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Abstra
t

This paper addresses the problem of 
onstraints for relative quanti�er

s
ope, in parti
ular in inverse linking readings where 
ertain s
ope orders

are ex
luded. We show how to a

ount for su
h restri
tions in the Tree

Adjoining Grammar (TAG) framework by adopting a notion of 
exible


omposition. In the semanti
s we use for TAG we introdu
e quanti�er sets

that group quanti�ers that are `glued' together in the sense that no other

quanti�er 
an s
opally intervene between them. The 
exible 
omposition

approa
h allows us to obtain the desired quanti�er sets and thereby the

desired 
onstraints for quanti�er s
ope.

1 Introdu
tion

The s
ope of quanti�ers within a senten
e 
an be in prin
iple arranged in dif-

ferent orderings, making the senten
e potentially ambiguous. For example, sen-

ten
e (1a), with two quanti�ers, has two logi
ally possible s
ope orderings: the

surfa
e order some > every, and an \inverse" order every > some. These two

orderings yield two a
tual readings of the senten
e, spelled out in Predi
ate

Logi
 in (1b-
) respe
tively.

(1) a. An FBI agent is spying on every professor.

b. 9 8: 9x [agent(x) ^ 8y[professor(y) ! spy(x; y)℄ ℄


. 8 9: 8y [professor(y) ! 9x[agent(x) ^ spy(x; y)℄ ℄

Both s
ope orderings must be made available by the grammar also when

the two quanti�ers appear nested within ea
h other, that is, when one of the

quanti�ers appears within the Noun Phrase headed by the other quanti�er. This
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is illustrated in (2) and (3). In (2a), the surfa
e ordering no>a 
orresponds to

the existing reading spelled out in (2b). In (3a), the inverse ordering every>a

gives us the existing reading in (3b). The inverse reading in nested quanti�er


onstru
tions is 
alled \inverse linking reading". Note, that, in the inverse

linking reading, the nested Qu

2

does not only take s
ope over its host NP, but

over the 
lause in general, as it 
an bind the variable it in (4) (May 1985, p.

68).

(2) a. No representative from an Afri
an 
ountry 
ame to the meeting.

b. :9 9: :9x 9y [representative(x; y) ^ Afr
ountry(y) ^ 
ame(x) ℄

(3) a. A representative from every Afri
an 
ountry 
ame to the meeting.

b. 8 9: 8y [ Afr
ountry(y) ! 9x [representative(x; y) ^ 
ame(x)℄ ℄

(4) Somebody from every 
ity despises it.

When we turn to senten
es with three quanti�ers Qu

1

, Qu

2

and Qu

3

, we

have six logi
ally possible s
ope 
ombinations. One of these six 
ombinations,

namely the ordering Qu

3

Qu

1

Qu

2

, yields an a
tual reading for senten
es like

(5), as spelled out in (5b).

1

(5) a. (At least) two so
ial workers gave a doll to ea
h/every 
hild.

b. 8 2 9: 8y [ 
hild(y) ! 9x [so
ial-workers(x) ^ jxj � 2 ^

8x

0

[x

0

�

i

x ! 9z[doll(z) ^ give(x

0

; z; y)℄ ℄ ℄ ℄

However, in nested quanti�er 
on�gurations where Qu

3

appears within Qu

2

,

this same ordering Qu

3

Qu

1

Qu

2

does not yield an a
tual reading (Larson 1987,

Heim & Kratzer 1998, Sauerland 2000). Neither does Qu

2

Qu

1

Qu

3

yield an

a
tual reading (Hobbs & Shieber 1987). This 
an be seen in (6)-(7). Take, e.g.,

the six logi
ally possible s
ope orderings in (6a). The 
laim is that the nested

quanti�ers 9 and 8 
an in prin
iple take s
ope together under 2 (orders 298 and

2 8 9) or they 
an take s
ope together over 2 (9 8 2 and 8 9 2), but they 
annot

take s
ope separately with the quanti�er 2 intervening between them (orderings

* 9 2 8, * 8 2 9).

(6) a. Two politi
ians spy on someone from every 
ity. Larson (1987)

b. 2 9 8, 2 8 9, 9 8 2, 8 9 2, * 9 2 8, * 8 2 9


. * 8 2 9: 8y [ 
ity(y) !

2 x [politi
ians(x); 9z[person(z) ^ from(z; y) ^ spy(x; z)℄ ℄

1

In (5b), x ranges over singular and plural individuals (see Link 1983), the formula jxj � 2

says that x 
onsists of at least 2 atoms and the universal quanti�
ation 8x

0


orresponds to

the distributive interpretation optionally available for plural Noun Phrases (Link 1983 among

many others). For 
onvenien
e, we will use the notation 2 x[p

1

^ p

2

℄ for 9x [p

1

^ jxj �

2 ^ 8x

0

[x

0

�

i

x ! p

2

℄ ℄ ℄ in subsequent examples.
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(7) Two engineers repaired some exits from every freeway in California 
ity.

Larson (1987)

Although the missing reading 
orresponding to 9 2 8 may be banned due to

general ar
hite
tural reasons, the unavailability of the reading *8 29 formalized

in (6b) is puzzling.

2

The aim of the present paper is to provide an LTAG

a

ount of why no quanti�
ational NP 
an intervene between an inverse linked

quanti�er and its host NP. The paper is part of a larger proje
t 
on
erned

with the development of a 
ompositional semanti
s for LTAG. We �rst provide

some ba
kground on LTAG and 
ompositional semanti
s in se
tion 2. Se
tion 3

develops a 
exible 
omposition approa
h to quanti�
ation. Se
tion 4 spells out

the semanti
s for it, generating only the 
orre
t s
opal 
ombinations for nested

quanti�er 
onstru
tions.

2 LTAG and 
ompositional semanti
s

2.1 Lexi
alized Tree Adjoining Grammars (LTAG)

An LTAG (Joshi & S
habes 1997) 
onsists of a �nite set of trees (elementary

trees) asso
iated with lexi
al items and of 
omposition operations of substitu-

tion (repla
ing a leaf with a new tree) and adjun
tion (repla
ing an internal

node with a new tree). The elementary trees represent extended proje
tions

of lexi
al items and en
apsulate all synta
ti
/semanti
 arguments of the lexi
al

an
hor. They are minimal in the sense that only the arguments of the an
hor

are en
apsulated, all re
ursion is fa
tored away.

LTAG derivations are represented by derivation trees that re
ord the history

of how the elementary trees are put together. A derived tree is the result of 
ar-

rying out the substitutions and adjoinings. See Fig. 1 for an example. The num-

bers in the derivation tree are the node positions where substitution/adjun
tion

takes pla
e: John is substituted for the node at position (1) and always is ad-

joined at position (2).

2.2 Compositional semanti
s with LTAG

Be
ause of the lo
alization of the arguments of a lexi
al item within elementary

trees TAG derivation trees express predi
ate argument dependen
ies. Therefore

it is generally assumed that the proper way to de�ne 
ompositional semanti
s

for LTAG is with respe
t to the derivation tree, rather than the derived tree

2

*9 2 8 involves having the quanti�er 9z separated from its restri
tor from(z; y) as in (8),

a 
on�guration that should perhaps be banned on grounds orthogonal to the present paper (it

has very weak truth 
onditions in Predi
ate Logi
). But note that su
h 
on�guration does not

arise in *829. The unavailability of this reading is, hen
e, puzzling and needs an explanation.

(8) *9 2 8: 9z[person(z) ^ 2x [politi
ians(x) ^

8y [ 
ity(y) ^ from(z; y) ! spy(x; z)℄ ℄ ℄
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S

NP# VP

VP

V

NP ADV VP

�

laughs

John always

derived tree: S

NP VP

John ADV VP

always V

laughs

derivation tree:

laugh

(1)john (2)always

Figure 1: TAG derivation for John always laughs

(see, e.g., Candito & Kahane, 1998; Joshi & Vijay-Shanker, 1999; Kallmeyer &

Joshi 1999, 2002).

The overall idea is as follows. Ea
h elementary tree is linked to a semanti


representation. The way the semanti
 representations 
ombine with ea
h other

depends on the derivation tree. Following Kallmeyer & Joshi (1999, 2002),

in this paper, we will adopt `
at' semanti
 representations as in, for example,

Minimal Re
ursion Semanti
s (MRS, Copestake et al., 1999). (9) shows the

elementary semanti
 representations for John always laughs.

3

(9)

l

1

: laugh(x

1

)

h

1

� l

1

arg: hx

1

; (1)i

john(x)

arg: {

l

2

: always(h

2

)

g

1

� l

2

; h

2

� s

1

arg: g

1

; s

1

Roughly, a semanti
 representation 
onsists of a 
onjun
tively interpreted set

of formulas (typed lambda-expressions), s
ope 
onstraints and a set of argument

variables. The formulas may 
ontain labels and holes (metavariables for propo-

sitional labels). In the following, l

1

; l

2

; : : : are propositional labels, h

1

; h

2

; : : :

are propositional holes, s

1

; s

2

; : : : are propositional and x

1

; x

2

; : : : individual

argument variables (whose values must be propositional labels/free individual

variables) and g

1

; g

2

; : : : are hole variables (spe
ial argument variables whose

values must be holes). Argument variables may be linked to positions in the

elementary tree, as it is the 
ase for x

1

in (9).

The use of holes is motivated by the desire to generate underspe
i�ed rep-

resentations (as in, e.g., Bos, 1995) for s
ope ambiguities. After having 
on-

stru
ted a (possibly underspe
i�ed) semanti
 representation with holes and la-

bels, disambiguation is done whi
h 
onsists of �nding bije
tions from holes to

labels that respe
t the s
ope 
onstraints. E.g., in the semanti
 representation

for laugh, there is a hole h

1

above l

1

(
onstraint h

1

� l

1

). Between h

1

and l

1

,

other labels and holes might intervene (introdu
ed for example by quanti�ers

or adverbs) or, if this is not the 
ase, l

1

will be assigned to h

1

in the disam-

biguation(s). The 
onstraints k

1

� k

2

di�er from the qeq 
onditions k

1

=

q

k

2

in MRS (see Copestake et al. 1999, p.10) in that they allow any element having

a propositional argument (quanti�ers, s
ope-taking adverbs ...) to intervene

3

john(x) is not a standard unary predi
ate but it is supposed to signify \there is a unique

individual 
alled John and x refers to that individual".

4



between k

1

and k

2

while in MRS, just quanti�ers 
an intervene between k

1

and

k

2

.

When 
ombining semanti
 representations, values are assigned to argument

variables and the union of the semanti
 representations is built. The values

for the argument variables of a 
ertain (elementary) semanti
 representation

must 
ome from semanti
 representations that are linked to it in the derivation

tree. The linking of argument variables and synta
ti
 positions restri
ts the

possible values as follows: In a substitution derivation step at a position p, only

argument variables linked to p get values. In an adjun
tion step, only argument

variables that are not linked to any positions 
an get values. In the 
ase of a

substitution, a new argument is inserted and therefore a value is assigned to

an argument variable in the old semanti
 representation. However, in the 
ase

of an adjun
tion, a new modi�er is applied and therefore a value is assigned

to a variable in the semanti
 representation that is added. In other words, in


ase of a substitution, semanti
 
omposition is downwards, while in 
ase of an

adjun
tion, semanti
 
omposition is upwards. For a formal de�nition of the

semanti
 
omposition operation see Kallmeyer & Joshi (2002). The algebra

introdu
ed there is 
lose to what Copestake et al. (2001) introdu
e for MRS

ex
ept for details of the formalization and for the fa
t that in Copestake et

al. (2001) ea
h semanti
 representation 
ontains just one \hook", i.e. just one

element that 
an be assigned as possible value to an argument (if equations are

viewed as variable assignments). This is di�erent in our approa
h, e.g. in (9)

h

1

and l

1

are 
ontributed by the same elementary representations and they are

both used as values when 
ombining laugh and always.

l

1

: laugh(x

1

); h

1

� l

1

arg: hx

1

; (1)i

(1)

john(x)

arg: {

(2)

l

2

: always(h

2

), g

1

� l

2

; h

2

� s

1

arg: g

1

; s

1

Figure 2: Semanti
 
omposition for John always laughs

Fig. 2 shows the semanti
 
omposition for John always laughs. The di-

re
ted edges signify semanti
 appli
ation while the dotted links signify variable

assignments. John is substituted into laugh, therefore the 
orresponding se-

manti
 
omposition is downwards, while the 
omposition of always and laugh

is upwards. Furthermore, the value of x

1

needs to 
ome from John sin
e x

1

is

linked to the node address where John is substituted, and the values of g

1

and

s

1

need to 
ome from laugh sin
e they are not linked to any node addresses.

Consequently, x

1

! x; g

1

! h

1

and s

1

! l

1

. The result is (10).
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(10)

l

1

: laugh(x), john(x), l

2

: always(h

2

), h

1

� l

1

; h

1

� l

2

; h

2

� l

1

arg: {

A disambiguation Æ is a bije
tion from holes to labels su
h that: After having

applied Æ (i.e., repla
ed the holes by their 
orresponding labels), the re
exive

transitive 
losure �

�

of the order � with (i) l

1

� l

2

if l

1

� l

2

is a 
onstraint

and (ii) l

1

� l

2

and l

1

6= l

2

if l

2

labels a subformula of the formula labelled l

1

must be su
h that (a) �

�

is a partial order and (b) l

1

6�

�

l

2

and l

2

6�

�

l

1

if l

1

and l

2

are di�erent arguments of the same predi
ate (e.g., the restri
tive and

the nu
lear s
ope of a quanti�er).

In (10), h

1

� l

2

, l

2

> h

2

(be
ause h

2

appears inside a formula labelled l

2

)

and h

2

� l

1

. Consequently h

1

6= l

1

and the only possible disambiguation is

h

1

! l

2

; h

2

! l

1

. This leads to the semanti
s john(x) ^ always(laugh(x)).

2.3 Separating s
ope and predi
ate argument information

A 
entral aspe
t of (Kallmeyer & Joshi, 1999, 2002) is the separation of the


ontribution of a quanti�er into a s
ope and a predi
ate argument part: Quan-

ti�ers have a set of two elementary trees and tree-lo
al multi
omponent TAGs

are used. (This means that if a new elementary tree set is added, all trees of the

set are added simultaneously and they are added to nodes belonging all to the

same elementary tree.) An auxiliary tree 
onsisting of a single node is linked to

the s
ope part of the semanti
s, while an initial tree is linked to the predi
ate

argument part. E.g., 
onsider the synta
ti
 analysis of every dog barks in Fig. 3.

The 
orresponding elementary semanti
 representations are shown in (11).

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

S

�

NP

Det N#

every

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

S

NP# VP

V

barks

N

dog

derived tree:

S

NP VP

Det N V

every dog barks

derivation tree:

barks

(0)every-1 (1)every-2

(2)dog

Figure 3: Synta
ti
 analysis of every dog barks

(11)

l

1

: bark(x

1

)

h

1

� l

1

arg: x

1

l

2

: 8x(h

2

; h

3

)

h

3

� s

1

arg: s

1

l

3

: p

1

(x)

h

2

� l

3

arg: p

1

q

1

: dog

arg: �

The s
ope part of the quanti�er (se
ond representation in (11)) introdu
es

a proposition 
ontaining the quanti�er, its variable and two holes for its re-

stri
tive and nu
lear s
ope. The proposition this semanti
 representation is

applied to (variable s

1

) is in the nu
lear s
ope of the quanti�er (h

3

� s

1

). The

6



Elementary trees and semanti
 representations:

S

NP# VP

V NP#

loves

l

1

: love(x

1

; x

2

)

h

1

� l

1

arg: hx

1

; (1)i; hx

2

; (22)i

N

student

q

1

: student

arg: {

N


ourse

q

2

: 
ourse

arg: {

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

S

�

l

2

: 9x(h

2

; h

3

)

h

3

� s

1

arg: s

1

NP

Det N#

some

l

3

: p

1

(x)

h

2

� l

3

arg: hp

1

; 01i

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

S

�

l

4

: 8y(h

4

; h

5

)

h

5

� s

2

arg: s

2

NP

Det N#

every

l

5

: p

2

(y)

h

4

� l

5

arg: hp

2

; 01i

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

Derivation tree:

loves

(0)some-1 (1)some-2 (22)every-2 (1)every-1

(2)student (2)
ourse

Figure 4: S
ope ambiguity and underspe
i�
ation

predi
ate argument part (third representation in (11)) introdu
es a proposition

p

1

(x) where p

1

will be the noun predi
ate dog. This proposition is in the restri
-

tive s
ope of the quanti�er (h

2

� l

3

). The values for the argument variables

are x

1

! x; s

1

! l

1

; p

1

! q

1

whi
h gives (12). The only disambiguation is

h

1

! l

2

; h

2

! l

3

; h

3

! l

1

whi
h leads to the semanti
s 8x(dog(x); bark(x)).

(12)

l

1

: bark(x), l

2

: 8x(h

2

; h

3

), l

3

: dog(x), h

1

� l

1

, h

3

� l

1

, h

2

� l

3

arg: �

To a

ount for 
ases with more than one quanti�er, a restri
ted use of mul-

tiple adjun
tions (for the s
ope parts) is ne
essary.

As already mentioned above, the use of holes and labels allows to gener-

ate underspe
i�ed representations for quanti�er s
ope ambiguities as in some

student loves every 
ourse. The elementary trees and elementary semanti
 rep-

resentations and the derivation tree are shown in Fig. 4. The assignments are

x

1

! x; x

2

! y; s

1

! l

1

; p

1

! q

1

; s

2

! l

1

; p

2

! q

2

. The result is (13).

(13)

l

2

: 9x(h

2

; h

3

), l

4

: 8y(h

4

; h

5

), l

1

: loves(x; y), l

3

: student(x),

l

5

: 
ourse(y), h

2

� l

3

; h

3

� l

1

, h

4

� l

5

; h

5

� l

1

, h

1

� l

1

arg: {

A

ording to (13), student(x) is in the restri
tion of 9, 
ourse(y) in the

restri
tion of 8, and loves(x; y) is in the body of 9 and the body of 8. This leaves

7



open whether 9 is in the body of 8 or 8 in the body of 9. The 
orresponding

two disambiguations are h

1

! l

2

; h

2

! l

3

; h

3

! l

4

; h

4

! l

5

; h

5

! l

1

(wide s
ope

of 9) and h

1

! l

4

; h

2

! l

3

; h

3

! l

1

; h

4

! l

5

; h

5

! l

2

(wide s
ope of 8).

There are many related works on 
omputational models for s
ope representa-

tion, e.g., Reyle (1993) that introdu
es s
ope 
onstraints and underspe
i�
ation

into DRT. One that has a spe
i�
 
onne
tion to our work is Alshawi (1992). In

this work there is an intermediate level of s
ope representation (Quasi Logi
al

Form (QLF)). At this level underspe
i�ed representation of s
ope is allowed

(among other things). This form is 
omputed from a prior phase of synta
ti


analysis and is produ
ed by an initial semanti
 analysis phase.

The fa
t that we provide in our representation a level of underspe
i�
ation is

not the novel part of our system. One of the novel aspe
ts of the 
ompositional

semanti
s developed in Kallmeyer & Joshi (2002) is that the derivation tree

(whi
h is the synta
ti
 derivational history in the LTAG system) already rep-

resents the underspe
i�ed s
ope relations. Computation of this representation

is not a separate level. This is a 
ru
ial point of departure from the traditional


ompositional systems. The other distinguishing aspe
t is the fa
toring of the


omposition of the predi
ate-argument semanti
s from the s
ope 
omposition

semanti
s.

3 LTAG and 
exible 
omposition

In a 
ontext-free grammar, CFG, a rule su
h as A ! BC 
an be interpreted in

two ways. We 
an regard B as a fun
tion and C as its argument, produ
ing the

result A. Alternatively, C 
an be regarded as a fun
tion and B as its argument,

produ
ing the same result. We have 
exible 
omposition here, in the sense

that the dire
tion of 
omposition is 
exible. In the 
ase of CFGs it is easily seen

that providing su
h 
exibility does not a�e
t the weak generative 
apa
ity of the

grammar (i.e., the set of strings generated by the grammar) as well as the strong

generative 
apa
ity (i.e., the set of derivation trees generated by the grammar).

In other words 
exible 
omposition does not buy us anything new. This is due

to the fa
t that CFG is a string rewriting system and fun
tion and argument are

`string-adja
ent'. For a TAG and, in parti
ular, for the multi-
omponent TAG it


an be shown that 
exible 
omposition allows the possibility of in
reasing both

the strong and weak generative 
apa
ities. This is due to the fa
t that when

TAG trees are 
omposed (interpreting them either as fun
tions or arguments)

the fun
tion and argument trees are `tree-adja
ent' (rather than `tree-adja
ent).

The fa
t that 
omplex topologi
al obje
ts are 
omposed allows the possibility

of in
reasing strong and weak generative 
apa
ities using 
exible 
omposition.

We will use some simple examples to illustrate what we mean by 
exible


omposition in a TAG or MC-TAG (Multi-Component TAG). Instead of the

two operations, substitution and adjoining, we will use the term `atta
hment'.

In Fig. 5 �

1


an be atta
hed to �

1

at the interior S node of �

1

resulting in

the tree 
orresponding to who

i

NP thinks NP likes �

i

. In this 
ase �

1


omposes

with �

1

. Alternatively, we 
an regard �

1

as a multi
omponet tree (with two

8




omponents) as shown in �

2

with the two 
omponents �

21

and �

22

. Now we


an 
ompose �

2

with �

1

su
h that �

21

atta
hes to the root node of �

1

and �

22

atta
hes to the footnode S of �

1

, resulting in the same string as before, but with

a di�erent derivation (di�erent stru
tural des
ription).

�

1

S

WH

i

S

NP VP

V NP

likes �

i

�

1

S

NP VP

V S

thinks

�

2

8

>

>

>

>

>

<

>

>

>

>

>

:

�

21

S

WH

i

S

�

22

S

NP VP

V NP

likes �

i

9

>

>

>

>

>

=

>

>

>

>

>

;

Figure 5: Example of 
exible 
omposition

In 
exible 
omposition if a tree t 
omposes with a tree u then we require

that u is an elementary tree. This assures `tree lo
ality' in the 
omposition.

Given two trees t and u 
omposition 
an go in either dire
tion if both t and

u are elementary. If both t and u are derived trees then they 
annot 
ompose

with ea
h other. If only one of the trees is elementary then the other tree


an 
ompose into it but not vi
e versa. Given this 
onstraint on lo
ality the


omposition 
an pro
eed in a 
exible manner. Of 
ourse, several derived trees


an be added simultaneously to an elementary tree. This is ne
essary in order

not to ex
lude standard TAG derivations. Basi
ally, 
exible 
omposition allows

one to traverse the derivation tree starting at any node and moving up and

down the derivation tree in a `
exible' manner until all nodes of the derivation

tree have been visited. A
tually, in our present paper we will not use this more

general notion of 
exible 
omposition. We will traverse the derivation tree (for a

MC-TAG) from bottom up maintaining the requirements of 
exible 
omposition

as des
ribed above.

4 The quanti�er set approa
h

In this se
tion we propose a way to obtain the desired s
ope restri
tions for

inverse linking 
onstru
tions making use of the 
exible 
omposition approa
h.

Consider again (6), repeated as (14). The reading we want to ex
lude is 8 2 9.

(The order 9 2 8 will be ex
luded anyway.)

(14) two politi
ians spy on someone from every 
ity

In the 
exible 
omposition approa
h, at some point the QPs someone and

every 
ity are 
omposed. In this step, the two s
ope parts (the S auxiliary

trees) of these quanti�ers are identi�ed (one adjoins to the other). The result

is the 
omplex QP someone from every 
ity. Later, this QP and two politi
ians

are both added to spy, i.e., their s
ope parts adjoin to the S node of spy. In

other words, in this latter step the s
ope parts of the 
omplex QP and of two

9



politi
ians are identi�ed. It seems that whenever an identi�
ation of s
ope parts

takes pla
e (i.e., either one adjoins to the other or all adjoin to the same node),

� all s
ope orders are possible between the quanti�ers involved in that identi-

�
ation, and

� no other quanti�er 
an intervene (i.e., have s
ope over one of the quanti-

�ers while being in the s
ope of another of the quanti�ers involved in this

identi�
ation).

To formalize this, we introdu
e quanti�er sets in our semanti
 representa-

tions. The idea is the following: Whenever several quanti�ers are identi�ed, a

new set is built 
ontaining the s
ope parts of these quanti�ers. Eventually, these

s
ope parts are already sets (as in the 
ase of the 
omplex QP in (14)). E.g., the

representation for (14) 
ontains a quanti�er set fl

1

: 2 : : : ; fl

3

: 9 : : : ; l

5

: 8 : : :gg.

The elements of one quanti�er set (e.g., 9 and 8 in (14)) are 
onsidered

being `glued together' in the sense that no other quanti�er 
an intervene. This

is obtained by putting a 
ondition on the s
ope order that makes sure that if

one part of a quanti�er set Q

1

is subordinated by one part of another quanti�er

set Q

2

, then all quanti�ers in Q

1

must be subordinated by all quanti�ers in Q

2

.

More formally, to the 
onditions on the relation \�

�

" one obtains after having

applied a disambiguation (see (a), (b), p; 6), we add the following: (
) for ea
h

quanti�er set Q, for all Q

1

; Q

2

2 Q: if there are labels l

1

in Q

1

and l

2

in Q

2

su
h that l

1

>

�

l

2

, then for all l

1

in Q

1

and l

2

in Q

2

l

1

>

�

l

2

holds.

For (14), this ex
ludes l

3

>

�

l

1

>

�

l

5

(ex
luded anyway be
ause of 
ondition

(b) on disambiguations and the separation between s
ope and restri
tion of a

quanti�er) and l

5

>

�

l

1

>

�

l

3

, the inverse linking reading we want to ex
lude.

Let us go through the derivation of (14). Fig. 6 shows its derivation tree.

For the s
ope parts of quanti�ers we allow now non-lo
al multi
omponent at-

ta
hments. This does not a�e
t the generative 
apa
ity of the grammar.

spy on

(0)two-1 (1)two-2 (0)someone-1 (22)someone-2 (0)every-1

(2)politi
ians (0)from

(22)every-2

(2)
ity

Figure 6: Derivation tree of (14)

The 
exible 
omposition view 
orresponds roughly to a bottom-up derivation

where derived trees are added to elementary trees, i.e., the derivation steps are

the following:

1. politi
ians atta
hes to the lower part of the multi
omponent (MC) set of two

building a larger MC set

2. similarly, 
ity atta
hes to every building a MC set

10



3. the lower part of the MC set of every 
ity is substituted into from. The result

is a new MC set.

4. the MC set of from every 
ity is added to the MC set of someone with

adjun
tion of the upper 
omponent at the s
ope part and an adjun
tion of

the lower 
omponent at the NP. At this point, the �rst identi�
ation of two

s
ope parts takes pla
e. The result is a new MC set.

5. the two MC sets of two politi
ians and someone from every 
ity are added

to spy on where the two s
ope parts are adjoined to the root node and the

two lower 
omonents are substituted into the 
orresponding leaves. At this

point, the se
ond identi�
ation of s
ope parts takes pla
e.

Compared to se
tion 2, we slightly modify the semanti
 representation of

quanti�ers: the s
ope part 
ontains only the quanti�er with the holes for re-

stri
tion and body. The s
ope 
onstraint linking the quanti�er to its proposition

is part of the lower part of the quanti�er. In parti
ular, the variable for the

proposition in the nu
lear s
ope of the quanti�er (s

1

and s

2

in (15)) is now part

of the lower part. This is ne
essary, sin
e we allow non-lo
al multi
omponent

adjun
tion for the s
ope auxiliary trees. Consequently, the s
ope part and the

predi
ate-argument part of a quanti�er are not ne
essarily added to the same

elementary tree. But the tree the predi
ate argument part is added to is the

tree that 
ontributes the proposition that must be in the nu
lear s
ope of the

quanti�er. E.g., in (14), the s
ope part of every is identi�ed with the s
ope part

of someone and �nally added to spy. But the proposition that must be part

of the nu
lear s
ope of every 
omes from the from tree, the tree the predi
ate

argument part of every is added to.

(15) shows the multi
omponent sets derived for two politi
ians and every


ity. (16) shows the elementary tree for from.

(15)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

S

�

l

1

: 2x(h

1

; h

2

)

arg: {

NP

two pol.

l

2

: politi
ians(x)

h

1

� l

2

; h

2

� s

1

arg: s

1

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

S

�

l

3

: 8y(h

3

; h

4

)

arg: {

NP

every 
ity

l

4

: 
ity(y)

h

3

� l

4

; h

4

� s

2

arg: s

2

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(16)

NP

NP

�

PP

from NP#

l

5

: from(x

1

; x

2

)

h

5

� l

5

; g

1

� h

5

; h

5

� s

3

arg: x

1

; hx

2

; (22)i; g

1

; s

3

Adding every 
ity to from by substitution of the lower 
omponent at the NP

leaf inside the PP leads to x

2

! y and s

2

! l

5

. The result is (17).

11



(17)

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

S

�

l

3

: 8y(h

3

; h

4

)

arg: {

NP

NP

�

PP

from every 
ity

l

4

: 
ity(y), l

5

: from(x

1

; y)

h

3

� l

4

; h

4

� l

5

; h

5

� l

5

; g

1

� h

5

;

h

5

� s

3

arg: x

1

; g

1

; s

3

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(18)

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

S

�

l

6

: 9z(h

6

; h

7

)

arg: {

NP

someone

l

7

: person(z)

h

6

� l

7

; h

7

� s

4

arg: s

4

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

(18) is the MC set for someone. When adding from every 
ity to (18), the

two s
ope parts are put into one quanti�er set. The assignments are x

1

!

z; g

1

! h

6

; s

3

! l

7

. (s

3

! l

7

is the only possibility, and g

1

! h

7

would lead

to h

7

� h

5

� l

7

and h

6

� l

7

, i.e., to l

7

being in the restri
tive and the nu
lear

s
ope of someone.) One obtains (19).

(19)

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

S

fl

3

: 8y(h

3

; h

4

); l

6

: 9z(h

6

; h

7

)g

arg: {

NP

someone fr. ev. 
ity

l

4

: 
ity(y), l

5

: from(z; y), l

7

: person(z)

h

3

� l

4

; h

4

� l

5

; h

5

� l

5

; h

6

� h

5

;

h

5

� l

7

; h

6

� l

7

; h

7

� s

4

arg: s

4

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

When adding the two QPs, two politi
ians and someone form every 
ity to

spy, the two s
ope parts are adjoined to the same node and thereby identi�ed.

Therefore a large quanti�er set is built. The result is (20).

(20)

fl

1

: 2x(h

1

; h

2

); fl

3

: 8y(h

3

; h

4

); l

6

: 9z(h

6

; h

7

)gg

l

2

: politi
ians(x), l

4

: 
ity(y), l

5

: from(z; y), l

7

: person(z), l

8

: spy(x; z)

h

1

� l

2

; h

2

� l

8

; h

3

� l

4

; h

4

� l

5

; h

5

� l

5

;

h

6

� h

5

; h

5

� l

7

; h

6

� l

7

; h

7

� l

8

; h

8

� l

8

arg: {

The inverse linking reading with the third quanti�er intervening is 
orre
tly

ex
luded: this reading would mean l

3

> l

1

> l

6

. Let Q

1

:= fl

3

: 8 : : : ; l

6

: 9 : : :g

and Q

2

:= l

1

: 2 : : :. Then the s
ope order 
ondition on quanti�er sets is not

satis�ed be
ause l

3

> l

1

and l

6

6> l

1

.

Other s
ope taking elements, su
h as adverbs or modals, are not involved

into the quanti�er set me
hanism sin
e they do not have a separate s
ope tree.

12



Therefore, they 
an intervene freely between quanti�ers belonging to the same

set. E.g., a reading 8 want 9 for (21) is allowed.

(21) John wanted to meet someone from every 
ity Sauerland (2000)

5 Con
lusion

In this paper we provided an LTAG a

ount for 
ertain restri
tions on quanti-

�er s
ope. The approa
h is part of a larger proje
t on 
ompositional semanti
s

in LTAG. The 
onstru
tions 
onsidered are inverse linking readings for nested

quanti�ers. I.e., senten
es with one quantifying phrase Qu

1

embedded in an-

other quantifying phrase Qu

2

where Qu

1

takes s
ope over Qu

2

. In this 
ase no

other quanti�er that is on the same level as Qu

2


an s
opally intervene between

Qu

1

and Qu

2

.

In order to explain the fa
t that some quanti�ers seem to be more 
losely


onne
ted than others, we adopted another perspe
tive on TAG derivation,

namely a perspe
tive of 
exible 
omposition. This allowed to 
ombine �rst

those quanti�ers that are 
loser with respe
t to s
ope and that do not allow

intervening quanti�ers and then to 
ombine larger sets of quanti�ers. In our

semanti
s we built 
orresponding smaller and larger sets of quanti�ers that

express the 
onstraints on relative quanti�er s
ope that 
an be observed in

inverse linking readings. The 
exible 
omposition approa
h as used in this

paper does not in
rease the generative 
apa
ity of the TAG formalism, it is just

a spe
i�
 way of ordering the derivations in a TAG.
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