Identification, characterization and application of engineered riboswitches

Riboswitche – Vorbilder für die Konstruktion synthetischer RNA Schalter Riboswitche sind natürliche RNA Regulatorelemente. Sie sind in den nicht kodierenden Regionen von messenger RNAs (mRNAs) lokalisiert und beeinflusse
Riboswitche – Vorbilder für die Konstruktion synthetischer RNA Schalter Riboswitche sind natürliche RNA Regulatorelemente. Sie sind in den nicht kodierenden Regionen von messenger RNAs (mRNAs) lokalisiert und beeinflussen die Expression nachfolgender Gene. Riboswitche bestehen aus zwei Domänen. Die Binde- oder Aptamerdomäne bildet eine Bindetasche, die einen Liganden ohne die Hilfe zusätzlicher Faktoren hoch spezifisch und affin binden kann. Die zweite Domäne, die sogenannte Expressionsplattform, interpretiert den Bindestatus der Aptamerdomäne und beeinflusst die Expression der nachfolgenden Gene. Liganden sind meist kleine, organische Moleküle wie Nukleotide, Aminosäuren oder Vitamine. Riboswitche regulieren Gene, die für die Synthese oder Verwertung ihres jeweiligen Liganden in der Zelle von Bedeutung sind. Kontrolliert wird die Genexpression meist durch Transkriptionstermination oder durch Maskierung der ribosomalen Bindestelle (SD = Shine Dalgarno Sequenz). Auch Eukaryoten nutzen das Prinzip der direkten RNA-Ligand-Interaktion zur Genregulation, wenn gleich in geringerem Ausmaß. In Pilzen und Pflanzen wird durch Ligandenbindung alternatives Spleißen von prä-mRNAs induziert, was entweder zur mRNA Degradation durch alternative Polyadenylierung oder der Repression der Translation durch alternative Leserahmen (uORFs) führt. Charakteristisch für eine Regulation über Riboswitche ist die direkte Wechselwirkung des niedermolekularen Liganden mit der RNA. In trans kodierte Proteinfaktoren sind aufgrund dieser direkten Bindung nicht notwendig. Dies macht natürliche Riboswitche zu geeigneten Vorbildern für die Entwicklung künstlicher RNA Schalter. Synthetische Riboswitche Aptamere sind kleine, synthetisch hergestellte, einzelsträngige RNA oder DNA Moleküle, die hochaffin und sehr spezifisch ein Zielmolekül binden können. Man kann Aptamere gegen nahezu jedes Molekül der Wahl über einen Prozess der in vitro Selektion gewinnen (SELEX = systematic evolution of ligands by exponential enrichment). Eine Eigenschaft der meisten Aptamere ist, dass sie ihre endgültige Struktur erst in Gegenwart des spezifischen Liganden ausbilden („induced fit“). Dies kann ausgenutzt werden, um RNA Aptamere als regulatorische Elemente einzusetzen. Hierzu inseriert man Aptamere in nicht translatierte Regionen einer mRNA. In Abwesenheit des Liganden bildet sich die Struktur nur teilweise aus und interferiert nicht mit zellulären Funktionen. Erst im Komplex mit einem Liganden kommt es zur effizienten Beeinflussung der Genexpression. Inseriert man ein regulatorisch aktives Aptamer in den 5’ nicht translatierten Bereich (5’UTR) einer eukaryotischen mRNA, erlaubt das Aptamer in der nicht ligandengebundenen Form die Translation nachfolgender Gene. Erst der Aptamer-Ligand-Komplex interferiert mit der Translationsinitiation. Ist das Aptamer nahe der cap-Struktur positioniert, behindert es die initiale Bindung des Ribosoms an die mRNA. Bei einer weiter stromabwärts gelegenen Insertion interferiert es mit dem Scannen der kleinen ribosomalen Untereinheit nach dem Startcodon. Die beste Regulationseffizienz wird hierbei bei einer Insertion direkt vor dem Startcodon erreicht. Es zeigte sich jedoch, dass nur eine sehr geringe Anzahl an Aptameren in der Lage ist, als RNA Schalter aktiv zu sein. Dies führte dazu, dass bis heute nahezu alle Systeme entweder auf dem Theophyllin oder dem Tetrazyklin Aptamer basieren. Ziele dieser Arbeit In dieser Arbeit sollte untersucht werden, warum nur wenige Aptamere regulatorisch aktiv sind und was diese von inaktiven Varianten unterscheidet. Dafür wurden ein Tetrazyklin und ein Neomycin Aptamer detailliert charakterisiert. Desweiteren wurden neue RNA-basierte Regulationssysteme aufgebaut und ihr regulatorischer Mechanismus analysiert. Innerhalb dieser Arbeit wurde dabei ein System zur aptamerabhängigen Regulation des prä-mRNA Spleißens in Hefe etabliert. Außerdem konnte das bekannte Translationssystem für die Regulation essentieller Gene in Hefe weiter entwickelt werden. Folgende Ergebnisse wurden in dieser Arbeit erhalten: 1.Das Tetrazyklin Aptamer – In vitro Charakterisierung eines synthetischen Riboswitches. Das Tetrazyklin Aptamer ist 69 Nukleotide lang. Es besteht aus drei Stämmen (P1, P2 und P3) sowie drei einzelsträngigen Bereichen (J1/2, J2/3 und die Schleife L3; siehe Abbildung 1, links). Die Domäne oberhalb von P2 ist nicht an der Ligandenbindung beteiligt und kann ausgetauscht werden. Die Stämme P1-P3 sind bereits vor Ligandenbindung ausgebildet. Tetrazyklin wird über die drei einzelsträngigen Bereiche gebunden (siehe Abbildung 1, rechts). Durch fluorimetrische und kalorimetrische Methoden wurde eine Bindekonstante von Tetrazyklin an das Aptamer von 770 pM ermittelt. Diese Affinität ist außergewöhnlich hoch. Vergleichbare Aptamere und natürliche Riboswitche binden niedermolekulare Liganden 10- bis 1000-fach schlechter. Wir konnten zeigen, dass hohe Affinität eine Grundvoraussetzung für die regulatorische Aktivität ist, da Aptamermutanten mit verschlechterten Bindekonstanten keine in vivo Aktivität mehr aufweisen sind (Seiten 19-29). Durch Größenausschlußchromatographie konnte gezeigt werden, dass das Tetrazyklin Aptamer durch Ligandenbindung keine größeren globalen Konformationsänderungen erfährt. Dies weist auf eine weitgehende Vorformung der Bindetasche bereits ohne Tetrazyklin hin. Bei Ligandenbindung nimmt das Aptamer eine pseudoknotenähnliche Tertiärstruktur an, welche wahrscheinlich für die inhibitorische Wirkung auf das Ribosom verantwortlich ist (Seiten 19-29). Im Laufe dieser Arbeit wurde die Kristallstruktur des Aptamers im Komplex mit Tetrazyklin in der Arbeitsgruppe von A. R. Ferré-D’Amaré gelöst. Die Struktur zeigt, dass die Stämme P1 und P3 aufeinander gestapelt sind (Abbildung 1, rechts). Stamm P2 bildet die Verlängerung einer irregulären Helix, die aus den einzelsträngigen Bereichen J1/2 und J2/3 gebildet wird. Nukleotide der Schleife L3 interagieren mit dieser irregulären Helix und bilden mit ihr zusammen die Bindetasche für Tetrazyklin. Diese hochauflösende Struktur diente uns in weiteren Arbeiten als Ausgangspunkt für die detaillierte Charakterisierung von ligandeninduzierten Änderungen (siehe 6.). 2. Das Tetrazyklin Aptamer ist in der Lage, prä-mRNA Spleißen in Hefe zu inhibieren. Der Aptamer-Tetrazyklin-Komplex kann nicht nur mit der Translationsinitiation, sondern auch mit dem Spleißen der prä-mRNA in Hefe interferieren (Seiten 31-37). Dazu wurde ein Hefe-Intron in den Leserahmen von GFP inseriert. Nur bei korrektem prä-mRNA Spleißen wird die reife mRNA aus dem Kern transportiert und GFP exprimiert. Für eine RNA-basierte Regulation des Spleißens wurde die Konsensussequenz der 5’ Spleißstelle in den Stamm P1 des Tetrazyklin Aptamers integriert. Dieser ist nicht an der Ligandenbindung beteiligt und seine Sequenz daher variabel. Es konnte gezeigt werden, dass in Abwesenheit von Tetrazyklin das Intron vom Spleißosom erkannt und entfernt wird. Die Expression des Gens ist dann möglich. Durch die Zugabe von Tetrazyklin wird das Spleißen inhibiert und GFP nicht länger exprimiert. Biochemische Strukturkartierungen der RNA in An- und Abwesenheit von Tetrazyklin zeigten, dass der Stamm P1 durch Ligandenbindung verfestigt wird. Die Ligandenbindung beeinflusst also nicht nur die Struktur der Bindetasche, sondern wird auch auf angrenzende Stammbereiche übermittelt. Durch Stabilisierung des Stammes P1 wird die 5’ Spleißstelle für das Spleißosom maskiert. Somit konnten wir den Mechanismus für die Aptamer basierte Regulation des prä-mRNA Spleißens aufklären. 3. Die Tetrazyklin Aptamer basierte Inhibition der Translationsinitiation ermöglicht die Regulation essentieller Gene in Hefe. Frühere Arbeiten zeigten, dass die Insertion mehrerer Aptamerkopien in den 5’UTR zu einem effizienten Abschalten der Genexpression führt. Dies wurde genutzt, um ein neuartiges System für die konditionale Expression essentieller Gene in Hefe zu etablieren. In Zusammenarbeit mit der Arbeitsgruppe von Prof. K.-D. Entian wurden Insertionskassetten für eine PCR-basierte chromosomale Integration von Tetrazyklin Aptameren unter Kontrolle verschieden starker Promotoren konstruiert. Dafür wurden 1-3 Kopien des Tetrazyklin Aptamers unter Kontrolle des hoch exprimierenden TDH3-Promoters und des etwas schwächeren ADH1-Promoters gestellt. Außerdem wurde eines HA-tag angefügt, um die Genexpression mittels Westernblot verfolgen zu können. Zur Überprüfung der chromosomalen Insertion diente eine Kanamycin-Resistenz. Das neue System wurde erfolgreich an von fünf essentiellen Genen getestet. Es zeigte sich, dass die Zugabe von Tetrazyklin zu einem schnellen und effizienten Abschalten aller getesteten Gene führt. Die Vorteile dieses neuartigen konditionalen Genexpressionssystems in Hefe liegen in der einfachen Handhabung und der Unabhängigkeit vom verwendeten Stamm. Es müssen keine in transkodierten Proteinfaktoren coexprimiert werden. Durch dieses System konnte zum ersten Mal die Aptamer-basierte Regulation endogener, essentieller Gene gezeigt werden (Seiten 49-57). 4. Die Kombination von in vitro Selektion und in vivo Screening ermöglicht die Identifikation neuer regulatorisch aktiver Aptamere – ein Neomycin Riboswitch. Nur wenige in vitro selektierte Aptamere sind als synthetischer Riboswitch aktiv. In unserer Arbeitsgruppe wurde daher ein in vivo Screeningsystem zur Identifizierung neuer Aptamere in Hefe entwickelt. Eine Bibliothek in vitro selektierter Aptamere wurde hierzu in den 5’UTR des GFP Gens kloniert und die Aktivität einzelner Kandidaten durch Vergleich der Fluoreszenz in An- und Abwesenheit des Liganden überprüft. Wir verwendeten eine Bibliothek aus Neomycin-bindenden Aptameren und analysierten 5000 Hefeklone. Hierbei konnten zehn Sequenzen isoliert werden, die abhängig von Neomycin die Initiation der Translation inhibieren. Das 33 Nukleotid lange Aptamer N1 zeigt eine 7,5-fache Regulation und wurde näher charakterisiert. Es besteht aus einer internen asymmetrischen und einer terminalen Schleife, die durch zwei GC Basenpaare getrennt sind. Enzymatische Strukturkartierung und Mutationsanalyse zeigten, dass beide einzelsträngigen Bereiche für die Ligandenbindung wichtig sind. Der abschließende Stamm ist nicht an der Ligandenbindung beteiligt und hat geringen Einfluss auf die regulatorische Aktivität. N1 kann außerdem gegen andere Aminoglykosidantibiotika diskriminieren (Seiten 39-47). Interessanterweise sind die regulatorisch aktiven Aptamere in der in vitro selektierten Bibliothek stark unterrepräsentiert und konnten durch zufälliges Sequenzieren nicht identifiziert werden. Dieses Beispiel verdeutlicht eindrucksvoll die Notwendigkeit eines Screenings in vivo. 5. Regulatorisch aktive Neomycin Aptamere unterscheiden sich von inaktiven durch eine größere thermische Stabilisierung bei Ligandenbindung. Durch weitere Mutationsanalysen von N1 konnte ein aktivitätsvermittelndes Element im Neomycin Riboswitch identifiziert werden. Dazu wurde entweder die terminale oder die interne asymmetrische Schleife mutiert. Es konnte gezeigt werden, dass die Sequenz der terminalen Schleife nur einen modulierenden Einfluss auf die Aktivität hat, wobei die Asymmetrie der internen Schleife (aber nicht deren exakte Sequenz) ausschlaggebend für die regulatorische Aktivität ist. Für weitere Analysen wurde N1 mit fünf mutierten Varianten und dem inaktiven Neomycin bindenden Aptamer R23 verglichen. Alle sieben Aptamer haben eine ähnliche Sekundärstruktur und Ligandenaffinität, zeigen aber unterschiedliche Aktivität in vivo. Durch Bestimmung des Schmelzpunktes der verschiedenen Aptamere in An- und Abwesenheit von Neomycin zeigte sich, dass aktive Aptamere thermisch deutlich mehr durch Ligandenbindung stabilisiert werden als inaktive. Dabei ist die thermische Stabilität der Aptamer-Neomycin-Komplexe ähnlich. Jedoch ist die Stabilität ohne Ligand bei aktiven Aptameren gegenüber inaktiven Varianten deutlich erniedrigt. Durch NMR spektroskopische Untersuchungen in Zusammenarbeit mit Prof. J. Wöhnert konnte bestätigt werden, dass aktive Aptamere weniger stark vorgeformt sind als inaktive. Das in den Mutationsanalysen identifizierte Element nimmt nicht an der Ligandenbindung teil, sondern dient als Schalter, der den freien Zustand das Aptamers destabilisiert. Damit sorgt es für den großen Unterschied in der thermischen Stabilität des freien und des gebundenen Zustandes aktiver Aptamere. Dies zeigt, dass Unterschiede in der Stabilität die regulatorische Aktivität vermitteln (Seiten 73-102). Laufende Arbeiten sollen nun klären, ob thermische Stabilisierung durch Ligandenbindung ein allgemeingültiger Vermittler von regulatorischer Aktivität ist. Dazu werden weitere Aptamere überprüft, welche in Abwesenheit des Liganden unterschiedlich stark strukturiert sind und eventuell durch Ligandenbindung unterschiedlich stabilisiert werden. Außerdem werden wir testen, ob es die gewonnen Erkenntnisse erlauben, durch rationelles Design synthetische Riboswitche zu verbessern oder inaktive Aptamere in aktive zu verwandeln. 6. Was macht ein Aptamer zu einem regulatorisch aktiven Riboswitch? Für das Tetrazyklin Aptamer konnten wir zeigen, dass zum einen eine extrem hohe Bindekonstante und zum anderen eine hoch komplexe Bindetasche für die regulatorische Aktivität entscheidend sind. Dabei ist die Bindetasche in Abwesenheit des Liganden stark vorstrukturiert und erfährt keine globalen strukturellen Änderungen (Seiten 19-29). In Zusammenarbeit mit der Arbeitsgruppe von Prof. J. Wachtveitl untersuchen wir den Einfluss von Bindekinetik und Lebensdauer des Aptamer-Tetrazyklin-Komplexes auf die regulatorische Aktivität. Dafür vergleichen wir das Tetrazyklin Aptamer mit drei regulatorisch inaktiven Mutanten. Für die Messungen nutzen wir die Eigenfluoreszenz des Tetrazyklins. Diese ist in wässriger Lösung geqenched und steigt bei Bindung an die RNA deutlich an. Erste Ergebnisse zeigen große Unterschiede zwischen den Aptameren in der Geschwindigkeit der Ligandenbindung. Außerdem zeigen sich geringe Unterschiede in der Lebensdauer der verschiedenen Komplexe. Durch NMR spektroskopische Untersuchungen in der Arbeitsgruppe von Prof. J. Wöhnert können die Veränderungen einzelner Basen bei Ligandenbindung untersucht werden. Hierbei zeigen erste Messungen am Tetrazyklin Aptamer, unterschiedliches Verhalten einzelner an der Bindung beteiligter Nukleotide. Eine detaillierte Aufklärung der ligandeninduzierten Veränderungen gewährt uns weitere Einblicke, warum das Tetrazyklin Aptamer als Riboswitch aktiv ist. Die regulatorische Aktivität Neomycin abhängiger Riboswitche wird durch thermische Stabilisierung bei Ligandenbindung vermittelt. Dabei zeigte sich, dass durch Neomycin neue Basenpaare und Basenstapelungen entstehen. Durch weiterführende strukturelle Untersuchungen sollen nun ligandeninduzierte Veränderungen in N1 detailliert geklärt werden. Größere globale Änderungen konnten bereits durch EPR Spektroskopie in Zusammenarbeit mit der Arbeitsgruppe von Prof. T. F. Prisner ausgeschlossen werden. Hierzu wurden in der Arbeitsgruppe von Prof. J. W. Engels spinmarkierte Neomycin Aptamere hergestellt und die Abstände der Sonden in An- und Abwesenheit von Neomycin bestimmt. Es zeigte sich, dass sich der Abstand der Spinmarkierungen durch Zugabe von Neomycin (oder anderen Aminoglykosiden) nicht ändert (Seiten 59-72). Dies weist auf eher lokale Änderungen in der Bindetasche hin. Durch NMR Spektroskopie in Zusammenarbeit mit der Arbeitsgruppe von Prof. J. Wöhnert werden im Moment die Strukturen verschiedener N1-Aminoglykosid-Komplexe gelöst. Dabei zeigt sich, dass in vivo aktive und inaktive Liganden eine ähnliche Struktur im Aptamer induzieren. Was die einzelnen Komplexe unterscheidet und damit die verschiedene Aktivität begründet ist Ziel der Analyse. Insgesamt konnte in dieser Arbeit ein Regulationssystem für die Aptamer-basierte Kontrolle des prä-mRNA Spleißens in Hefe entwickelt und das bestehende Translationssystem für die Applikation auf essentielle Gene angewendet werden. Außerdem wurden wichtige Punkte, warum Aptamere als Riboswitch funktionieren aufgeklärt. Damit legt diese Arbeit einen wertvollen Grundstein für die Weiterentwicklung RNA-basierter Genregulationselemente für die Anwendung in der synthetischen Biologie.
show moreshow less

Download full text files

  • application/pdf Dissertation_Julia_Weigand.pdf (10127 KB)

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Julia E. Weigand
URN:urn:nbn:de:hebis:30-87823
Referee:Beatrix Süß
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2010/12/21
Year of first Publication:2009
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2009/12/08
Release Date:2010/12/21
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
Institutes:Biowissenschaften
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG

$Rev: 11761 $