Das Dirac-Feld im elektromagnetischen Potential eines geladenen Strings

The Dirac field in the electromagnetic potential of a charged string

  • Die Theorie der Quantenelektrodynamik (QED) starker Felder sagt vorher, dass sich unter dem Einfluss sehr starker elektromagnetischer Felder der Vakuumzustand verändert. Überschreitet das äußere (im einfachsten Fall elektrostatische) Feld eine gewisse kritische Stärke, dann kommt es zur spontanen Erzeugung von Elektron-Positron-Paaren und im Gefolge zur Ausbildung eines geladenen Vakuums. Charakteristisch dafür sind gebundene Elektronenzustände mit einer Bindungsenergie von mehr als der doppelten Ruhenergie. Dieser Effekt wurde bisher meist für sphärisch symmetrische Systeme untersucht, insbesondere für das Coulombpotential eines schweren Kerns. In der vorliegenden Arbeit wird erkundet, wie sich das überkritische Phänomen beim Übergang von sphärischer zu zylindrischer Geometrie verhält. Dazu werden die Lösungen der Dirac-Gleichung für Elektronen im elektrostatischen Potential eines langen dünnen geladenen Zylinders ("geladener String") berechnen und darauf aufbauend das überkritische Phänomen untersucht. Da das logarithmische Potential eines unendlich langen Strings unbegrenzt anwächst, sollten alle Elektronzustände überkritisch sein (Möglichkeit des Tunnelns durch den Teilchen-Antiteilchen-Gap). Die Zentralladung sollte sich dann mit einer entgegengesetzt geladenen Hülle aus Vakuumelektronen umgeben und damit neutralisieren. Um diese Phänomene quantitativ zu beschreiben untersuchen wir die Lösungen der Poisson-Gleichung und der der Dirac-Gleichung in Zylindersymmetrie. Zunächst wird eine Reihenentwicklung für das elektrostatische Potential in der Mittelebene eines homogen geladenen Zylinders von endlicher Länge und endlichem Radius hergeleitet. Anschließend benutzen wir den Tetraden- (Vierbein-) Formalismus zur Separation der Dirac-Gleichung in Zylinderkoordinaten. Die resultierende entkoppelte radiale Dirac-Gleichung wird in eine Schrödinger-artige Form transformiert. Die gebundenen Zustände werden mit der Methode der uniformen Approximation, einer Variante der WKB-Näherung, berechnet und ihre Abhängigkeit von den Parametern Stringlänge, Stringradius und Potentialstärke wird studiert. Die Näherungsmethode wird auch benutzt, um den überkritischen Fall zu untersuchen, bei dem sich die gebundenen Zustände in Resonanzen im Antiteilchen-Kontinuum verwandeln. Der zugehörige Tunnelprozess wird studiert und die Resonanz-Lebensdauer abgeschätzt. Schließlich wird das Problem der Vakuumladung und Selbstabschirmung angegangen. Die Vakuumladung wird durch Aufsummation der Ladungsdichten aller überkritischen (quasi-)gebundenen Zustände berechnet. Die Vakuumladung tritt als Quellterm in der Poisson-Gleichung für das elektrostatische Potential auf, welches wiederum die Wellenfunktionen bestimmt. Auf die volle selbstkonsistente Lösung dieses Problems wird verzichtet. Wir zeigen jedoch dass die Vakuumladung wie erwartet gross genug ist, um eine Totalabschirmung des geladenen Strings zu bewirken.
  • According to the theory of Quantum Electrodynamics (QED) the vacuum state will change in the presence of very strong electromagnetic fields. If the external field (in the simplest case purely electrostatic) exceeds a certain critical value the creation of electron-positron pairs will ensue, resulting the the formation of a charged vacuum. This process is haracterized by the emergence of electron states with a binding energy larger than twice the electron rest mass. The effect up to now usually was studied for spherically symmetric systems, in particular for the Coulomb potential of a heavy nucleus. In the present thesis we investigate, how this phenomenon changes when passing from spherical to cylindrical geometry. For this, we derive the solutions of the Dirac equation for electrons in the electrostatic potential of a long, thin charged cylinder (a "charged string") and study the ensuing supercritical effects. Since the logarithmic potential of an infinitely long string rises indefinitely with growing distance, all electron states should be supercritical (i.e., electrons should be able to tunnel through the particle-antiparticle gap of the Dirac equation). Therefore on may expect that the central charge will surround itself with an oppositely charged sheath of vacuum electrons, leading to neutralization of the string. To develop a quantitative description of this process, we investigate the solutions of the Poisson equation and the Dirac equation in cylindrical symmetry. In the first step a series expansion of the electrostatic potential in the central plane of a homogeneously charge cylinder of finite length and finite radius is derived. Subsequently, we employ the tetrade (vierbein) formalism to separate the Dirac equation in cylindrical coordinates. The resulting radial Dirac equation is transformed to Schroedinger type. The bound states are evaluated using the method of uniform approximation (a version of the WKB approximation). We study the dependence of the solutions on the parameters string length, string radius, and potential strength. The approximation method also is employed to study the supercricital case, in which the bound states become resonances in the antiparticle continuum. The associated tunneling process is studied and the resulting decay lifetime is extimated. Finally, the problem of the vacuum charge and the self-screening of the string is tackled. The vacuum charge is evaluated by summing up the charge densities of all supercritical (quasi-)bound states. This vacuum charge forms the source term of the Poisson equation for the electrostatic potential, which in turn determines the wave functions. The full self consistent problem of the coupled Dirac and electromagnetic fields is not solved. However, we show that the vacuum charge is lage enough to lead to a complete screening of the charged string, in accordance with expectations.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Luis Anaguano
URN:urn:nbn:de:hebis:30-36952
Place of publication:Frankfurt am Main
Referee:Walter GreinerGND, Stefan SchrammGND
Advisor:Joachim Reinhardt
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2007/04/03
Year of first Publication:2005
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2005/11/01
Release Date:2007/04/03
Tag:Geladener String; überkritisches Feld
Dirac vacuum; Quantum electrodynamics; charged string; supercritical field
GND Keyword:Dirac-Vakuum; Dirac-Gleichung; Quantenelektrodynamik; Vakuumpolarisation; Vakuumzustand; Teilchenerzeugung
Page Number:149
First Page:1
Last Page:145
HeBIS-PPN:185416667
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS-Classification:00.00.00 GENERAL / 03.00.00 Quantum mechanics, field theories, and special relativity (see also section 11 General theory of fields and particles) / 03.65.-w Quantum mechanics [see also 03.67.-a Quantum information; 05.30.-d Quantum statistical mechanics; 31.30.J- Relativistic and quantum electrodynamics (QED) effects in atoms, molecules, and ions in atomic physics] / 03.65.Pm Relativistic wave equations
10.00.00 THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS (for experimental methods and instrumentation for elementary-particle physics, see section 29) / 11.00.00 General theory of fields and particles (see also 03.65.-w Quantum mechanics and 03.70.+k Theory of quantized fields) / 11.27.+d Extended classical solutions; cosmic strings, domain walls, texture (see also 98.80.Cq in cosmology; 11.25.-w Strings and branes)
10.00.00 THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS (for experimental methods and instrumentation for elementary-particle physics, see section 29) / 12.00.00 Specific theories and interaction models; particle systematics / 12.20.-m Quantum electrodynamics
Licence (German):License LogoDeutsches Urheberrecht