Search for upsilons in heavy-ion collisions with the STAR detector

Die Struktur der uns umgebenden Materie sowie die zwischen ihren Bestandteilen wirkenden Kräfte waren schon immer eine der zentralen wissenschaftlichen Fragestellungen. Nach den gegenwärtigen Erkenntnissen ist die uns um
Die Struktur der uns umgebenden Materie sowie die zwischen ihren Bestandteilen wirkenden Kräfte waren schon immer eine der zentralen wissenschaftlichen Fragestellungen. Nach den gegenwärtigen Erkenntnissen ist die uns umgebende Materie aus einigen wenigen Elementarteilchen aufgebaut; sechs Quarks und sechs Leptonen. Zwischen ihnen wirken vier fundamentale Kräfte; die starke, die schwache, die elektromagnetische und die Gravitationskraft. Dominierende Kraft zwischen Quarks ist auf kleinen Skalen, wie im Inneren von Nukleonen, die starke Kraft. Die sie beschreibende Theorie ist die Quantum Chromo Dynamic (QCD). Eine besondere Eigenschaft der QCD ist die Vorhersage, dass Quarks nur in gebundenen Zuständen auftreten, entweder als Paar (Mesonen) oder als Kombination aus drei Quarks (Baryonen). Tatsächlich wurden bisher keine freien Quarks experimentell gefunden. Dieses Phänomen wird als ?confinement? bezeichnet. Es stellt sich die Frage, ob es möglich ist, einen Materiezustand zu erzeugen in welchem sich die Quarks in einem ausgedehnten Volumen wie freieTeilchen verhalten. Tatsächlich sagen theoretische Berechnungen einen solchen Zustand, das Quark-Gluon-Plasma, für sehr hohe Temperaturen und/oder Dichten voraus. Ultrarelativistische Schwerionenkollisionen sind die einzige derzeit bekannte Möglichkeit, die nötigen Temperaturen und Dichten im Labor zu erreichen. Erschwert wird die Interpretation des hierbei erzeugten Materiezustandes durch die Tatsache, dass im Experiment nur der hadronische Endzustand der Kollision beobachtet werden kann, auf Grund der sehr kurzen Zeitskala jedoch nicht die erzeugte Materie selbst. Trotzdem wurden inzwischen einige Observablen gemessen, die einen Rückschluss auf den Materiezustand in den frühen Phasen der Kollision zulassen. Die kombinierte Information legt die Bildung eines ?deconfinten? Zustandes nahe. Eine dieser Proben ist die Produktion von schweren Quarkonia, d.h. Mesonen, die aus charm-anticharm (bzw. bottom-antibottom) Quarkpaaren bestehen. Wie in Kapitel 2 näher erläutert, kann von ihrer Produktion möglicherweise auf die in der Kollision erreichte Temperatur geschlossen werden. Das bisherige experimentelle Programm konzentrierte sich auf die Messung des J/Ã Mesons, dem 1S Zustandes des charm - anticharm Systems. Wie von der Theorie vorhergesagt, wurde eine Unterdrückung seiner Produktion in Schwerionenkollisionen relativ zur Produktion in Proton-Proton-Kollisionen beobachtet, z.B. vom Experiment NA50 am SPS Beschleuniger des Europäischen Zentrums für Teilchenphysik CERN, wie in Abbildung 2.2 gezeigt.Die Deutung dieser Meßdaten ist jedoch umstritten. Neben einer Interpretation im Rahmen des oben beschriebenen Modells können die Daten sowohl von hadronischen Modellen als auch von statistischen Hadronisierungsmodellen, die eine Bildung des cc Zustandes nicht in den initialen Partonkollisionen, sondern erst beim ?Ubergang zum hadronischen Endzustand annehmen, beschrieben werden. Eine Möglichkeit, einzelne Modelle zu falsifizieren bzw. einige der Modellparameter weiter einzuschränken, besteht in der Messung anderer Quarkonia Zustände als dem J/Ã Meson. Hier wären zum einen die anderen Zustände der cc Familie zu nennen, z.B. das Âc(1P). Dieses ist jedoch durch seine Zerfallskanäle experimentell nur schwer nachzuweisen. Eine andere Möglichkeit bietet die Messung von Bindungszuständen zwischen bottom Quarks. Das bb System hat durch die grössere Massendifferenz zwischen dem ersten Bindungszustand, dem ?(1S), und der für die Erzeugung zweier Hadronen mit jeweils einem bottom und einem leichten Quark, wesentlich mehr Zustände als das cc System. Experimentell sind durch den Zerfallskanal in zwei Leptonen insbesondere die Upsilon gut nachzuweisen.Die Messung von Upsilons in ultrarelativistischen Schwerionenkollisionen ist jedoch experimentell äusserst herausfordernd. Durch die große Masse von circa 10 GeV/c2 ist die Produktionswahrscheinlichkeit sehr klein im Vergleich zu leichteren Teilchen, zum Beispiel dem nur 3.14 GeV/2 schwerem J/Ã. Der im Jahr 2000 in Betrieb genommene Relativistic Heavy Ion Collider (RHIC, siehe Kapitel 3.1) des Brookhaven National Laboratories (BNL) auf Long Island in der Nähe vonNew York erreicht zum ersten Mal eine ausreichend grosse Schwerpunktsenergie und Luminosit ät, welche eine Upsilon Messung möglich erscheinen lassen. Die Entwicklung des experimentellen Programms zur Messung von Upsilons mit dem STAR Detektor am RHIC und erste Ergebnisse aus der Strahlzeit der Jahre 2003/2004 werden in dieser Arbeit beschrieben. Herzstück des STAR Detektors, der in Kapitel 3.2 näher beschrieben wird, ist eine Time Projection Chamber (TPC) welche die Rekonstruktion geladener Teilchen in einem grossen Phasenraumbereich bei mittlerer Rapidität erlaubt. In den Jahren 2001 bis 2005 wurde das Experiment um elektromagnetische Kalorimeter (BEMC, EEMC) erweitert, mit welchen zusätzlich die Energie von Photonen und Elektronen bestimmt werden kann. Die verschiedenen Detektoren des STAR Detektorsystems können in zwei, durch ihre mögliche Ausleserate definierte, Klassen eingeteilt werden. Ein Teil der Detektoren wird bei jedem RHIC Bunch Crossing ausgelesen, d.h. mit einer Frequenz von 9.3 MHz. Zu dieser Klasse der sogenannten Triggerdetektoren gehören unter anderem das schon erwähnte elektromagnetische Kalorimeter, der Central Trigger Barrel (CTB), die Zero Degree Calorimeter (ZDC) und die Beam-Beam Counter (BBC). Die Time Projection Chamber und einige andere Detektoren, wie z.B. der Silicon Vertex Tracker (SVT), können im Gegensatz dazu nur mit maximal 100 Hz ausgelesen werden.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Thorsten Kollegger
URN:urn:nbn:de:hebis:30-33883
URL:http://www2.uni-frankfurt.de/46410065/PHD-Theses
Referee:Reinhard Stock, Christoph Blume
Document Type:Doctoral Thesis
Language:German
Year of Completion:2005
Year of first Publication:2005
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2006/04/26
Release Date:2006/11/24
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $