Wege zu redoxaktiven Makromolekülen aus 2,2’-Bipyridylboroniumeinheiten

2,2’-Bipyridylboroniumkationen IIA stellen analog dem organischen Elektronenakzeptor Diquat vollständig reversible Zwei-Elektronen-Redoxsysteme dar. Da sie sich darüber hinaus leicht in luft- und wasserstabile Derivate ü
2,2’-Bipyridylboroniumkationen IIA stellen analog dem organischen Elektronenakzeptor Diquat vollständig reversible Zwei-Elektronen-Redoxsysteme dar. Da sie sich darüber hinaus leicht in luft- und wasserstabile Derivate überführen lassen, sind sie potentiell interessante Bausteine für die Entwicklung neuartiger Elektronenspeichermedien. Im Rahmen der vorliegenden Arbeit galt es, Wege zu Makromolekülen aus 2,2’-Bipyridylboroniumeinheiten zu finden. Dabei sollte die spontane Adduktbildung zwischen bor- und stickstoffhaltigen Bausteinen als zentraler Reaktionsschritt ausgenutzt werden. Um möglichst monodisperse Produkte zu erhalten, befasste sich die Arbeit im Schwerpunkt mit der Synthese von Dendrimeren, für die eine Reihe divergenter Synthesestrategien erarbeitet und auf ihre Praktikabilität hin untersucht wurden. Ein Teilprojekt widmete sich dem Aufbau linearer Polymere durch Kopolymerisation von bor- und stickstoffhaltigen Monomeren. In allen Fällen bildeten borylierte Benzolderivate wesentliche Bausteine, da sie nicht nur als Kernfragmente für Dendrimere sondern auch als Monomere in Polymerisationsreaktionen eingesetzt werden sollten. Über eine Silicium-Bor-Austauschreaktion konnten ausgehend von (Trimethylsilyl)substituierten Arylen und BBr3, die dargestellten Dibromoborylaryle 1 – 4 in guten Ausbeuten synthetisiert und anschließend über etablierte Verfahren in die Derivate 1a – 4a sowie 1b und 2b überführt werden. Erstmals gelang es dabei, die Festkörperstrukturen von 1 – 4 zu bestimmen. Der nächste Teilschritt bestand darin, das Potential borylierter Aryle als Kernfragmente für 2,2’-Bipyridylboronium-Dendrimere zu untersuchen. Zu diesem Zweck wurden 1a – 4a mit käuflichem 4,4’-Dimethyl-2,2’-bipyridyl umgesetzt, um Modellsysteme für Dendrimere der nullten Generation (G0-Dendrimere) zu schaffen. Dabei zeigte sich, dass bis zu drei 2,2’-Bipyridylboroniumeinheiten problemlos um einen Benzolring herum gruppiert werden können. Um schließlich Dendrimere aufzubauen, wurden verschiedene divergente Synthesestrategien angewendet. Umsetzung der borylierten Aromaten mit speziellen 4,4’-disubstituierten 2,2’-Bipyridylderivaten, die in ihrer Peripherie borylierbar sind, führt entsprechend dem oberen Reaktionschritt zu den jeweiligen G0-Dendrimeren. Diese gilt es im folgenden zweiten Reaktionsschritt an den Bipyridylseitenketten zu borylieren. Anschließende Umsetzung der so erhaltenen borylierten Spezies mit weiterem 2,2’-Bipyridyl führt dann zur Bildung von Bipyridylboronium-Dendrimeren der ersten bzw. jeweils höheren Generation. Im Rahmen dieser Doktorarbeit wurden fünf verschiedene 2,2’-Bipyridylliganden entwickelt, die sich durch Umsetzung mit den borylierten Aromaten 1a – 3a in die entsprechenden Dendrimere der nullten Generation überführen lassen und anschließend an ihren Seitenketten durch Anwendung der Hydroborierung (5 und 6) oder des Silicium-Bor-Austausches (7 – 9) boryliert werden können. Zur Synthese von G1-Dendrimeren über die Hydroborierungsroute eignet sich aus HSiEt3 und BBr3 in situ erzeugtes HBBr2 besonders. Umsetzung der olefinischen 2,2’-Bipyridylboroniumkationen 30Br und 31Br mit diesem Reagenz führte schon bei tiefen Temperaturen zur vollständigen Hydroborierung der olefinischen C-C-Doppelbindungen. Die nachfolgende Reaktion mit 4,4’-Dimethyl-2,2’-bipyridyl lieferte die entsprechenden Dendrimere 36Br3 und 37Br3 der ersten Generation, welche nachfolgend mit MeOH / NEt3 behandelt wurden, um alle am Bor verbliebenen Bromosubstituenten durch Methoxygruppen zu ersetzen. Die Bildung von 36Br3 und 37Br3 ließ sich mittels ESI-Massenspektrometrie eindeutig nachweisen. Allerdings gelang es nicht, die G1-Spezies analysenrein zu isolieren, da die Alkyl-2,2’-bipyridylboroniumfragmente unter den Bedingungen der HPLC-Trennung nicht stabil sind. Ein weiterer Nachteil besteht darin, dass die Hydroborierungsreaktion stets Gemische aus Regio- (Edukt 30Br) bzw. Stereoisomeren (Edukt 31Br) liefert. Diese Probleme lassen sich in der Silicium-Bor-Austausch-Variante der Dendrimersynthese unter Einsatz der Liganden 8 und 9 vermeiden. Bei beiden Monokationen 38Br (Ligand 8) und 45Br (Ligand 9) gelang durch Reaktion mit BBr3 der vollständige Austausch der endständigen Trimethylsilylgruppen durch Dibromoborylfunktionen. Nachfolgende Umsetzung dieser borylierten Kationen mit 4,4’-Dimethyl-2,2’-bipyridyl führte zu den entsprechenden G1-Dendrimeren, die durch Behandlung mit MeOH / NEt3 in die luft- und wasserstabilen Derivate 45Br3 und 50Br3 überführt und über HPLC-Trennverfahren isoliert werden konnten. Ein Teilprojekt der vorliegenden Arbeit widmete sich der Synthese linear polymerer Makromoleküle. Im Rahmen dieser Studien wurden dipodale 2,2’-Bipyridyle, bei denen zwei 2,2’-Bipyridyleinheiten über eine Ethylen- bzw. Ethenylenbrücke miteinander verbunden sind, mit dem diborylierten Aryl 2b umgesetzt und so die löslichen Polymere (57Br2)n und (58Br2)n erhalten, welche eine intensiv violette ((57Br2)n) bzw. nahezu schwarze Farbe ((58Br2)n) besitzen. Im Rahmen dieser Doktorarbeit wurden mehrere Wege zu Dendrimeren und Polymeren aus 2,2’-Bipyridylboroniumkationen erschlossen, wobei die spontane B-N-Adduktbildung als zentraler Verknüpfungsschritt eingesetzt wurde. Dieses Synthesekonzept erwies sich als äußerst vielseitig, da durch einfache Derivatisierung der bor- und stickstoffhaltigen Bausteine, die chemischen und physikalischen Eigenschaften der resultierenden Makromoleküle gezielt verändert werden konnten. Beispielsweise zeigen die ausgehend von 9 dargestellen 2,2’-Bipyridylboroniumsalze 45Br und 50Br aufgrund des vergrößerten π-Elektronensystems gegenüber Basissystemen wie 28Br3 bathochrom verschobene Absorptionsbanden und eine intensive Lumineszenz bei einer Wellenlänge von 488 nm.
show moreshow less

Download full text files

  • application/pdf Dissertation_Monika_C_Haberecht.pdf (8445 KB)

    Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Monika Christine Haberecht
URN:urn:nbn:de:hebis:30-33751
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Matthias Wagner, Michael Göbel
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2006/11/22
Year of first Publication:2005
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2006/01/10
Release Date:2006/11/22
SWD-Keyword:Chemische Synthese; Makromolekül; Sternpolymere
Pagenumber:172
Last Page:166
Note:
Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS PPN:348036930
Institutes:Pharmazie
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG

$Rev: 11761 $