Untersuchung der Ionisation von H2+-Ionen in starken Laserfeldern

  • Im Rahmen dieser Arbeit ist es gelungen, eine weltweit einmalige Messapparatur zu entwickeln, mit der Wasserstoffmolekülionen mittels kurzer Laserpulse ionisiert und die Reaktionsprodukte kinematisch vollständig vermessen werden können. Es wird dazu eine an die Coltrims-Technik angelehnte Detektionsmethode genutzt, bei der sowohl Protonen als auch Elektronen über den vollen Raumwinkel nachgewiesen werden können. Die H2+ -Ionen stammen aus einer Hochfrequenz-Ionenquelle und werden auf 400keV beschleunigt. Die Besetzungshäufigkeit der Vibrationsniveaus entspricht daher der Franck-Condon-Verteilung für den Übergang aus dem Grundzustand des neutralen Wasserstoffmoleküls in den elektronischen Grundzustand des Molekülions: H2 (xPg, ν = 0) → H2+ (1sσg, ν′) Dieser Ionenstrahl wird mit einem 780 nm Laserpuls der Pulslänge 40 fs überlappt. Nach der Reaktion fragmentiert das Molekülion entweder über den Dissoziationskanal H2+ + nhν ⇒ H + H+ oder über eine Ionisation gefolgt von einer Coulomb-Explosion: H2+ + nhν ⇒ H+ + H+ + e−. Die Projektile werden nach einer Driftstrecke von etwa 3 m auf einem Ionendetektor nachgewiesen. Für den Nachweis der Elektronen wurde ein spezielles Spektrometer konzipiert, das eine Unterdrückung ungewollter Elektronen erlaubt und so die Messung der Elektronen ermöglicht. Um Elektronen auszublenden, die vom Laser aus dem Restgas ionisiert werden, ist der Elektronendetektor in Flugrichtung der Ionen versetzt angebracht. Durch die unkonventionelle Ausrichtung des Lasers in einem Winkel von 20◦ relativ zur Flugrichtung der Ionen können vom Laser erzeugte Elektronen nur dann den Elektronendetektor erreichen, wenn sie aus dem bewegten Bezugsystem der Projektile stammen. Diese Unterdrückung macht die Messung der Elektronen erst möglich, hat aber auch eine nachteilige Geometrie der Verteilungen gegenüber den Detektorebenen zur Folge. Durch die Ausnutzung der Projektilgeschwindigkeit ist überdies die Benutzung eines B-Feldes zur Verbesserung der Flugzeitauflösung der Elektronen nicht möglich. Um eine Überlappung des Ionenstrahls mit dem Laserfokus zu erreichen, wurde im Bereich der Reaktionszone ein System zur Visualisierung der Strahlpositionen integriert. Dieses kann überdies für eine Intensitätseichung bei linear polarisiertem Licht verwendet werden. Bei der Reaktion kommt es durch die vergleichsweise lange Pulsdauer schon bei relativ niedrigen Intensitäten zu Dissoziationsprozessen. Das dissoziierende Molekül erreicht noch während der ansteigenden Flanke des Laserpulses auf diese Weise Abstände, bei denen der Prozess der Charge-Resonance-Enhanced-Ionization (CREI) stattfinden kann. Auch die in einem sehr engen Winkelbereich um die Polarisationsrichtung des Lasers liegende Winkelverteilung der gemessenen Protonen deutet darauf hin, dass CREI der dominante Ionisationsprozess ist. Durch die vorausgehende Dissoziation nimmt das Molekül schon vor der Ionisation eine kinetische Energie auf, so dass die gemessene KER-Verteilung einer Summe aus KERDissoziation und KERIonisation darstellt. Ein Vergleich mit den KER-Spektren des Dissoziationsprozesses zeigt, dass die aufgenommene Energie durch Dissoziation zu einem überwiegenden Anteil in einem Bereich von 0, 6 ± 0, 35 eV besitzt, während die Gesamt-KER-Verteilung deutlich höhere Werte bis zu 6 eV aufweist. Dies ermöglicht, aus der gemessenen KER-Verteilung den internuklearen Abstand zum Ionisationszeitpunkt näherungsweise zu bestimmen. Die gemessenen Elektronen weisen, ebenso wie die Protonen, eine scharfe Ausrichtung entlang der Laserpolarisation auf, was durch den Einfluss des Lasers auf dieser Achse nicht verwunderlich ist. Bei zirkularer Polarisation dagegen findet eine Netto-Beschleunigung der Elektronen senkrecht zur Richtung des elektrischen Feldes zum Ionisationszeitpunkt statt, sodass die Messung der Elektronenimpulse eine geeignete Messgröße zur Untersuchung des Ionisationsprozesses darstellt. Auf diese Art konnten Winkelverteilungen der Elektronen bezüglich der internuklearen Achse innerhalb der Polarisationsebene gemessen werden. Abhängig von KER und Elektronenergie konnte dabei eine Verdrehung der Verteilung gegenüber den klassisch erwarteten 90◦ relativ zur internuklearen Achse festgestellt werden. Die Winkelverteilung rotiert dabei mit steigendem KER entgegen des Drehsinns. Dies widerspricht der gängigen Vorstellung einer Tunnelionisation, bei der nur die Beschleunigung des Elektrons im Laserfeld eine Rolle spielt und der Einfluss des Coulomb-Potentials vernachlässigt wird. Für höhere Elektronenergien zeigt sich eine zweite konkurrierende Struktur, die für die höchsten Energien die sonst vorherrschende erste Struktur sogar dominiert. Da sich in den Protonenspektren für linear polarisiertes Licht kein Einfluss einer Ionisationsenkrecht zur Polarisationsrichtung findet, erscheint dies als Grund für die zweite Struktur in den Elektron-Winkelverteilungen als unwahrscheinlich. Eine stichhaltige und gestützte Erklärung gibt es bisher weder für die Rotation der ersten Struktur noch für die Herkunft der zweiten. Dies zeigt deutlich, dass es auch für dieses einfachste Molekülsystem noch einen erheblich Handlungsbedarf sowohl auf theoretischer als auch von experimenteller Seite gibt. Da dieses Experiment den ersten experimentellen Zugang für die direkte Untersuchung der Elektronimpulse bei der Ionisation von H2+ -Ionen in kurzen Laserpulsen darstellt, bietet sich hier die bisher einzige Möglichkeit, dieses Verhalten experimentell zu untersuchen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Matthias Odenweller
URN:urn:nbn:de:hebis:30-85363
Referee:Reinhard DörnerORCiDGND, Horst Schmidt-BöckingGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2010/12/01
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/11/25
Release Date:2010/12/01
HeBIS-PPN:229165516
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht