Struktur und Funktion des Ribosomenbiogenese-Faktors Nep1

In dieser Arbeit wurden die physiologische Funktion innerhalb der Ribosomenbiogenese und die physikalischen Interaktionen des nukleolären, essentiellen Proteins Nep1p in der Hefe Saccharomyces cerevisiae untersucht. Durc
In dieser Arbeit wurden die physiologische Funktion innerhalb der Ribosomenbiogenese und die physikalischen Interaktionen des nukleolären, essentiellen Proteins Nep1p in der Hefe Saccharomyces cerevisiae untersucht. Durch Hefe-Zwei-Hybrid-Experimente und biochemische Analysen konnte eine Homodimerisierung des Proteins festgestellt sowie eine strukturabgeleitete Dimerisierungsmutante identifiziert werden. Ebenfalls aus der Struktur des Nep1p-Homologs aus Methanocaldococcus jannaschii konnte eine Nop14p-Bindungsregion auf der der Dimerkontaktfläche abgewandten Seite des Hefeproteins vorhergesagt und nach in vitro-Mutagenese bestätigt werden. Innerhalb des Nop14-Proteins wurden zwei Domänen charakterisiert, die im Zwei-Hybrid-System mit Nep1p interagieren. Aus Strukturdaten in Kombination mit Hefe-Drei-Hybrid-Experimenten konnte die RNA-Bindungsregion an der Dimerkontaktfläche des Nep1-Proteins lokalisiert werden. In Drei-Hybrid-Selektionen wurden RNA-Sequenzen mit hoher Affinität zu dem M. jannaschii Nep1p identifiziert, die auf eine Bindung des Proteins bei Helix 35 der 16S rRNA schließen lassen. Aufgrund der hohen Konservierung dieser rRNA-Region ist eine Bindung des Hefeproteins an die 18S rRNA-Schleife von Nukleotid 1189-1196 sehr wahrscheinlich. Da Nep1p eine große Ähnlichkeit zu Proteinen der SPOUTFamilie von Methyltransferasen aufweist, war von einer rRNA-Methylierung im Verlauf der Ribosomenbiogenese als katalytische Funktion des Proteins auszugehen. Aus verschiedenen Drei-Hybrid-Experimenten zur RNA-Bindungungsspezifität ergab sich als mögliche Reaktion die N1-Methylierung des Nukleotids 1-Methyl-3-(3-Amino-3-Carboxypropyl)-Pseudouridin (m1acp3Y) 1191 der 18S rRNA. Durch eine spezifische radioaktive Markierung der acp-Gruppe konnte gezeigt werden, dass Nep1p keinen Einfluss auf die spätere Aminocarboxypropylmodifizierung hat. Diese findet auch bei einer Deletion der snoRNA35 statt, also auch an einem Uridin, und ist unabhängig von dem cytoplasmatischen Protein Tma20p. In RP-HPLC-Experimenten konnte nachgewiesen werden, dass die 18S rRNA einer Dnep1Dnop6-Doppelmutante ein Aminocarboxypropyl-modifiziertes Nukleosid enthält, dass sich in seinem Retensionsverhalten von dem m1acp3Y eines Wildtyps unterscheidet. Bei dem in diesem Stamm detektierten acp-modifizierten Nukleosid handelt es sich vermutlich um ein nicht-methyliertes acpY, was eine Funktion von Nep1p als N1-Methyltransferase des Nukleotids Y1191 der 18S rRNA höchst wahrscheinlich macht. Diese katalytische Funktion konnte in Zusammenarbeit mit Prof. Wöhnert auch für das M. jannaschii Nep1p gezeigt werden. Dass sowohl eine snr35- Deletion als auch eine 18S rRNA-Mutation des Nukleotids 1191 nicht letal sind, machte deutlich, dass die N1-Methylierung nicht die essentielle Funktion von Nep1p darstellen kann. Weiterhin konnte nachgewiesen werden, dass die Suppression der nep1-1ts-Mutante durch S-Adenosylmethionin nicht auf der Unterstützung der Methyltransferase-Aktivität des Proteins, sondern vermutlich eher auf einer generellen Stabilisierung des temperatursensitiven Proteins beruht. Sowohl im Hefe-Nep1p als auch im humanen Homolog wurden durch biochemische und genetische Experimente mehrere Phänotypen der Bowen-Conradi-Mutation (Aspartat 90 zu Glycin in ScNep1p) nachgewiesen. Diese lassen auf eine Aggregation des mutierten Proteins sowie eine dadurch bedingte Fehllokalisation innerhalb der Zelle schließen. Zusätzlich ist aber auch ein RNA-Bindungsdefekt durch den Aminosäureaustausch wahrscheinlich. Nichtsdestotrotz liegt offensichtlich ausreichend Nep1p-Protein vor, dass seine essentielle Funktion erfüllen kann, da die Mutation selbst zu keinem Wachstumsphänotyp führt. Erst bei einer partiellen Translationsrepression des mutierten Proteins unter Verwendung des artifiziellen Tetrazyklin-Aptamer-Systems ist ein verlangsamtes Wachstum von Hefezellen zu beobachten, was dieses System geeignet zur Analyse von möglichen Therapeutika macht.
show moreshow less

Download full text files

  • application/pdf Struktur_und_Funktion_des_Ribosomenbiogenese_Faktors_Nep1.pdf (3082 KB)

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Britta Meyer
URN:urn:nbn:de:hebis:30-91543
Referee:Karl-Dieter Entian
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2011/02/24
Year of first Publication:2009
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Release Date:2011/02/24
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
Institutes:Biowissenschaften
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG

$Rev: 11761 $