Entwicklung von Proteinmarkierungsverfahren zur Hochdurchsatzanalyse des murinen embryonalen Stammzellproteoms

Außergewöhnliche Fortschritte in der Human- und Mausgenetik führten zur Charakterisierung einer Vielzahl von krankheitsrelevanten Mutationen, die entweder natürlich auftreten oder über genetische Manipulation im Tiermode
Außergewöhnliche Fortschritte in der Human- und Mausgenetik führten zur Charakterisierung einer Vielzahl von krankheitsrelevanten Mutationen, die entweder natürlich auftreten oder über genetische Manipulation im Tiermodell erzeugt wurden. Die nahezu vollständige Sequenzierung der Genome von Mensch und Maus im Rahmen der internationalen Sequenzierungsprojekte ebnete den Weg für groß angelegte, internationale Mutagenese-Programme, die zum Ziel haben jedes einzelne Gen funktionell zu charakterisieren. Der hierfür bevorzugte Organismus ist die Maus, weil der Aufbau des Mausgenoms dem menschlichen Genom sehr ähnlich ist und weil für die Maus embryonale Stammzellen (mES Zellen) existieren, die ohne Einschränkung ihres pluripotenten Status in Gewebekultur genetisch manipuliert werden können. Darüber hinaus lassen sich mES Zellen über Blastozysteninjektion in Mäuse konvertieren. Dadurch können die Folgen von in vitro gesetzten Mutationen im Kontext eines Gesamtorganismus analysiert werden. Die so genannte „Knock out“ Maus ist ein weit verbreitetes Tiermodell, das nicht nur Genfunktionen in vivo offenbart, sondern auch die Modellierung humaner genetischer Erkrankungen ermöglicht. Außergewöhnliche Fortschritte in der Human- und Mausgenetik führten zur Charakterisierung einer Vielzahl von krankheitsrelevanten Mutationen, die entweder natürlich auftreten oder über genetische Manipulation im Tiermodell erzeugt wurden. Die nahezu vollständige Sequenzierung der Genome von Mensch und Maus im Rahmen der internationalen Sequenzierungsprojekte ebnete den Weg für groß angelegte, internationale Mutagenese-Programme, die zum Ziel haben jedes einzelne Gen funktionell zu charakterisieren. Der hierfür bevorzugte Organismus ist die Maus, weil der Aufbau des Mausgenoms dem menschlichen Genom sehr ähnlich ist und weil für die Maus embryonale Stammzellen (mES Zellen) existieren, die ohne Einschränkung ihres pluripotenten Status in Gewebekultur genetisch manipuliert werden können. Darüber hinaus lassen sich mES Zellen über Blastozysteninjektion in Mäuse konvertieren. Dadurch können die Folgen von in vitro gesetzten Mutationen im Kontext eines Gesamtorganismus analysiert werden. Die so genannte „Knock out“ Maus ist ein weit verbreitetes Tiermodell, das nicht nur Genfunktionen in vivo offenbart, sondern auch die Modellierung humaner genetischer Erkrankungen ermöglicht. Mit dem Ziel Kranheitsgene ihren Signalwegen zuzuordnen wurde in dieser Dissertation ein in situ Proteinmarkierungssystem entwickelt, das Hochdurchsatz-proteomik in mES Zellen ermöglicht. Das System beinhaltet die Einführung einerProteinmarkierungskassette in mES Zellen, die konditionale FlipROSAβgeo-Genfal-lenintegrationen in proteinkodierenden Genen enthalten. Weil die Konditionalität der FlipROSAβgeo-Genfallenkassette auf einem sequenzspezifischen Rekombinations-mechanismus beruht, kann diese postinsertionell über Rekombinase-vermittelten Kassettenaustausch (RMCE) durch eine Proteinmarkierungskassette ersetzt werden. Das hierfür entwickelte Konstrukt entspricht einem durch 5’ Spleißakzeptor- und 3’ Spleißdonorsequenzen definierten dizistronischen Exon, in dem ein Hygromyzin-Resistenzgen über eine P2A Polyproteinspaltungssequenz mit einem für das egfp (enhanced green fluorescent protein) kodierenden nLAP-Tag (N-terminal localization and affinity purification) verbunden ist. Eine erste Validierung dieses Exons in einem retroviralen Genfallenansatz ergab, dass sämtliche in Hygromyzin selektierte und auf DNA-Kassettenintegrationen untersuchte Klone nLAP-markierte Proteine exprimierten. Im Folgenden wurden in den GGTC (German Gene Trap Consortium) und EUCOMM (European Conditional Mouse Mutagenesis Project) mES Zellressourcen Genfallenintergationen identifiziert, die sich für eine RMCE vermittelte, N-terminale in situ Proteinmarkierung eignen. Als kompatibel wurden Genfallenklone klassifiziert, die eine FlipROSAβgeo-Integration im ersten Intron eines proteinkodierenden Gens aufweisen, wobei diese Integration sowohl hinter einem ersten nichtkodierenden, als auch hinter einem ersten kodierenden Exon liegen kann. Allerdings darf im letzteren Fall die kodierende Sequenz keine funktionale Domäne enthalten und muss kurz genug sein, um bei Verlust nicht mit der endogenen Proteinfunktion zu interferieren. Auf diesen Kriterien basierend wurden in den GGTC und EUCOMM Ressourcen 25.130 Proteinmarkierungs-kompatible Genfallenklone identifiziert, die 3.695 mutierten Genen entsprechen. Hiervon wurden acht für die Validierung der RMCE-vermittelten Proteinmarkierungsstrategie ausgewählt. In jedem Fall gelang es die Genfallen-kassette mit dem Proteinmarkierungsexon zu ersetzten. Sowohl der Genfallen-, als auch der RMCE-Proteinmarkierungsansatz führte ohne Ausnahme zur Expression nLAP-Tag markierter Proteine, wobei in allen 13 untersuchten Klonen die Größe der markierten Proteine derjenigen der entsprechenden nativen Proteine mit zusätzlichem Marker entsprach. Weitere Untersuchungen haben gezeigt, dass die physiologische Expression der markierten Proteine sich von denen der Wildtypproteine in der Regel nicht unterscheidet und für Lokalisations- und massenspektrometrische Interaktionsstudien ausreicht. Darüber hinaus spiegelten 90% der hier untersuchten markierten Proteine das subzelluläre Lokalisationsmuster der entsprechenden nativen Proteine wider. Ähnlich verhielt es sich mit den Interaktionspartnern der jeweiligen Proteine, die sich aus bereits bekannten, aber auch noch bisher unbekannten Proteinen zusammensetzen. Insgesamt wurden in dieser Dissertation die Voraussetzungen zu einer Hochdurchsatzproteomanalyse in mES Zellen geschaffen. Während der RMCE-Ansatz die Markierung von über 3.600 Proteinen in mES Zellen ermöglicht, eignet sich der Genfallenansatz neben der Proteinmarkierung in murinen auch für die Markierung von Proteinen in humanen Zellen. In dieser Hinsicht ist die Markierung von Proteinen in humanen ES Zellen und in reprogrammierten Stammzellen (iPS) von Patienten mit unterschiedlichsten Erkrankungen besonders attraktiv, weil damit sowohl Spezies- als auch Krankheitsspezifische Unterschiede im Ablauf individueller Signaltransduktionskaskaden definiert werden können.
show moreshow less

Download full text files

  • application/pdf Franziska_Ehrmann.pdf (3371 KB)

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Franziska Ehrmann
URN:urn:nbn:de:hebis:30-85826
Referee:Theodor Dingermann
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2010/12/21
Year of first Publication:2010
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2010/11/15
Release Date:2010/12/21
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
Institutes:Biochemie und Chemie
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG

$Rev: 11761 $