Flexible Composition in LTAG:
Quantifier Scope and Inverse Linking

Aravind K. Joshi

IRCS, University of Pennsylvania,
3401 Walnut Street, Philadelphia, PA 19104-6228, USA.

joshi@linc.cis.upenn.edu

Laura Kallmeyer

TALaNa/LaTTICe, University Paris 7,
2 place Jussieu, 75251 Paris Cedex 05, France.
laura.kallmeyer@linguist.jussieu.fr

Maribel Romero

Department of Linguistics, 610, Williams Hall, University of Pennsylvania,
Philadelphia, PA, 19104-6305, USA.

romero@ling.upenn.edu

Abstract

This paper addresses the problem of constraints for relative quantifier
scope, in particular in inverse linking readings where certain scope orders
are excluded. We show how to account for such restrictions in the Tree
Adjoining Grammar (TAG) framework by adopting a notion of flexible
composition. In the semantics we use for TAG we introduce quantifier sets
that group quantifiers that are ‘glued’ together in the sense that no other
quantifier can scopally intervene between them. The flexible composition
approach allows us to obtain the desired quantifier sets and thereby the
desired constraints for quantifier scope.

1 Introduction

The scope of quantifiers within a sentence can be in principle arranged in dif-
ferent orderings, making the sentence potentially ambiguous. For example, sen-
tence (la), with two quantifiers, has two logically possible scope orderings: the
surface order some > every, and an “inverse” order every > some. These two
orderings yield two actual readings of the sentence, spelled out in Predicate
Logic in (1b-c) respectively.

(1) a. An FBI agent is spying on every professor.
b. 3V: 3z [agent(z) A Vy[professor(y) — spy(z,y)]]
c. V3: Yy [professor(y) — Jz[agent(z) A spy(z,y)]]

Both scope orderings must be made available by the grammar also when
the two quantifiers appear nested within each other, that is, when one of the
quantifiers appears within the Noun Phrase headed by the other quantifier. This

is illustrated in (2) and (3). In (2a), the surface ordering no>a corresponds to
the existing reading spelled out in (2b). In (3a), the inverse ordering every>a
gives us the existing reading in (3b). The inverse reading in nested quantifier
constructions is called “inverse linking reading”. Note, that, in the inverse
linking reading, the nested Qus does not only take scope over its host NP, but
over the clause in general, as it can bind the variable it in (4) (May 1985, p.
68).

(2) a. No representative from an African country came to the meeting.

b. =3 3: =3z Jy [representative(z,y) A Afrcountry(y) A came(z)]

(3) a. A representative from every African country came to the meeting.
b. V3: Vy [Afrcountry(y) — 3z [representative(z,y) A came(z)]]
(4) Somebody from every city despises it.

When we turn to sentences with three quantifiers Qui, Qus and Qus, we
have six logically possible scope combinations. One of these six combinations,
namely the ordering Qus Qu; Qus, yields an actual reading for sentences like
(5), as spelled out in (5b).!

(5) a. (At least) two social workers gave a doll to each/every child.

b. V23: Vy [child(y) — 3z [social-workers(z) A |z| >2 A
Va'[e' C;x — 3z[doll(z) A give(z',z,4)]]]]

However, in nested quantifier configurations where Qus appears within Qua,
this same ordering Qus Qu; Qua does not yield an actual reading (Larson 1987,
Heim & Kratzer 1998, Sauerland 2000). Neither does Qus Qu; Qus yield an
actual reading (Hobbs & Shieber 1987). This can be seen in (6)-(7). Take, e.g.,
the six logically possible scope orderings in (6a). The claim is that the nested
quantifiers 3 and V can in principle take scope together under 2 (orders 23V and
2V 3) or they can take scope together over 2 (3V 2 and V 3 2), but they cannot
take scope separately with the quantifier 2 intervening between them (orderings
*J2V, *vV23).

(6) a. Two politicians spy on someone from every city. Larson (1987)
b. 23V, 2V3,3V2, V32, * 32V, *V23

c. ¥*V23: Vy[cty(y) —
2 z [politicians(z), 3z[person(z) A from(z,y) A spy(x,z)]]

n (5b), ranges over singular and plural individuals (see Link 1983), the formula |z| > 2
says that = consists of at least 2 atoms and the universal quantification V' corresponds to
the distributive interpretation optionally available for plural Noun Phrases (Link 1983 among
many others). For convenience, we will use the notation 2 z[p1 A po] for 3z [p1 A |z| >
2 A Va'[z' C; ¢ — p2]]] in subsequent examples.

(7) Two engineers repaired some exits from every freeway in California city.
Larson (1987)

Although the missing reading corresponding to 32V may be banned due to
general architectural reasons, the unavailability of the reading *V 2 3 formalized
in (6b) is puzzling.? The aim of the present paper is to provide an LTAG
account of why no quantificational NP can intervene between an inverse linked
quantifier and its host NP. The paper is part of a larger project concerned
with the development of a compositional semantics for LTAG. We first provide
some background on LTAG and compositional semantics in section 2. Section 3
develops a flexible composition approach to quantification. Section 4 spells out
the semantics for it, generating only the correct scopal combinations for nested
quantifier constructions.

2 LTAG and compositional semantics

2.1 Lexicalized Tree Adjoining Grammars (LTAG)

An LTAG (Joshi & Schabes 1997) consists of a finite set of trees (elementary
trees) associated with lexical items and of composition operations of substitu-
tion (replacing a leaf with a new tree) and adjunction (replacing an internal
node with a new tree). The elementary trees represent extended projections
of lexical items and encapsulate all syntactic/semantic arguments of the lexical
anchor. They are minimal in the sense that only the arguments of the anchor
are encapsulated, all recursion is factored away.

LTAG derivations are represented by derivation trees that record the history
of how the elementary trees are put together. A derived tree is the result of car-
rying out the substitutions and adjoinings. See Fig. 1 for an example. The num-
bers in the derivation tree are the node positions where substitution/adjunction
takes place: John is substituted for the node at position (1) and always is ad-
joined at position (2).

2.2 Compositional semantics with LTAG

Because of the localization of the arguments of a lexical item within elementary
trees TAG derivation trees express predicate argument dependencies. Therefore
it is generally assumed that the proper way to define compositional semantics
for LTAG is with respect to the derivation tree, rather than the derived tree

2%#3 2V involves having the quantifier 3z separated from its restrictor from(z,y) as in (8),
a configuration that should perhaps be banned on grounds orthogonal to the present paper (it
has very weak truth conditions in Predicate Logic). But note that such configuration does not
arise in *v23. The unavailability of this reading is, hence, puzzling and needs an explanation.

(8) *32V: Fz[person(z) A 2z [politicians(z) A
Yy [city(y) A from(z,y) — spy(z,2)]]]

S derived tree: S
_— N\

NP| __.--»VP Np A\ derivation tree:
H /VP\ 7% em ADV VP faugh
| / onn
NP ADV VP | o ’ N
‘ ‘ laughs atways | (L)john (2)always
John always laughs
Figure 1: TAG derivation for John always laughs

(see, e.g., Candito & Kahane, 1998; Joshi & Vijay-Shanker, 1999; Kallmeyer &
Joshi 1999, 2002).

The overall idea is as follows. Each elementary tree is linked to a semantic
representation. The way the semantic representations combine with each other
depends on the derivation tree. Following Kallmeyer & Joshi (1999, 2002),
in this paper, we will adopt ‘flat’ semantic representations as in, for example,
Minimal Recursion Semantics (MRS, Copestake et al., 1999). (9) shows the
elementary semantic representations for John always laughs.?

Iy : laugh(z1) . lo : always(hs)
9| m>h M g1 > l2,hy > 51
—— | arg: —
arg: (z1, (1)) & arg: gi, S1

Roughly, a semantic representation consists of a conjunctively interpreted set
of formulas (typed lambda-expressions), scope constraints and a set of argument
variables. The formulas may contain labels and holes (metavariables for propo-
sitional labels). In the following, l1,ls,... are propositional labels, hi,ho, ...
are propositional holes, s1,$2,... are propositional and xj,zs,... individual
argument variables (whose values must be propositional labels/free individual
variables) and g1, g2, ... are hole variables (special argument variables whose
values must be holes). Argument variables may be linked to positions in the
elementary tree, as it is the case for z; in (9).

The use of holes is motivated by the desire to generate underspecified rep-
resentations (as in, e.g., Bos, 1995) for scope ambiguities. After having con-
structed a (possibly underspecified) semantic representation with holes and la-
bels, disambiguation is done which consists of finding bijections from holes to
labels that respect the scope constraints. E.g., in the semantic representation
for laugh, there is a hole hy above [; (constraint hy > l;). Between hy and Iy,
other labels and holes might intervene (introduced for example by quantifiers
or adverbs) or, if this is not the case, I; will be assigned to h; in the disam-
biguation(s). The constraints ky > ko differ from the geq conditions k1 =4 ko
in MRS (see Copestake et al. 1999, p.10) in that they allow any element having
a propositional argument (quantifiers, scope-taking adverbs ...) to intervene

3john(x) is not a standard unary predicate but it is supposed to signify “there is a unique
individual called John and z refers to that individual”.

between k1 and ks while in MRS, just quantifiers can intervene between k; and
ko.

When combining semantic representations, values are assigned to argument
variables and the union of the semantic representations is built. The values
for the argument variables of a certain (elementary) semantic representation
must come from semantic representations that are linked to it in the derivation
tree. The linking of argument variables and syntactic positions restricts the
possible values as follows: In a substitution derivation step at a position p, only
argument variables linked to p get values. In an adjunction step, only argument
variables that are not linked to any positions can get values. In the case of a
substitution, a new argument is inserted and therefore a value is assigned to
an argument variable in the old semantic representation. However, in the case
of an adjunction, a new modifier is applied and therefore a value is assigned
to a variable in the semantic representation that is added. In other words, in
case of a substitution, semantic composition is downwards, while in case of an
adjunction, semantic composition is upwards. For a formal definition of the
semantic composition operation see Kallmeyer & Joshi (2002). The algebra
introduced there is close to what Copestake et al. (2001) introduce for MRS
except for details of the formalization and for the fact that in Copestake et
al. (2001) each semantic representation contains just one “hook”, i.e. just one
element that can be assigned as possible value to an argument (if equations are
viewed as variable assignments). This is different in our approach, e.g. in (9)
h, and l; are contributed by the same elementary representations and they are
both used as values when combining laugh and always.

ll X Iaugh(az1)7h1 Z ll
arg: (z1,(1))

T

\
.
, \ “~
, SR
‘ .

john(z) o] always(hiz), g1 > l2, ha > 51
arg: — arg: gi,s1

_»
'S

\
N

(1)

Figure 2: Semantic composition for John always laughs

Fig. 2 shows the semantic composition for John always laughs. The di-
rected edges signify semantic application while the dotted links signify variable
assignments. John is substituted into laugh, therefore the corresponding se-
mantic composition is downwards, while the composition of always and laugh
is upwards. Furthermore, the value of z; needs to come from John since x; is
linked to the node address where John is substituted, and the values of g; and
s1 need to come from laugh since they are not linked to any node addresses.
Consequently, 1 — x,91 — h1 and s; — l;. The result is (10).

l1 : Iaugh(w), john(x), lz : always(hg), h1 Z ll,hl Z lz,hz Z l1

(10) arg: —

A disambiguation 4 is a bijection from holes to labels such that: After having
applied ¢ (i.e., replaced the holes by their corresponding labels), the reflexive
transitive closure >* of the order > with (i) Iy > Iy if Iy > l» is a constraint
and (ii) Iy > Iy and I; # Iy if Iy labels a subformula of the formula labelled Iy
must be such that (a) >* is a partial order and (b) I 2* lo and ls 2* I3 if |1
and Iy are different arguments of the same predicate (e.g., the restrictive and
the nuclear scope of a quantifier).

n (10), hy > 2, o > ho (because ho appears inside a formula labelled I5)
and hy > l;. Consequently hy # I3 and the only possible disambiguation is
hi — I3, ha — l;. This leads to the semantics john(z) A always(laugh(x)).

2.3 Separating scope and predicate argument information

A central aspect of (Kallmeyer & Joshi, 1999, 2002) is the separation of the
contribution of a quantifier into a scope and a predicate argument part: Quan-
tifiers have a set of two elementary trees and tree-local multicomponent TAGs
are used. (This means that if a new elementary tree set is added, all trees of the
set are added simultaneously and they are added to nodes belonging all to the
same elementary tree.) An auxiliary tree consisting of a single node is linked to
the scope part of the semantics, while an initial tree is linked to the predicate
argument part. E.g., consider the syntactic analysis of every dog barks in Fig. 3.
The corresponding elementary semantic representations are shown in (11).

_--*35
Gr o derived tree:
NP}l VP g derivation tree:
T | _— barks
[L S v NP VP
D‘et 1\i¢ barks Dm \\/ (0)every-1 (1)ev‘ery-2
B . (2)do
g
cvery | ev‘ery dog barks
dog

Figure 3: Syntactic analysis of every dog barks

Iy : bark(xy) Iy : Vx(he, h3) I3 1 p1(z) g1 : dog
(11) | i >0 hs > 51 he > 13 17
arg: o arg: s1 arg: pi are: —

The scope part of the quantifier (second representation in (11)) introduces
a proposition containing the quantifier, its variable and two holes for its re-
strictive and nuclear scope. The proposition this semantic representation is
applied to (variable s1) is in the nuclear scope of the quantifier (hg > s1). The

Elementary trees and semantic representations:

S
_— 1‘\1 q1 : student
NP} VP l1 : love ; Tarer — |
I
V. NPJ L= N }
arg: <$1,(1)>,<$2,(22)> ‘ w
loves course arg: -
(Iy : Az(ha, hs) (ls : Vy(ha, hs)
S* hs > 51 S* hs > s2
arg: $1 arg: s»
NP NP
/\ l3 ' p1 (x) /\ l5 :pz(y)
Det NJ ha > 13 D‘et N} ha > 15
e arg: (pr, 01) ol arg: (p2,01)
loves

Derivation tree: (0)some-1 (1)some-2 (22)every-2 (1)every-1
\ \
(2)student (2)course

Figure 4: Scope ambiguity and underspecification

predicate argument part (third representation in (11)) introduces a proposition
p1(x) where p; will be the noun predicate dog. This proposition is in the restric-
tive scope of the quantifier (ho > I3). The values for the argument variables
are r;1 — ©,51 — l1,p1 — ¢ which gives (12). The only disambiguation is
hi = I3, ha — I3, hg — I} which leads to the semantics Vz(dog(x), bark(x)).

ll : bark(w), l2 ZVSL’(hQ,hg), l3 : dOg(SL’), h1 Z ll, h3 Z ll, h2 Z l3

arg: —

(12)

To account for cases with more than one quantifier, a restricted use of mul-
tiple adjunctions (for the scope parts) is necessary.

As already mentioned above, the use of holes and labels allows to gener-
ate underspecified representations for quantifier scope ambiguities as in some
student loves every course. The elementary trees and elementary semantic rep-
resentations and the derivation tree are shown in Fig. 4. The assignments are
T1 = T, L2 = Y, 81 = i, p1 = q1,82 = 11, p2 = ¢2. The result is (13).

Iy : Jx(ha, h3), 1y : Vy(ha, hs), 11 : loves(x,y), I3 : student(z),
(13) | s : course(y), ha > 1I3,hg > 1y, ha > l5,hs > 11, hy > 1y

arg: —

According to (13), student(z) is in the restriction of 3, course(y) in the
restriction of V, and loves(z, y) is in the body of 3 and the body of V. This leaves

open whether 3 is in the body of V or V in the body of 3. The corresponding
two disambiguations are hy — lo, ho — I3, hs — Uy, hy — I5, hs — 11 (wide scope
of E') and hl — l4,h2 — lg,hg — l1,h4 — l5,h5 — lz (wide scope of V)

There are many related works on computational models for scope representa-
tion, e.g., Reyle (1993) that introduces scope constraints and underspecification
into DRT. One that has a specific connection to our work is Alshawi (1992). In
this work there is an intermediate level of scope representation (Quasi Logical
Form (QLF)). At this level underspecified representation of scope is allowed
(among other things). This form is computed from a prior phase of syntactic
analysis and is produced by an initial semantic analysis phase.

The fact that we provide in our representation a level of underspecification is
not the novel part of our system. One of the novel aspects of the compositional
semantics developed in Kallmeyer & Joshi (2002) is that the derivation tree
(which is the syntactic derivational history in the LTAG system) already rep-
resents the underspecified scope relations. Computation of this representation
is not a separate level. This is a crucial point of departure from the traditional
compositional systems. The other distinguishing aspect is the factoring of the
composition of the predicate-argument semantics from the scope composition
semantics.

3 LTAG and flexible composition

In a context-free grammar, CFG, a rule such as A — BC can be interpreted in
two ways. We can regard B as a function and C as its argument, producing the
result A. Alternatively, C' can be regarded as a function and B as its argument,
producing the same result. We have flexible composition here, in the sense
that the direction of composition is flexible. In the case of CFGs it is easily seen
that providing such flexibility does not affect the weak generative capacity of the
grammar (i.e., the set of strings generated by the grammar) as well as the strong
generative capacity (i.e., the set of derivation trees generated by the grammar).
In other words flexible composition does not buy us anything new. This is due
to the fact that CFG is a string rewriting system and function and argument are
‘string-adjacent’. For a TAG and, in particular, for the multi-component TAG it
can be shown that flexible composition allows the possibility of increasing both
the strong and weak generative capacities. This is due to the fact that when
TAG trees are composed (interpreting them either as functions or arguments)
the function and argument trees are ‘tree-adjacent’ (rather than ‘tree-adjacent).
The fact that complex topological objects are composed allows the possibility
of increasing strong and weak generative capacities using flexible composition.

We will use some simple examples to illustrate what we mean by flexible
composition in a TAG or MC-TAG (Multi-Component TAG). Instead of the
two operations, substitution and adjoining, we will use the term ‘attachment’.

In Fig. 5 f; can be attached to «; at the interior S node of «; resulting in
the tree corresponding to who; NP thinks NP likes €;. In this case 51 composes
with aq. Alternatively, we can regard a; as a multicomponet tree (with two

components) as shown in ay with the two components a2; and ass. Now we
can compose as with 81 such that as; attaches to the root node of 8; and asos
attaches to the footnode S of 51, resulting in the same string as before, but with
a different derivation (different structural description).

V:H/S\S ﬂk s

NP VP Neoove) 0B N@P
v xp VMS WH; S \\/ N‘P
likes 6‘1 thi‘nks likes €

Figure 5: Example of flexible composition

In flexible composition if a tree ¢ composes with a tree u then we require
that u is an elementary tree. This assures ‘tree locality’ in the composition.
Given two trees ¢ and w composition can go in either direction if both ¢ and
u are elementary. If both ¢ and u are derived trees then they cannot compose
with each other. If only one of the trees is elementary then the other tree
can compose into it but not vice versa. Given this constraint on locality the
composition can proceed in a flexible manner. Of course, several derived trees
can be added simultaneously to an elementary tree. This is necessary in order
not to exclude standard TAG derivations. Basically, flexible composition allows
one to traverse the derivation tree starting at any node and moving up and
down the derivation tree in a ‘flexible’ manner until all nodes of the derivation
tree have been visited. Actually, in our present paper we will not use this more
general notion of flexible composition. We will traverse the derivation tree (for a
MC-TAG) from bottom up maintaining the requirements of flexible composition
as described above.

4 The quantifier set approach

In this section we propose a way to obtain the desired scope restrictions for
inverse linking constructions making use of the flexible composition approach.
Consider again (6), repeated as (14). The reading we want to exclude is V 2 3.
(The order 32V will be excluded anyway.)

(14) two politicians spy on someone from every city

In the flexible composition approach, at some point the QPs someone and
every city are composed. In this step, the two scope parts (the S auxiliary
trees) of these quantifiers are identified (one adjoins to the other). The result
is the complex QP someone from every city. Later, this QP and two politicians
are both added to spy, i.e., their scope parts adjoin to the S node of spy. In
other words, in this latter step the scope parts of the complex QP and of two

politicians are identified. It seems that whenever an identification of scope parts
takes place (i.e., either one adjoins to the other or all adjoin to the same node),

e all scope orders are possible between the quantifiers involved in that identi-
fication, and

e 1no other quantifier can intervene (i.e., have scope over one of the quanti-
fiers while being in the scope of another of the quantifiers involved in this
identification).

To formalize this, we introduce quantifier sets in our semantic representa-
tions. The idea is the following: Whenever several quantifiers are identified, a
new set is built containing the scope parts of these quantifiers. Eventually, these
scope parts are already sets (as in the case of the complex QP in (14)). E.g., the
representation for (14) contains a quantifier set {I; : 2...,{lz:3...,l5 :V...}}.

The elements of one quantifier set (e.g., 3 and V in (14)) are considered
being ‘glued together’ in the sense that no other quantifier can intervene. This
is obtained by putting a condition on the scope order that makes sure that if
one part of a quantifier set), is subordinated by one part of another quantifier
set ()9, then all quantifiers in (; must be subordinated by all quantifiers in Q.
More formally, to the conditions on the relation “>*” one obtains after having
applied a disambiguation (see (a), (b), p; 6), we add the following: (c) for each
quantifier set @), for all Q1,Q2 € Q: if there are labels [; in ()1 and I5 in @2
such that Iy >* ls, then for all I; in @, and I in Q2 I; >* [holds.

For (14), this excludes I3 >* I} >* I5 (excluded anyway because of condition
(b) on disambiguations and the separation between scope and restriction of a
quantifier) and 5 >* I >* I3, the inverse linking reading we want to exclude.

Let us go through the derivation of (14). Fig. 6 shows its derivation tree.
For the scope parts of quantifiers we allow now non-local multicomponent at-
tachments. This does not affect the generative capacity of the grammar.

Spy-on
- =
(0)two-1 (1)two-2 (0)someone-1 (22)someone-2 (0)every-1
[\
(2)politicians (0)from

[
(22)every-2
[
(2)city
Figure 6: Derivation tree of (14)

The flexible composition view corresponds roughly to a bottom-up derivation
where derived trees are added to elementary trees, i.e., the derivation steps are
the following;:

1. politicians attaches to the lower part of the multicomponent (MC) set of two
building a larger MC set
2. similarly, city attaches to every building a MC set

10

3. the lower part of the MC set of every city is substituted into from. The result
is a new MC set.

4. the MC set of from every city is added to the MC set of someone with
adjunction of the upper component at the scope part and an adjunction of
the lower component at the NP. At this point, the first identification of two
scope parts takes place. The result is a new MC set.

5. the two MC sets of two politicians and someone from every city are added
to spy-on where the two scope parts are adjoined to the root node and the
two lower comonents are substituted into the corresponding leaves. At this
point, the second identification of scope parts takes place.

Compared to section 2, we slightly modify the semantic representation of
quantifiers: the scope part contains only the quantifier with the holes for re-
striction and body. The scope constraint linking the quantifier to its proposition
is part of the lower part of the quantifier. In particular, the variable for the
proposition in the nuclear scope of the quantifier (s; and so in (15)) is now part
of the lower part. This is necessary, since we allow non-local multicomponent
adjunction for the scope auxiliary trees. Consequently, the scope part and the
predicate-argument part of a quantifier are not necessarily added to the same
elementary tree. But the tree the predicate argument part is added to is the
tree that contributes the proposition that must be in the nuclear scope of the
quantifier. E.g., in (14), the scope part of every is identified with the scope part
of someone and finally added to spy. But the proposition that must be part
of the nuclear scope of every comes from the from tree, the tree the predicate
argument part of every is added to.

(15) shows the multicomponent sets derived for two politicians and every
city. (16) shows the elementary tree for from.

g* li: 2x(h1, h2) g Is : Vy(hs, ha)
arg: — arg: —
(15) NP I : politicians(x) NP Ly : city(y)
hi > 12, ha > 51 A hs > 14, ha > s2
two pol. arg: s1 every city arg: Sz
NP

P I5 : from(z1,z2)
(16) NP* PP hs > 15,91 > hs, hs > s3
/\ arg: $17($27(22)>791783

from NPJ

Adding every city to from by substitution of the lower component at the NP
leaf inside the PP leads to o — y and so — I5. The result is (17).

11

(3
S* lg :Vy(h37h4)
arg: —
(17) /NP\ la : city(y), ls : from(z1,y)
NP* PP hs > 1a,ha 2 15,hs 2 15,91 > hs,

i i hs > s3
arg: ri, gi,ss

from every city

4
S* l6 N 33(h67h7)
arg: —
(18)
NP l7 : person(z)
he > l7,h7 > s4
someone arg: s4
\

(18) is the MC set for someone. When adding from every city to (18), the
two scope parts are put into one quantifier set. The assignments are z; —
z,91 — he,s3 — l7. (s3 — l7 is the only possibility, and g; — h7 would lead
to hy > hs > l7 and hg > 7, i.e., to I7 being in the restrictive and the nuclear
scope of someone.) One obtains (19).

(g {3 : Vy(hs, ha),ls : z(he, hr)}
arg: —
(19) NP Iy : city(y), Is : from(z,y), l7 : person(z)
hs > 14, ha > l5,hs > I5,he > hs,
hs > 1l7,he > l7,h7 > 54
someone fr. ev. city arg: s4

\

When adding the two QPs, two politicians and someone form every city to
spy, the two scope parts are adjoined to the same node and thereby identified.
Therefore a large quantifier set is built. The result is (20).

{ll : 2.1‘(}11, hz), {l3 : Vy(hg, h4), l6 : Hz(h(;, h7)}}

Iy : politicians(z), I : city(y), I5 : from(z,y), l7 : person(z), ls : spy(z, 2)
(20) | h1 212, ho > s, h3 > 14, ha 2 15, hs 2 15,

he > hs,hs > lz,he > l7,hr > 1g,hs > I3

arg: —

The inverse linking reading with the third quantifier intervening is correctly
excluded: this reading would mean I3 >y > lg. Let Q1 :={ls:V...,lg:3...}
and Q2 := I : 2.... Then the scope order condition on quantifier sets is not
satisfied because I3 > I3 and lg % ;.

Other scope taking elements, such as adverbs or modals, are not involved
into the quantifier set mechanism since they do not have a separate scope tree.

12

Therefore, they can intervene freely between quantifiers belonging to the same
set. E.g., a reading V want 3 for (21) is allowed.

(21) John wanted to meet someone from every city Sauerland (2000)

5 Conclusion

In this paper we provided an LTAG account for certain restrictions on quanti-
fier scope. The approach is part of a larger project on compositional semantics
in LTAG. The constructions considered are inverse linking readings for nested
quantifiers. L.e., sentences with one quantifying phrase Qu; embedded in an-
other quantifying phrase Qus where Qu; takes scope over Quz. In this case no
other quantifier that is on the same level as Quy can scopally intervene between
Qu; and Qus.

In order to explain the fact that some quantifiers seem to be more closely
connected than others, we adopted another perspective on TAG derivation,
namely a perspective of flexible composition. This allowed to combine first
those quantifiers that are closer with respect to scope and that do not allow
intervening quantifiers and then to combine larger sets of quantifiers. In our
semantics we built corresponding smaller and larger sets of quantifiers that
express the constraints on relative quantifier scope that can be observed in
inverse linking readings. The flexible composition approach as used in this
paper does not increase the generative capacity of the TAG formalism, it is just
a specific way of ordering the derivations in a TAG.

Acknowledgments

We would like to thank Chung-Hye Han for valuable discussions of the subject
of this paper. Furthermore, we are grateful to two anonymous reviewers for
many helpful comments and for drawing our attention to further work on the
problems we addressed.

References

Alshawi, H. (ed.): 1992. The Core Language Engine. MIT Press.

Bos, J.: 1995. Predicate logic unplugged. in P. Dekker and M. Stokhof (eds),
Proceedings of the 10th Amsterdam Colloquium. pp. 133-142.

Candito, M.-H. & Kahane, S.: 1998. Can the TAG Derivation Tree represent a
Semantic Graph? an Answer in the Light of Meaning-Text Theory. Fourth In-
ternational Workshop on Tree Adjoining Grammars and Related Frameworks,
IRCS Report 98—12. University of Pennsylvania, Philadelphia. pp. 25-28.

Copestake, A., Flickinger, D., Sag, I. A. and Pollard, C.: 1999. Minimal Recur-
sion Semantics. An Introduction. Manuscript, Stanford University.

13

Copestake, A., Lascarides, A. and Flickinger, D.: 2001. An Algebra for Semantic
Construction in Constraint-based Grammars. Proceedings of ACL.

Heim, I. & Kratzer, A.: 1998. Semantics in Generative Grammar. Blackwell.

Hobbs, J. & Shieber, S. 1987. An algorythm for generating quantifier scopings.
Computational Linguistics 13, 47-63.

Joshi, A. K. & Schabes, Y.: 1997. Tree-Adjoning Grammars. in G. Rozen-
berg and A. Salomaa (eds), Handbook of Formal Languages. Springer. Berlin.
pp. 69-123.

Joshi, A. K. & Vijay-Shanker, K.: 1999. Compositional Semantics with Lex-
icalized Tree-Adjoining Grammar (LTAG): How Much Underspecification
is Necessary?. in H. C. Blunt and E. G. C. Thijsse (eds), Proceedings ot
the Third International Workshop on Computational Semantics (IWCS-3).
Tilburg. pp. 131-145.

Kallmeyer, L. & Joshi, A. K.: 1999. Factoring Predicate Argument and Scope
Semantics: Underspecified Semantics with LTAG. in P. Dekker (ed.), 12th
Amsterdam Colloguium. Proceedings. Amsterdam. pp. 169-174.

Kallmeyer, L. & Joshi, A. K. 2002. Factoring Predicate Argument and Scope
Semantics: Underspecified Semantics with LTAG. Journal of Language and
Computation. To appear.

Larson, R.: 1987. Quantifying into np. Ms. MIT.

Link, G.: 1983. The logical analysis of plurals and mass terms. in R. B. et al.
(ed.), Meaning, Use and Interpretation of Language. de Griiyter. Berlin.
pp- 302-323.

May, R.: 1985. Logical Form. Its Structure and Derivation. MIT Press. Cam-
bridge, Mass.

Reyle, U. 1993. Dealing with ambiguities by underspecification: Construction,
representation and deduction. Journal of Semantics 10, 123-179.

Sauerland, U.: 2000. Syntactic economy and quantifier raising. Ms. University
of Tiibingen.

14

