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Abstrat

This paper addresses the problem of onstraints for relative quanti�er

sope, in partiular in inverse linking readings where ertain sope orders

are exluded. We show how to aount for suh restritions in the Tree

Adjoining Grammar (TAG) framework by adopting a notion of exible

omposition. In the semantis we use for TAG we introdue quanti�er sets

that group quanti�ers that are `glued' together in the sense that no other

quanti�er an sopally intervene between them. The exible omposition

approah allows us to obtain the desired quanti�er sets and thereby the

desired onstraints for quanti�er sope.

1 Introdution

The sope of quanti�ers within a sentene an be in priniple arranged in dif-

ferent orderings, making the sentene potentially ambiguous. For example, sen-

tene (1a), with two quanti�ers, has two logially possible sope orderings: the

surfae order some > every, and an \inverse" order every > some. These two

orderings yield two atual readings of the sentene, spelled out in Prediate

Logi in (1b-) respetively.

(1) a. An FBI agent is spying on every professor.

b. 9 8: 9x [agent(x) ^ 8y[professor(y) ! spy(x; y)℄ ℄

. 8 9: 8y [professor(y) ! 9x[agent(x) ^ spy(x; y)℄ ℄

Both sope orderings must be made available by the grammar also when

the two quanti�ers appear nested within eah other, that is, when one of the

quanti�ers appears within the Noun Phrase headed by the other quanti�er. This
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is illustrated in (2) and (3). In (2a), the surfae ordering no>a orresponds to

the existing reading spelled out in (2b). In (3a), the inverse ordering every>a

gives us the existing reading in (3b). The inverse reading in nested quanti�er

onstrutions is alled \inverse linking reading". Note, that, in the inverse

linking reading, the nested Qu

2

does not only take sope over its host NP, but

over the lause in general, as it an bind the variable it in (4) (May 1985, p.

68).

(2) a. No representative from an Afrian ountry ame to the meeting.

b. :9 9: :9x 9y [representative(x; y) ^ Afrountry(y) ^ ame(x) ℄

(3) a. A representative from every Afrian ountry ame to the meeting.

b. 8 9: 8y [ Afrountry(y) ! 9x [representative(x; y) ^ ame(x)℄ ℄

(4) Somebody from every ity despises it.

When we turn to sentenes with three quanti�ers Qu

1

, Qu

2

and Qu

3

, we

have six logially possible sope ombinations. One of these six ombinations,

namely the ordering Qu

3

Qu

1

Qu

2

, yields an atual reading for sentenes like

(5), as spelled out in (5b).

1

(5) a. (At least) two soial workers gave a doll to eah/every hild.

b. 8 2 9: 8y [ hild(y) ! 9x [soial-workers(x) ^ jxj � 2 ^

8x

0

[x

0

�

i

x ! 9z[doll(z) ^ give(x

0

; z; y)℄ ℄ ℄ ℄

However, in nested quanti�er on�gurations where Qu

3

appears within Qu

2

,

this same ordering Qu

3

Qu

1

Qu

2

does not yield an atual reading (Larson 1987,

Heim & Kratzer 1998, Sauerland 2000). Neither does Qu

2

Qu

1

Qu

3

yield an

atual reading (Hobbs & Shieber 1987). This an be seen in (6)-(7). Take, e.g.,

the six logially possible sope orderings in (6a). The laim is that the nested

quanti�ers 9 and 8 an in priniple take sope together under 2 (orders 298 and

2 8 9) or they an take sope together over 2 (9 8 2 and 8 9 2), but they annot

take sope separately with the quanti�er 2 intervening between them (orderings

* 9 2 8, * 8 2 9).

(6) a. Two politiians spy on someone from every ity. Larson (1987)

b. 2 9 8, 2 8 9, 9 8 2, 8 9 2, * 9 2 8, * 8 2 9

. * 8 2 9: 8y [ ity(y) !

2 x [politiians(x); 9z[person(z) ^ from(z; y) ^ spy(x; z)℄ ℄

1

In (5b), x ranges over singular and plural individuals (see Link 1983), the formula jxj � 2

says that x onsists of at least 2 atoms and the universal quanti�ation 8x

0

orresponds to

the distributive interpretation optionally available for plural Noun Phrases (Link 1983 among

many others). For onveniene, we will use the notation 2 x[p

1

^ p

2

℄ for 9x [p

1

^ jxj �

2 ^ 8x

0

[x

0

�

i

x ! p

2

℄ ℄ ℄ in subsequent examples.
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(7) Two engineers repaired some exits from every freeway in California ity.

Larson (1987)

Although the missing reading orresponding to 9 2 8 may be banned due to

general arhitetural reasons, the unavailability of the reading *8 29 formalized

in (6b) is puzzling.

2

The aim of the present paper is to provide an LTAG

aount of why no quanti�ational NP an intervene between an inverse linked

quanti�er and its host NP. The paper is part of a larger projet onerned

with the development of a ompositional semantis for LTAG. We �rst provide

some bakground on LTAG and ompositional semantis in setion 2. Setion 3

develops a exible omposition approah to quanti�ation. Setion 4 spells out

the semantis for it, generating only the orret sopal ombinations for nested

quanti�er onstrutions.

2 LTAG and ompositional semantis

2.1 Lexialized Tree Adjoining Grammars (LTAG)

An LTAG (Joshi & Shabes 1997) onsists of a �nite set of trees (elementary

trees) assoiated with lexial items and of omposition operations of substitu-

tion (replaing a leaf with a new tree) and adjuntion (replaing an internal

node with a new tree). The elementary trees represent extended projetions

of lexial items and enapsulate all syntati/semanti arguments of the lexial

anhor. They are minimal in the sense that only the arguments of the anhor

are enapsulated, all reursion is fatored away.

LTAG derivations are represented by derivation trees that reord the history

of how the elementary trees are put together. A derived tree is the result of ar-

rying out the substitutions and adjoinings. See Fig. 1 for an example. The num-

bers in the derivation tree are the node positions where substitution/adjuntion

takes plae: John is substituted for the node at position (1) and always is ad-

joined at position (2).

2.2 Compositional semantis with LTAG

Beause of the loalization of the arguments of a lexial item within elementary

trees TAG derivation trees express prediate argument dependenies. Therefore

it is generally assumed that the proper way to de�ne ompositional semantis

for LTAG is with respet to the derivation tree, rather than the derived tree

2

*9 2 8 involves having the quanti�er 9z separated from its restritor from(z; y) as in (8),

a on�guration that should perhaps be banned on grounds orthogonal to the present paper (it

has very weak truth onditions in Prediate Logi). But note that suh on�guration does not

arise in *829. The unavailability of this reading is, hene, puzzling and needs an explanation.

(8) *9 2 8: 9z[person(z) ^ 2x [politiians(x) ^

8y [ ity(y) ^ from(z; y) ! spy(x; z)℄ ℄ ℄
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S

NP# VP

VP

V

NP ADV VP

�

laughs

John always

derived tree: S

NP VP

John ADV VP

always V

laughs

derivation tree:

laugh

(1)john (2)always

Figure 1: TAG derivation for John always laughs

(see, e.g., Candito & Kahane, 1998; Joshi & Vijay-Shanker, 1999; Kallmeyer &

Joshi 1999, 2002).

The overall idea is as follows. Eah elementary tree is linked to a semanti

representation. The way the semanti representations ombine with eah other

depends on the derivation tree. Following Kallmeyer & Joshi (1999, 2002),

in this paper, we will adopt `at' semanti representations as in, for example,

Minimal Reursion Semantis (MRS, Copestake et al., 1999). (9) shows the

elementary semanti representations for John always laughs.

3

(9)

l

1

: laugh(x

1

)

h

1

� l

1

arg: hx

1

; (1)i

john(x)

arg: {

l

2

: always(h

2

)

g

1

� l

2

; h

2

� s

1

arg: g

1

; s

1

Roughly, a semanti representation onsists of a onjuntively interpreted set

of formulas (typed lambda-expressions), sope onstraints and a set of argument

variables. The formulas may ontain labels and holes (metavariables for propo-

sitional labels). In the following, l

1

; l

2

; : : : are propositional labels, h

1

; h

2

; : : :

are propositional holes, s

1

; s

2

; : : : are propositional and x

1

; x

2

; : : : individual

argument variables (whose values must be propositional labels/free individual

variables) and g

1

; g

2

; : : : are hole variables (speial argument variables whose

values must be holes). Argument variables may be linked to positions in the

elementary tree, as it is the ase for x

1

in (9).

The use of holes is motivated by the desire to generate underspei�ed rep-

resentations (as in, e.g., Bos, 1995) for sope ambiguities. After having on-

struted a (possibly underspei�ed) semanti representation with holes and la-

bels, disambiguation is done whih onsists of �nding bijetions from holes to

labels that respet the sope onstraints. E.g., in the semanti representation

for laugh, there is a hole h

1

above l

1

(onstraint h

1

� l

1

). Between h

1

and l

1

,

other labels and holes might intervene (introdued for example by quanti�ers

or adverbs) or, if this is not the ase, l

1

will be assigned to h

1

in the disam-

biguation(s). The onstraints k

1

� k

2

di�er from the qeq onditions k

1

=

q

k

2

in MRS (see Copestake et al. 1999, p.10) in that they allow any element having

a propositional argument (quanti�ers, sope-taking adverbs ...) to intervene

3

john(x) is not a standard unary prediate but it is supposed to signify \there is a unique

individual alled John and x refers to that individual".
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between k

1

and k

2

while in MRS, just quanti�ers an intervene between k

1

and

k

2

.

When ombining semanti representations, values are assigned to argument

variables and the union of the semanti representations is built. The values

for the argument variables of a ertain (elementary) semanti representation

must ome from semanti representations that are linked to it in the derivation

tree. The linking of argument variables and syntati positions restrits the

possible values as follows: In a substitution derivation step at a position p, only

argument variables linked to p get values. In an adjuntion step, only argument

variables that are not linked to any positions an get values. In the ase of a

substitution, a new argument is inserted and therefore a value is assigned to

an argument variable in the old semanti representation. However, in the ase

of an adjuntion, a new modi�er is applied and therefore a value is assigned

to a variable in the semanti representation that is added. In other words, in

ase of a substitution, semanti omposition is downwards, while in ase of an

adjuntion, semanti omposition is upwards. For a formal de�nition of the

semanti omposition operation see Kallmeyer & Joshi (2002). The algebra

introdued there is lose to what Copestake et al. (2001) introdue for MRS

exept for details of the formalization and for the fat that in Copestake et

al. (2001) eah semanti representation ontains just one \hook", i.e. just one

element that an be assigned as possible value to an argument (if equations are

viewed as variable assignments). This is di�erent in our approah, e.g. in (9)

h

1

and l

1

are ontributed by the same elementary representations and they are

both used as values when ombining laugh and always.

l

1

: laugh(x

1

); h

1

� l

1

arg: hx

1

; (1)i

(1)

john(x)

arg: {

(2)

l

2

: always(h

2

), g

1

� l

2

; h

2

� s

1

arg: g

1

; s

1

Figure 2: Semanti omposition for John always laughs

Fig. 2 shows the semanti omposition for John always laughs. The di-

reted edges signify semanti appliation while the dotted links signify variable

assignments. John is substituted into laugh, therefore the orresponding se-

manti omposition is downwards, while the omposition of always and laugh

is upwards. Furthermore, the value of x

1

needs to ome from John sine x

1

is

linked to the node address where John is substituted, and the values of g

1

and

s

1

need to ome from laugh sine they are not linked to any node addresses.

Consequently, x

1

! x; g

1

! h

1

and s

1

! l

1

. The result is (10).
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(10)

l

1

: laugh(x), john(x), l

2

: always(h

2

), h

1

� l

1

; h

1

� l

2

; h

2

� l

1

arg: {

A disambiguation Æ is a bijetion from holes to labels suh that: After having

applied Æ (i.e., replaed the holes by their orresponding labels), the reexive

transitive losure �

�

of the order � with (i) l

1

� l

2

if l

1

� l

2

is a onstraint

and (ii) l

1

� l

2

and l

1

6= l

2

if l

2

labels a subformula of the formula labelled l

1

must be suh that (a) �

�

is a partial order and (b) l

1

6�

�

l

2

and l

2

6�

�

l

1

if l

1

and l

2

are di�erent arguments of the same prediate (e.g., the restritive and

the nulear sope of a quanti�er).

In (10), h

1

� l

2

, l

2

> h

2

(beause h

2

appears inside a formula labelled l

2

)

and h

2

� l

1

. Consequently h

1

6= l

1

and the only possible disambiguation is

h

1

! l

2

; h

2

! l

1

. This leads to the semantis john(x) ^ always(laugh(x)).

2.3 Separating sope and prediate argument information

A entral aspet of (Kallmeyer & Joshi, 1999, 2002) is the separation of the

ontribution of a quanti�er into a sope and a prediate argument part: Quan-

ti�ers have a set of two elementary trees and tree-loal multiomponent TAGs

are used. (This means that if a new elementary tree set is added, all trees of the

set are added simultaneously and they are added to nodes belonging all to the

same elementary tree.) An auxiliary tree onsisting of a single node is linked to

the sope part of the semantis, while an initial tree is linked to the prediate

argument part. E.g., onsider the syntati analysis of every dog barks in Fig. 3.

The orresponding elementary semanti representations are shown in (11).

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

S

�

NP

Det N#

every

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

S

NP# VP

V

barks

N

dog

derived tree:

S

NP VP

Det N V

every dog barks

derivation tree:

barks

(0)every-1 (1)every-2

(2)dog

Figure 3: Syntati analysis of every dog barks

(11)

l

1

: bark(x

1

)

h

1

� l

1

arg: x

1

l

2

: 8x(h

2

; h

3

)

h

3

� s

1

arg: s

1

l

3

: p

1

(x)

h

2

� l

3

arg: p

1

q

1

: dog

arg: �

The sope part of the quanti�er (seond representation in (11)) introdues

a proposition ontaining the quanti�er, its variable and two holes for its re-

stritive and nulear sope. The proposition this semanti representation is

applied to (variable s

1

) is in the nulear sope of the quanti�er (h

3

� s

1

). The

6



Elementary trees and semanti representations:

S

NP# VP

V NP#

loves

l

1

: love(x

1

; x

2

)

h

1

� l

1

arg: hx

1

; (1)i; hx

2

; (22)i

N

student

q

1

: student

arg: {

N

ourse

q

2

: ourse

arg: {

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

S

�

l

2

: 9x(h

2

; h

3

)

h

3

� s

1

arg: s

1

NP

Det N#

some

l

3

: p

1

(x)

h

2

� l

3

arg: hp

1

; 01i

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

S

�

l

4

: 8y(h

4

; h

5

)

h

5

� s

2

arg: s

2

NP

Det N#

every

l

5

: p

2

(y)

h

4

� l

5

arg: hp

2

; 01i

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

Derivation tree:

loves

(0)some-1 (1)some-2 (22)every-2 (1)every-1

(2)student (2)ourse

Figure 4: Sope ambiguity and underspei�ation

prediate argument part (third representation in (11)) introdues a proposition

p

1

(x) where p

1

will be the noun prediate dog. This proposition is in the restri-

tive sope of the quanti�er (h

2

� l

3

). The values for the argument variables

are x

1

! x; s

1

! l

1

; p

1

! q

1

whih gives (12). The only disambiguation is

h

1

! l

2

; h

2

! l

3

; h

3

! l

1

whih leads to the semantis 8x(dog(x); bark(x)).

(12)

l

1

: bark(x), l

2

: 8x(h

2

; h

3

), l

3

: dog(x), h

1

� l

1

, h

3

� l

1

, h

2

� l

3

arg: �

To aount for ases with more than one quanti�er, a restrited use of mul-

tiple adjuntions (for the sope parts) is neessary.

As already mentioned above, the use of holes and labels allows to gener-

ate underspei�ed representations for quanti�er sope ambiguities as in some

student loves every ourse. The elementary trees and elementary semanti rep-

resentations and the derivation tree are shown in Fig. 4. The assignments are

x

1

! x; x

2

! y; s

1

! l

1

; p

1

! q

1

; s

2

! l

1

; p

2

! q

2

. The result is (13).

(13)

l

2

: 9x(h

2

; h

3

), l

4

: 8y(h

4

; h

5

), l

1

: loves(x; y), l

3

: student(x),

l

5

: ourse(y), h

2

� l

3

; h

3

� l

1

, h

4

� l

5

; h

5

� l

1

, h

1

� l

1

arg: {

Aording to (13), student(x) is in the restrition of 9, ourse(y) in the

restrition of 8, and loves(x; y) is in the body of 9 and the body of 8. This leaves

7



open whether 9 is in the body of 8 or 8 in the body of 9. The orresponding

two disambiguations are h

1

! l

2

; h

2

! l

3

; h

3

! l

4

; h

4

! l

5

; h

5

! l

1

(wide sope

of 9) and h

1

! l

4

; h

2

! l

3

; h

3

! l

1

; h

4

! l

5

; h

5

! l

2

(wide sope of 8).

There are many related works on omputational models for sope representa-

tion, e.g., Reyle (1993) that introdues sope onstraints and underspei�ation

into DRT. One that has a spei� onnetion to our work is Alshawi (1992). In

this work there is an intermediate level of sope representation (Quasi Logial

Form (QLF)). At this level underspei�ed representation of sope is allowed

(among other things). This form is omputed from a prior phase of syntati

analysis and is produed by an initial semanti analysis phase.

The fat that we provide in our representation a level of underspei�ation is

not the novel part of our system. One of the novel aspets of the ompositional

semantis developed in Kallmeyer & Joshi (2002) is that the derivation tree

(whih is the syntati derivational history in the LTAG system) already rep-

resents the underspei�ed sope relations. Computation of this representation

is not a separate level. This is a ruial point of departure from the traditional

ompositional systems. The other distinguishing aspet is the fatoring of the

omposition of the prediate-argument semantis from the sope omposition

semantis.

3 LTAG and exible omposition

In a ontext-free grammar, CFG, a rule suh as A ! BC an be interpreted in

two ways. We an regard B as a funtion and C as its argument, produing the

result A. Alternatively, C an be regarded as a funtion and B as its argument,

produing the same result. We have exible omposition here, in the sense

that the diretion of omposition is exible. In the ase of CFGs it is easily seen

that providing suh exibility does not a�et the weak generative apaity of the

grammar (i.e., the set of strings generated by the grammar) as well as the strong

generative apaity (i.e., the set of derivation trees generated by the grammar).

In other words exible omposition does not buy us anything new. This is due

to the fat that CFG is a string rewriting system and funtion and argument are

`string-adjaent'. For a TAG and, in partiular, for the multi-omponent TAG it

an be shown that exible omposition allows the possibility of inreasing both

the strong and weak generative apaities. This is due to the fat that when

TAG trees are omposed (interpreting them either as funtions or arguments)

the funtion and argument trees are `tree-adjaent' (rather than `tree-adjaent).

The fat that omplex topologial objets are omposed allows the possibility

of inreasing strong and weak generative apaities using exible omposition.

We will use some simple examples to illustrate what we mean by exible

omposition in a TAG or MC-TAG (Multi-Component TAG). Instead of the

two operations, substitution and adjoining, we will use the term `attahment'.

In Fig. 5 �

1

an be attahed to �

1

at the interior S node of �

1

resulting in

the tree orresponding to who

i

NP thinks NP likes �

i

. In this ase �

1

omposes

with �

1

. Alternatively, we an regard �

1

as a multiomponet tree (with two

8



omponents) as shown in �

2

with the two omponents �

21

and �

22

. Now we

an ompose �

2

with �

1

suh that �

21

attahes to the root node of �

1

and �

22

attahes to the footnode S of �

1

, resulting in the same string as before, but with

a di�erent derivation (di�erent strutural desription).

�

1

S

WH

i

S

NP VP

V NP

likes �

i

�

1

S

NP VP

V S

thinks

�

2

8

>

>

>

>

>

<

>

>

>

>

>

:

�

21

S

WH

i

S

�

22

S

NP VP

V NP

likes �

i

9

>

>

>

>

>

=

>

>

>

>

>

;

Figure 5: Example of exible omposition

In exible omposition if a tree t omposes with a tree u then we require

that u is an elementary tree. This assures `tree loality' in the omposition.

Given two trees t and u omposition an go in either diretion if both t and

u are elementary. If both t and u are derived trees then they annot ompose

with eah other. If only one of the trees is elementary then the other tree

an ompose into it but not vie versa. Given this onstraint on loality the

omposition an proeed in a exible manner. Of ourse, several derived trees

an be added simultaneously to an elementary tree. This is neessary in order

not to exlude standard TAG derivations. Basially, exible omposition allows

one to traverse the derivation tree starting at any node and moving up and

down the derivation tree in a `exible' manner until all nodes of the derivation

tree have been visited. Atually, in our present paper we will not use this more

general notion of exible omposition. We will traverse the derivation tree (for a

MC-TAG) from bottom up maintaining the requirements of exible omposition

as desribed above.

4 The quanti�er set approah

In this setion we propose a way to obtain the desired sope restritions for

inverse linking onstrutions making use of the exible omposition approah.

Consider again (6), repeated as (14). The reading we want to exlude is 8 2 9.

(The order 9 2 8 will be exluded anyway.)

(14) two politiians spy on someone from every ity

In the exible omposition approah, at some point the QPs someone and

every ity are omposed. In this step, the two sope parts (the S auxiliary

trees) of these quanti�ers are identi�ed (one adjoins to the other). The result

is the omplex QP someone from every ity. Later, this QP and two politiians

are both added to spy, i.e., their sope parts adjoin to the S node of spy. In

other words, in this latter step the sope parts of the omplex QP and of two

9



politiians are identi�ed. It seems that whenever an identi�ation of sope parts

takes plae (i.e., either one adjoins to the other or all adjoin to the same node),

� all sope orders are possible between the quanti�ers involved in that identi-

�ation, and

� no other quanti�er an intervene (i.e., have sope over one of the quanti-

�ers while being in the sope of another of the quanti�ers involved in this

identi�ation).

To formalize this, we introdue quanti�er sets in our semanti representa-

tions. The idea is the following: Whenever several quanti�ers are identi�ed, a

new set is built ontaining the sope parts of these quanti�ers. Eventually, these

sope parts are already sets (as in the ase of the omplex QP in (14)). E.g., the

representation for (14) ontains a quanti�er set fl

1

: 2 : : : ; fl

3

: 9 : : : ; l

5

: 8 : : :gg.

The elements of one quanti�er set (e.g., 9 and 8 in (14)) are onsidered

being `glued together' in the sense that no other quanti�er an intervene. This

is obtained by putting a ondition on the sope order that makes sure that if

one part of a quanti�er set Q

1

is subordinated by one part of another quanti�er

set Q

2

, then all quanti�ers in Q

1

must be subordinated by all quanti�ers in Q

2

.

More formally, to the onditions on the relation \�

�

" one obtains after having

applied a disambiguation (see (a), (b), p; 6), we add the following: () for eah

quanti�er set Q, for all Q

1

; Q

2

2 Q: if there are labels l

1

in Q

1

and l

2

in Q

2

suh that l

1

>

�

l

2

, then for all l

1

in Q

1

and l

2

in Q

2

l

1

>

�

l

2

holds.

For (14), this exludes l

3

>

�

l

1

>

�

l

5

(exluded anyway beause of ondition

(b) on disambiguations and the separation between sope and restrition of a

quanti�er) and l

5

>

�

l

1

>

�

l

3

, the inverse linking reading we want to exlude.

Let us go through the derivation of (14). Fig. 6 shows its derivation tree.

For the sope parts of quanti�ers we allow now non-loal multiomponent at-

tahments. This does not a�et the generative apaity of the grammar.

spy on

(0)two-1 (1)two-2 (0)someone-1 (22)someone-2 (0)every-1

(2)politiians (0)from

(22)every-2

(2)ity

Figure 6: Derivation tree of (14)

The exible omposition view orresponds roughly to a bottom-up derivation

where derived trees are added to elementary trees, i.e., the derivation steps are

the following:

1. politiians attahes to the lower part of the multiomponent (MC) set of two

building a larger MC set

2. similarly, ity attahes to every building a MC set

10



3. the lower part of the MC set of every ity is substituted into from. The result

is a new MC set.

4. the MC set of from every ity is added to the MC set of someone with

adjuntion of the upper omponent at the sope part and an adjuntion of

the lower omponent at the NP. At this point, the �rst identi�ation of two

sope parts takes plae. The result is a new MC set.

5. the two MC sets of two politiians and someone from every ity are added

to spy on where the two sope parts are adjoined to the root node and the

two lower omonents are substituted into the orresponding leaves. At this

point, the seond identi�ation of sope parts takes plae.

Compared to setion 2, we slightly modify the semanti representation of

quanti�ers: the sope part ontains only the quanti�er with the holes for re-

strition and body. The sope onstraint linking the quanti�er to its proposition

is part of the lower part of the quanti�er. In partiular, the variable for the

proposition in the nulear sope of the quanti�er (s

1

and s

2

in (15)) is now part

of the lower part. This is neessary, sine we allow non-loal multiomponent

adjuntion for the sope auxiliary trees. Consequently, the sope part and the

prediate-argument part of a quanti�er are not neessarily added to the same

elementary tree. But the tree the prediate argument part is added to is the

tree that ontributes the proposition that must be in the nulear sope of the

quanti�er. E.g., in (14), the sope part of every is identi�ed with the sope part

of someone and �nally added to spy. But the proposition that must be part

of the nulear sope of every omes from the from tree, the tree the prediate

argument part of every is added to.

(15) shows the multiomponent sets derived for two politiians and every

ity. (16) shows the elementary tree for from.

(15)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

S

�

l

1

: 2x(h

1

; h

2

)

arg: {

NP

two pol.

l

2

: politiians(x)

h

1

� l

2

; h

2

� s

1

arg: s

1

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

S

�

l

3

: 8y(h

3

; h

4

)

arg: {

NP

every ity

l

4

: ity(y)

h

3

� l

4

; h

4

� s

2

arg: s

2

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(16)

NP

NP

�

PP

from NP#

l

5

: from(x

1

; x

2

)

h

5

� l

5

; g

1

� h

5

; h

5

� s

3

arg: x

1

; hx

2

; (22)i; g

1

; s

3

Adding every ity to from by substitution of the lower omponent at the NP

leaf inside the PP leads to x

2

! y and s

2

! l

5

. The result is (17).
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(17)

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

S

�

l

3

: 8y(h

3

; h

4

)

arg: {

NP

NP

�

PP

from every ity

l

4

: ity(y), l

5

: from(x

1

; y)

h

3

� l

4

; h

4

� l

5

; h

5

� l

5

; g

1

� h

5

;

h

5

� s

3

arg: x

1

; g

1

; s

3

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(18)

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

S

�

l

6

: 9z(h

6

; h

7

)

arg: {

NP

someone

l

7

: person(z)

h

6

� l

7

; h

7

� s

4

arg: s

4

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

(18) is the MC set for someone. When adding from every ity to (18), the

two sope parts are put into one quanti�er set. The assignments are x

1

!

z; g

1

! h

6

; s

3

! l

7

. (s

3

! l

7

is the only possibility, and g

1

! h

7

would lead

to h

7

� h

5

� l

7

and h

6

� l

7

, i.e., to l

7

being in the restritive and the nulear

sope of someone.) One obtains (19).

(19)

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

S

fl

3

: 8y(h

3

; h

4

); l

6

: 9z(h

6

; h

7

)g

arg: {

NP

someone fr. ev. ity

l

4

: ity(y), l

5

: from(z; y), l

7

: person(z)

h

3

� l

4

; h

4

� l

5

; h

5

� l

5

; h

6

� h

5

;

h

5

� l

7

; h

6

� l

7

; h

7

� s

4

arg: s

4

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

When adding the two QPs, two politiians and someone form every ity to

spy, the two sope parts are adjoined to the same node and thereby identi�ed.

Therefore a large quanti�er set is built. The result is (20).

(20)

fl

1

: 2x(h

1

; h

2

); fl

3

: 8y(h

3

; h

4

); l

6

: 9z(h

6

; h

7

)gg

l

2

: politiians(x), l

4

: ity(y), l

5

: from(z; y), l

7

: person(z), l

8

: spy(x; z)

h

1

� l

2

; h

2

� l

8

; h

3

� l

4

; h

4

� l

5

; h

5

� l

5

;

h

6

� h

5

; h

5

� l

7

; h

6

� l

7

; h

7

� l

8

; h

8

� l

8

arg: {

The inverse linking reading with the third quanti�er intervening is orretly

exluded: this reading would mean l

3

> l

1

> l

6

. Let Q

1

:= fl

3

: 8 : : : ; l

6

: 9 : : :g

and Q

2

:= l

1

: 2 : : :. Then the sope order ondition on quanti�er sets is not

satis�ed beause l

3

> l

1

and l

6

6> l

1

.

Other sope taking elements, suh as adverbs or modals, are not involved

into the quanti�er set mehanism sine they do not have a separate sope tree.
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Therefore, they an intervene freely between quanti�ers belonging to the same

set. E.g., a reading 8 want 9 for (21) is allowed.

(21) John wanted to meet someone from every ity Sauerland (2000)

5 Conlusion

In this paper we provided an LTAG aount for ertain restritions on quanti-

�er sope. The approah is part of a larger projet on ompositional semantis

in LTAG. The onstrutions onsidered are inverse linking readings for nested

quanti�ers. I.e., sentenes with one quantifying phrase Qu

1

embedded in an-

other quantifying phrase Qu

2

where Qu

1

takes sope over Qu

2

. In this ase no

other quanti�er that is on the same level as Qu

2

an sopally intervene between

Qu

1

and Qu

2

.

In order to explain the fat that some quanti�ers seem to be more losely

onneted than others, we adopted another perspetive on TAG derivation,

namely a perspetive of exible omposition. This allowed to ombine �rst

those quanti�ers that are loser with respet to sope and that do not allow

intervening quanti�ers and then to ombine larger sets of quanti�ers. In our

semantis we built orresponding smaller and larger sets of quanti�ers that

express the onstraints on relative quanti�er sope that an be observed in

inverse linking readings. The exible omposition approah as used in this

paper does not inrease the generative apaity of the TAG formalism, it is just

a spei� way of ordering the derivations in a TAG.
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