Der Pumpenzyklus der Na,K-ATPase : eine Charakterisierung von Sekundärstruktur- und Proteinmikroumgebungsänderungen mittels reaktionsinduzierter und zeitaufgelöster FTIR-Differenzspektroskopie

  • Die Na,K-Pumpe ist ein integrales Membranenzym und gehört zur Gattung der P-Typ-ATPasen. Das Enzym setzt bei der Hydrolyse von ATP die resultierende freie Energie in aktiven Transport zur Errichtung eines Na+/K+-Konzentrationsgradienten über der jeweiligen Plasmamembran um. Diese Funktion wird mit einer strukturellen Alternierung zwischen zwei Hauptkonformationen E1 und E2 des Enzyms in Verbindung gebracht. In der vorliegenden Arbeit erfolgte eine Charakterisierung von Sekundärstruktur- und Proteinmikroumgebungsänderungen bei Teilreaktionen der Na,K-ATPase mittels reaktionsinduzierter und zeitaufgelöster FTIR-Differenzspektroskopie. Die hier verwendete IR-Durchlichttechnik setzt voraus, daß das zu untersuchende Enzym in hochreiner, hochkonzentrierter (1 mM) und aktiver Form in einen Proteinfilm in Gegenwart eines geschützten, photolytisch spaltbaren ATP-Derivats (caged ATP) überführt werden kann. In dieser Arbeit wurde zum ersten Mal eine umfassende IR-spektroskopische Beschreibung von einzelnen Teilreaktionen innerhalb des E1/E2-Reaktionsmodells der Na,K-ATPase durchgeführt. Die Untersuchung des Enzyms in Form eines Proteinfilms mit einer Schichtdicke von etwa 5 µm ist aufgrund der hohen Hintergrundabsorption des Wassers und der geringen Extinktionskoeffizienten der Proteinschwingungsmoden erforderlich. Der überwiegende Teil der Messungen wurde mit (1-(2-nitrophenyl)ethyl)-caged ATP und Schweinenierenenzym bei 5° und 15°C durchgeführt. Nach Abspaltung der Schutzgruppe mittels eines UV-Blitzes und somit der Freisetzung von ATP wurden zeitabhängig (Millisekunden bis Sekunden) die Differenzspektren verschiedener Teilreaktionen im Bereich von 2000 bis 950 cm-1 ermittelt. Der große Vorteil dieser Technik besteht in der Möglichkeit der Registrierung von Zustandsänderungen einzelner Aminosäuren des Proteins, in Bezug auf die Sekundärstruktur, Phosphorylierung, Protonierung und Kationenkoordination. Besonders gut können Änderungen an den Seitenketten der Aminosäuren Aspartat und Glutamat detektiert werden. Die enzymatische ATP-Hydrolyseaktivität der Na,K-ATPase wurde in den Proteinfilmen IR-spektroskopisch anhand der V as (PO2-) bei 1246 cm-1 bestimmt. Die Messungen der spezifischen Aktivität von Schweinenierenenzym ergab bei 15°C einen Wert von 34 nmol Pi mg-1 min-1. Vergleichsmessungen, die mit einem Standardaktivitätstest in Annäherung an die Protein-filmbedingungen durchgeführt wurden, ergaben Ergebnisse von der gleichen Größenordnung. In Abhängigkeit von der Zusammensetzung des kationischen Mediums konnten nach der photochemischen Freisetzung von ATP IR-Differenzspektren von drei verschiedenen Teilreaktionen untersucht werden: (1) ATP-Bindung, (2) Bildung des Phosphoenzyms E1P, (3) Bildung des Phosphoenzyms E2P. Des weiteren wurden Differenzspektren der AMPPNP-Bindung, der ADP-Bindung und der Ammoniumbindung, die mit der K+-Bindung vergleichbar ist, ermittelt. Alle Teilreaktionen führten zu unterschiedlichen Differenzspektren, die charakteristisch für die jeweiligen Zustandsänderungen sind. Durch geeignete Differenzbildung konnten ebenfalls die Differenzspektren der Phosphorylierung (EATP -> E1P) und der Phosphoenzym-Konversion (E1P -> E2P) berechnet werden. Sekundärstrukturänderungen können bei der IR-Spektroskopie innerhalb des Amid I-Bereichs zwischen 1700 und 1610 cm-1 detektiert werden. Die Ergebnisse der IR-Differenzspektroskopie zeigen, daß die Sekundärstruktur der Na,K-ATPase bei allen untersuchten Teilreak-tionen weitgehend konserviert bleibt. Unter den ermittelten Differenzspektren der Teilreaktionen resultiert die größte Netto-Sekundärstrukturänderung in einer Größenordnung von etwa 0,2 % (~3 Aminosäuren/Protomer) bei der E2P-Bildung. Als Folge der Bindung von ATP und ADP an das Enzym gibt es Evidenzen für die Beteiligung von Arginin. Die Bindung von AMPPNP an die Na,K-ATPase hingegen zeichnet sich klar durch andere molekulare Wechselwirkungen unter Beteiligung von Asp und/oder Glu aus. Die Phosphorylierung der Na,K-ATPase in Gegenwart von 1,2 M Na+ (E1P-Bildung) kann anhand von zwei Signalen der V (C=O) bei 1739 und 1709 cm-1, wobei eines der phosphorylierten Seitenkette Asp 369 zugeordnet wird, detektiert werden. Das zweite Signal wird der Protonierung eines Seitenkettenrestes Asp oder Glu zugerechnet, welches in Verbindung mit der Na+-Okklusion bei der E1P-Bildung stehen dürfte. Weitere Signale, die in Zusammenhang mit den molekularen Vorgängen bei der Phosphorylierung und Na+-Koordination stehen, können in der spektralen Region um 1550 cm-1 (V as(COO-)) und 1400 cm-1 (V s(COO-)) detektiert werden. Das Differenzspektrum der Phosphorylierung der Na,K-ATPase in Gegenwart von 130 mM Na+ (E2P-Bildung) enthält keine Beiträge der Kationenokklusion oder -deokklusion. Dennoch enthält das Differenzspektrum der E2P-Bildung die Information über die Transformation der Kationenbindungsstellen von E1 -> E2. Während E1 den Na+-affinen Zustand darstellt, repräsentiert E2 den K+-affinen Zustand der Na,K-ATPase. Das Signalprofil der Differenzspektren der E2P-Bildung unterscheidet sich stark von dem der E1P-Bildung. Neben der Phosphorylierung an Asp 369, die auch hier oberhalb von 1700 cm-1 anhand eines V (C=O)-Signals detektiert wird, können weitere positive und negative Signale sowohl oberhalb von 1700 cm-1 als auch im Bereich um 1550 cm-1 (V as(COO-)) und 1400 cm-1 (V s(COO-)) nachgewiesen werden. Bei der Transformation der Kationenbindungsstellen von E1 -> E2 können somit starke Änderungen an den Seitenketten von Asp und/oder Glu detektiert werden, die auf eine Neuorganisation der Kationenbindungsstellen der Na,K-ATPase schließen lassen. An dieser Neuorganisation sind sowohl Ände-rungen des Protonierungszustandes als auch Änderungen in der Koordinationssphäre der kationenkoordinierenden Gruppen Asp und/oder Glu beteiligt. Da von der Na,K-ATPase keine hochauflösenden Kristallstrukturen existieren, wurden die Kristallstrukturen der Ca-ATPase des sarkoplasmatischen Retikulums, ebenfalls eine P-Typ-ATPase, zur Erläuterung des Mechanismus der Kationenbindung herangezogen (Toyoshima et al., 2004b). Zur Ca-ATPase existieren bereits analoge IR-Differenzuntersuchungen. Dies bot die Möglich-keit des direkten Vergleichs gleicher Teilreaktionen innerhalb des gemeinsamen E1/E2-Reaktionsmodells. Dieser Vergleich zeigt, daß die Sekundärstrukturen beider Enzyme bei den jeweiligen Teilreaktionen weitgehend konserviert bleiben. Bei der Ca-ATPase können die größten Netto-Sekundärstrukturänderungen von etwa 0,3 % des Enzyms (~3 Aminosäuren/Enzym) als Folge der ATP-Bindung beobachtet werden (Barth et al., 1996). Bei dieser Teilreaktion werden bei der Na,K-ATPase die kleinsten Sekundärstrukturänderungen detektiert. Beim Vergleich der Signalprofile beider Enzyme weist der sekundärstrukturrelevante Amid I-Bereich bei der Phosphoenzym-Konversion auf konträre Strukturrelaxationen hin. Die Differenzspektren der Ca-ATPase im Vergleich zur Na,K-ATPase deuten auf eine sich unterscheidende Kationenkoordination hin. Durch eine Kombination der Resultate von IR-Differenz- und Fluoreszenzspektroskopie der FITC-Na,K-ATPase zur Charakterisierung von Enzymzuständen, konnte ein Modell zum Mechanismus der Inhibierung der Na,K-ATPase durch das Herzglucosid Ouabain postuliert werden. Durch Fluoreszenzmessungen an der FITC-Na,K-ATPase konnte gezeigt werden, daß Ouabain in Gegenwart von 20 mM Na+ an das Enzym bindet, was bei 130 mM Na+ nicht mehr der Fall ist. Aufgrund von IR-Differenzsignalen der E2P-Bildung, aufgenommen bei 20 mM Na+, ist es möglich, oberhalb von 1700 cm-1 (ν(C=O)), bei 1554 cm-1 (V as(COO-)) und bei 1408 cm-1 (V s(COO-)) zwischen der an Asp 369 phosphorylierten und unphosphorylierten Na,K-ATPase zu unterscheiden. Nach Ouabain-Zugabe hingegen konnten diese Signale nicht mehr detektiert werden. Bezüglich der Inaktivierung des Enzyms im Standardaktivitätstest, für dessen Ablauf Na+-Konzentrationen von um die 130 mM eingesetzt werden, kann gefolgert werden, daß Ouabain nicht an das freie, sondern an das phosphorylierte Enzym bindet und somit die Inaktivierung der Na,K-ATPase nach sich zieht.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Michael Stolz
URN:urn:nbn:de:hebis:30-35357
Place of publication:Frankfurt am Main
Referee:Ernst BambergGND, A. Barth
Advisor:Ernst Bamberg
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2006/12/14
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2006/11/13
Release Date:2006/12/14
Page Number:183
First Page:1
Last Page:178
HeBIS-PPN:183183924
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht