Pseudohyperphosphorylation of tau is sufficient to induce aberrant sprouting and activation of ERK1/2 in transgenic mice

  • Poster presentation: Hyperphosphorylation of tau is a characteristic of Alzheimer's disease (AD). Our group has established a model for tau hyperphosphorylation by mutating 10 residues from Ser/Thr to Glu to simulate the negative charge of phosphorylated residues ("pseudohyperphosphorylated (PHP)-tau"). In order to analyze temporal and spatial effects of hyperphosphorylation of tau in a systemic context, we have established transgenic mouse lines that express human wild-type (wt)- or PHP-tau under the control of the CamKIIalpha-promoter that leads to a forebrain specific moderate expression in neurons, i.e. the region where also tau-pathology in AD is abundant. For the evaluation of tau-induced changes in the transgenic mice, we quantified spine densities in the neocortex and hippocampus of transgenic mice. The spine densitiy was significantly increased in PHP-tau compared to wt-tau expressing mice. It is known that AD is associated with aberrant pre- and postsynaptic sprouting. Axonal sprouting is also observed in transgenic mice expressing mutated amyloid precursor protein (APP), which suggests that Abeta plays a significant role in this process. We deduce from our results, that (pseudo)-hyperphosphorylation of tau is sufficient to induce aberrant sprouting in the absence of Abeta. Analyses whether this sprouting is induced by pre- or postsynaptic changes and if functionally active synapses are formed are in progress. It will be interesting to determine if stabilization of these newly formed synapses slows or – in contrary – accelerates the progression of the disease. Sprouting as observed in our PHP-tau expressing mice is part of neuronal differentiation. One family of enzymes that is involved in cell differentiation are mitogen-acitvated protein kinases (MAPK). Western blot analysis was performed with brain lysates from transgenic mice to check whether PHP-tau induced sprouting is associated with MAPK activation. In fact, we also observed an increased activation of the MAPK ERK1/2 evident by phosphorylation of the residues Thr202 and Tyr204. ERK1/2 is also known to phosphorylate tau at sites characteristic for AD. Our results suggest the presence of a vicious circle by which (pseudo)-hyperphosphorylated tau activates ERK1/2 which in turn phosphorylates tau.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Monika Hundelt, Karolin Selle, Anne Kosfeld, Thomas Fath, Christian Schultz, Jürgen Götz, Jacob von Engelhardt, Hannah Monyer, Roland Brandt
URN:urn:nbn:de:hebis:30-40986
DOI:https://doi.org/10.1186/1471-2202-8-S1-P27
Parent Title (English):BMC neuroscience 2007
Publisher:BioMed Central [u.a.]
Place of publication:London
Document Type:Article
Language:English
Year of Completion:2007
Year of first Publication:2007
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2007/04/05
Volume:8(Suppl 1)
Issue:P27
Page Number:1
Note:
© 2007 Hundelt et al; licensee BioMed Central Ltd.
Note:
From Annual Meeting of the Study Group Neurochemistry. International Conference of the Gesellschaft für Biochemie und Molekularbiologie 2006 (GBM 2006): Molecular pathways in health and disease of the nervous system. - Witten, Germany. 28–30 September 2006
HeBIS-PPN:336773366
Institutes:Medizin / Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoDeutsches Urheberrecht