOWLEDGEMENTS

We would like to thank R. Coldea, P. Armitage, H.-Y. Kee
and A. L. Chernyshev for valuable discussions. We ac-
knowledge support by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) for funding
through project TRR 288 — 422213477 (project A05) and
through QUAST-FOR5249 - 449872909 (project TP4).



10

APPENDIX A
Ground state multiplet projection
Within the projED approach the Hamiltonian from Eq. (3) is
diagonalized numerically for one or two site clusters, retain-
ing the lowest doublet state(s). The resulting low-energy
Hamiltonian in the basis of these doublets is then pro-
jected onto an idealized low-energy space of pure j1/2 dou-
blets. The main contributions to these states are within
the (t2g)

5(eg)
2 subspace with seven electrons per site and

Jef f = 1/2 [39]. The aim is to project the initially in orbital-
basis given states onto the Jef f = 1/2 single-ion doublets.
This is done in two steps. First, for the material at hand
the orbital basis can rewritten in terms of |mL, mS⟩ states.
Those compose the j1/2-basis in the following way [21]:

|
1

2
,+
1

2
⟩ = c1 |−1,

3

2
⟩+ c2 |0,

1

2
⟩+ c3 |1,−

1

2
⟩ (21a)

|
1

2
,−
1

2
⟩ = c1 |1,−

3

2
⟩+ c2 |0,−

1

2
⟩+ c3 |−1,

1

2
⟩ (21b)

where the prefactors c1, c2 and c3 can be chosen as c1 =
1/
√
2, c2 = 1/

√
3 and c3 = 1/

√
6. This actually refers

to to the case of zero trigonal splitting [21, 39], though
variation in this coefficients would only result in Hamiltoni-
ans that are related through unitary basis transformations.
Since the calculation of both the magnetic couplings and
g-tensors employ the same projection scheme, such unitary
transformations do no result in any difference in the local
spectrum of the model. These are a composition of orbital
states in the t2g-eg basis and can be expressed via:

|−1,
3

2
⟩ = |ea,↑eb,↑t+,↑t0,↑t0,↓t−,↑t−,↓⟩ (22a)

|0,
1

2
⟩ =
1√
3
|ea,↑eb,↑t+,↑t+,↓t0,↓t−,↑t−,↓⟩

+
1√
3
|ea,↑eb,↓t+,↑t+,↓t0,↑t−,↑t−,↓⟩

+
1√
3
|ea,↓eb,↑t+,↑t+,↓t0,↑t−,↑t−,↓⟩

(22b)

|1,−
1

2
⟩ =
1√
3
|ea,↑eb,↓t+,↑t+,↓t0,↑t0,↓t−,↓⟩

+
1√
3
|ea,↓eb,↑t+,↑t+,↓t0,↑t0,↓t−,↓⟩

+
1√
3
|ea,↓eb,↓t+,↑t+,↓t0,↑t0,↓t−,↑⟩

(22c)

Since within FPLO we worked within the basis of dxy , dyz ,
dxz , dz2 and dx2−y2 orbitals, a transformation between this
states and the t2g-eg states has to be taken into account:

|ea,σ⟩ = |dz2,σ⟩ (23a)

|eb,σ⟩ = |dx2−y2,σ⟩ (23b)

|t+,σ⟩ = −
1√
2
(|dyz,σ⟩+ i |dxz,σ⟩) (23c)

|t0,σ⟩ = |dxy,σ⟩ (23d)

|t−,σ⟩ =
1√
2
(|dyz,σ⟩ − i |dxz,σ⟩) (23e)

The time-reversed states can be obtained analogously.

APPENDIX B
Hopping and nearest-neighbor Coulomb parameters

The hoppings in meV on bond 2 (the bond perpendicular to
the z-axis) between nearest-neighbors determined by FPLO
are given, in terms of dxy , dyz , dxz , dz2 and dx2−y2 orbitals,
as 

−69.95 −2.34 21.88 88.93 −5.33
−2.34 24.81 40.78 −5.52 16.56

21.88 40.78 11.32 56.00 −5.56
88.93 −5.52 56.00 −80.96 2.58

−5.33 16.56 −5.56 2.58 −55.66

 (24)

The matrices accounting for nearest-neighbor Coulomb in-
teraction on bond 2 are (in meV):

Ũ1 = (U0 − 2JH)Aab + 2JHBab + U0Cab

=


0.38 0.23 0.31 0.75 2.47

0.23 0 0.60 0.23 0.79

0.31 0.69 0 0.21 0.58

0.75 0.23 0.21 0.32 1.04

2.47 0.79 0.58 1.04 3.33

 (25a)

Ũ2 =
U0 − 3JH
2

(Aab − Bab)

=


0.04 0.02 0.02 0.01 0.01

0.02 0 0.01 0.03 0.10

0.02 0.01 0 0.03 0.07

0.01 0.03 0.03 0.04 0.13

0.01 0.10 0.07 0.13 0.39


(25b)

J̃ = JHAab+(U0 − JH)Bab + U0Cab

=


0.31 0.18 0.26 0.74 2.45

0.18 0 0.58 0.18 0.60

0.26 0.58 0 0.16 0.44

0.74 0.18 0.16 0.24 0.79

2.45 0.60 0.44 0.79 2.54

 (25c)
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ModelDFT ModelDFT
corr

gX 2.19 2.98

gY 3.52 3.13

gZ 7.01 6.90

v⃗X (0.70, 0, 0.71) (0.86,−0.01, 0.51)

v⃗Y (0,−1, 0) (0,−1, 0)

v⃗Z (0.71, 0,−0.70) (0.51, 0,−0.86)

TABLE IV: g-tensor principal values and axes in terms of crys-
tallographic coordinates when considering the crystal field ma-
trix Eq. 10 (ModelDFT) and the corrected crystal field matrix
(ModelDFT

corr ). The axes of ModelDFT are close to Eq. (2) for
φ ≈ 45◦, while those of ModelDFT

corr are close to φ ≈ 30◦.

APPENDIX C
Detailed results on g-tensor and Spin Hamiltonian

g-tensors in the xyz-coordinate system visible in Fig. 2a
obtained from ModelDFT:

g =

 5.212 −0.553 1.666

−0.553 2.324 −0.551
1.670 −0.551 5.208

 (26)

and ModelDFT
corr :

g =

 4.697 −1.033 1.564

−1.033 3.629 −1.033
1.566 −1.033 4.684

 (27)

The principle values and axes for both models are visible in
Table IV. The eigenvalues for ModelDFT

corr are compared to
fitted data in Table I in the main text.

The nearest-neighbor Coulomb interaction consists of a
spin-independent and a spin-dependent part of which the
latter one has the major contribution to the Spin Hamilto-
nian. Omission of the spin-independent part, as described
in the main text, leads to the following magnetic couplings:

J =2.332

µX =0.193

µY =0.183

µXY =0.098

µY Z =0.158

µXZ =0.047

(28)

All deviations of the result with full Hnn−U are of an order
of magnitude of 10−3meV.
Detailed Spin Hamiltonian results for ModelDFT and

ModelDFTcorr as well as several values of γ are visible in Ta-
ble V. There, the following scenarios were investigated:

1. Using CFS parameters directly from FPLO
(ModelDFT) and omitting the influence of the
nearest-neighbor Coulomb interaction completely
(γ = 0).

2. Working with ModelDFT and the nearest-neighbor
Coulomb interaction defined in in Eq. (5), therefore
effectively using a prefactor γ = 1.

3. Using adjusted CFS parameters with reduced xy/yz-
xz orbital splitting (ModelDFTcorr ) and again the nearest-
neighbor Coulomb interaction from Eq. (5) (γ = 1).

4. Using ModelDFT and the nearest-neighbor Coulomb
interaction from Eq. (5), this time with a prefactor
γ = 0.62 to Hnn−U in order to account for screening
effects.

5. Working with ModelDFTcorr while the nearest-neighbor
Coulomb interaction Hnn−U shall again be scaled with
a prefactor γ = 0.62.

Additional calculation for different microscopic Hamilto-
nians were performed in order to be able to distinguish their
isolated contributions to the full Hamiltonian of the final
model (see Table VI). Here ModelDFTCF0 considers only a min-
imal modelling of the crystal field which includes solely a
homogeneous eg-t2g splitting without all other anisotropies.
ModelDFTcorr is defined as usual. For this two models the fol-
lowing cases were investigated:

1. γ = 0: The full microscopic Hamiltonian when omit-
ting the intersite Coulomb interaction.

2. γ = 0.62, Hhop = 0: The full microscopic Hamil-
tonian when omitting the contribution of hoppings.
The intersite Coulomb interaction is introduced with
a screening factor of 0.62.

3. γ = 0.62: The full microscopic Hamiltonian with
the intersite Coulomb interaction contributing with
a screening factor of 0.62.
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FitINS FitTHz
γ = 0 γ = 1 γ = 0.62

ModelDFT ModelDFT ModelDFTcorr ModelDFT ModelDFTcorr

J 2.48(2) 2.085 -3.309 4.731 5.655 1.713 2.335

µX 0.251(6) 0 0.267 0.270 0.262 0.204 0.193

µY 0.251(6) 0.0935 0.380 0.323 0.260 0.251 0.181

µXY 0 0 -0.034 -0.001 0.034 0.025 0.098

µY Z 0.226(3) 0.306 -0.054 0.088 0.086 0.182 0.163

µXZ 0 0 -0.247 -0.230 0.017 -0.235 0.050

TABLE V: Comparison of the magnetic exchange parameters reported from fitting to INS data [14] (FitINS), THz data [19]
(FitTHz) and this work. We present five different sets of results obtained within our approach. ModelDFT refers to calculations with
the CF matrix from Eq. 10 and ModelDFTcorr to calculations with the corrected CF. The variables are named following the notation in
Eqs. (18) and (19) and are given in [meV].

γ = 0 γ = 0.62, Hhop = 0 γ = 0.62

ModelDFTCF0 ModelDFTcorr ModelDFTCF0 ModelDFTcorr ModelDFTCF0 ModelDFTcorr

J -1.829 -3.197 2.874 5.411 0.973 2.335

µX 1.163 0.320 1.045 0.299 0.835 0.193

µY 1.089 0.341 0.974 0.304 0.757 0.181

µXY -0.438 -0.093 -0.022 -0.005 0.738 0.098

µY Z -0.068 -0.072 0.043 0.022 0.264 0.163

µXZ -0.122 -0.051 -0.010 -0.010 0.200 0.050

JK 1.800 2.100 -2.722 -3.101 -0.833 -0.920

K̄ 0.105 -0.819 -0.237 0.861 -0.154 0.051

K 0.443 -0.17 -0.276 -0.232 0.134 -0.499

Γ1 -0.368 -0.767 -0.044 0.978 -0.405 0.300

Γ2 0.030 0.925 -0.060 -1.570 -0.030 -0.746

Γ3 0.734 -0.251 -0.051 1.013 0.670 0.820

TABLE VI: Comparison of magnetic couplings under consideration of different contributions to the microscopic Hamiltonian.
ModelDFTCF0 represents a minimal modelling for the crystal field, including only a homogeneous eg-t2g splitting. ModelDFTcorr is defined
as before.
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T. Rõõm, J. W. Krizan, R. J. Cava, T. M. McQueen,
S. M. Koohpayeh, R. K. Kaul, and N. P. Armitage, Na-
ture Physics 17, 832 (2021).

[20] K. Amelin, J. Viirok, U. Nagel, T. Rõõm, J. Engelmayer,
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