Three-dimensional model study of the Arctic ozone loss in 2002/2003 and comparison with 1999/2000 and 2003/2004

  • We have used the SLIMCAT 3-D off-line chemical transport model (CTM) to quantify the Arctic chemical ozone loss in the year 2002/2003 and compare it with similar calculations for the winters 1999/2000 and 2003/2004. Recent changes to the CTM have improved the model's ability to reproduce polar chemical and dynamical processes. The updated CTM uses σ-θ as a vertical coordinate which allows it to extend down to the surface. The CTM has a detailed stratospheric chemistry scheme and now includes a simple NAT-based denitrification scheme in the stratosphere. In the model runs presented here the model was forced by ECMWF ERA40 and operational analyses. The model used 24 levels extending from the surface to ~55km and a horizontal resolution of either 7.5° x 7.5° or 2.8° x 2.8°. Two different radiation schemes, MIDRAD and the CCM scheme, were used to diagnose the vertical motion in the stratosphere. Based on tracer observations from balloons and aircraft, the more sophisticated CCM scheme gives a better representation of the vertical transport in this model which includes the troposphere. The higher resolution model generally produces larger chemical O3 depletion, which agrees better with observations. The CTM results show that very early chemical ozone loss occurred in December 2002 due to extremely low temperatures and early chlorine activation in the lower stratosphere. Thus, chemical loss in this winter started earlier than in the other two winters studied here. In 2002/2003 the local polar ozone loss in the lower stratosphere was ~40% before the stratospheric final warming. Larger ozone loss occurred in the cold year 1999/2000 which had a persistently cold and stable vortex during most of the winter. For this winter the current model, at a resolution of 2.8° x 2.8°, can reproduce the observed loss of over 70% locally. In the warm and more disturbed winter 2003/2004 the chemical O3 loss was generally much smaller, except above 620K where large losses occurred due to a period of very low minimum temperatures at these altitudes.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Wuhu Feng, Martyn P. ChipperfieldORCiDGND, Stewart Davies, Bhaswar Sen, Geoffrey C. ToonGND, Jean-François Blavier, Christopher R. Webster, C.-Michael Volk, Alexey Ulanovsky, Fabrizio RavegnaniORCiD, Peter von der Gathen, Hans-Jürg Jost, Erik C. Richard, Hans Claude
URN:urn:nbn:de:hebis:30-37621
DOI:https://doi.org/doi:10.5194/acp-5-139-2005
ISSN:1680-7324
Parent Title (English):Atmospheric chemistry and physics, 5.2005, S. 139-152
Publisher:European Geosciences Union
Place of publication:Katlenburg-Lindau
Document Type:Article
Language:English
Date of Publication (online):2005/01/21
Date of first Publication:2005/01/21
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2007/02/21
Volume:5
Page Number:24
First Page:139
Last Page:152
Note:
© 2005 Author(s). This work is licensed under a Creative Commons License. http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en
HeBIS-PPN:191214299
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoCreative Commons - Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen