Der neue RFQ für den Hochladungsinjektor der GSI

  • Für das Helmholtzzentrum für Schwerionenforschung (GSI), in Darmstadt, wurde ein neuer RFQ zur Beschleunigung schwerer Ionen für den Hochladungsinjektor (HLI) entwickelt. Dieser RFQ hat den bereits vorhandenen ersetzt und soll, für die Anpassung des HLI an die neue 28 GHz-ECR-Ionenquelle, den Duty-cycle von 25 % auf 100 % erhöhen, um superschwere Ionen zu erzeugen und die Experimente mit schweren Ionen zu versorgen. Der RFQ hat die Aufgabe schwere, hochgeladene Ionen von 4 keV/u auf 300 keV/u zu beschleunigen. Wichtige Eigenschaften sind ein hoher Strahlstrom, eine hohe Strahl-Transmission, eine kleine Strahlemittanz und eine geringe transversale Emittanzzunahme. Die Erhöhung der Injektionsenergie von 2,5 keV/u auf 4 keV/u ermöglicht eine Verkleinerung des Konvergenzwinkels. Der Aufbau des 4-Rod-RFQs für den HLI ist Thema der vorliegenden Arbeit. Die Auslegung des HLI-RFQs bezieht sich auf ein festgelegtes max. Masse zu Ladungsverhältnis von A/q = 6, bei einer Betriebsfrequenz von 108,408 MHz. Die Ionen sollen bei einem Strahlstrom von 5 mA von 4 keV/u auf 300 keV/u beschleunigt werden. Durch die spezielle teilchendynamische Auslegung konnte die Länge des Tanks von vorher 3 m auf jetzt 2 m verkürzt werden. Dies begünstigt den CW-Betrieb der Struktur. Durch den CW-Betrieb hat man eine hohe Leistungsaufnahme, dies erfordert eine besondere teilchendynamische und hochfrequenztechnische Auslegung der RFQ-Struktur und eine effiziente Kühlung. Zur Simulation der Hochfrequenzeigenschaften wurde ein Modell des RFQ mit dem Programm Microwave Studio (MWS) erstellt. Die Simulationen ergaben einen nur 2 m langen RFQ mit sehr hoher Transmission > 95%. Nach den entsprechenden Simulationsrechnungen bezüglich der Teilchendynamik und der Hochfrequenzeigenschaften wurde der RFQ aufgebaut. Der zeitaufwändige Aufbau lässt sich in drei Abschnitte einteilen. Die Elektroden wurden präzise ausgemessen. Danach wurden Stützen, Elektroden und Tuningplatten an der Bodenplatte montiert und in den Tank eingesetzt. Im Tank wurden die Elektroden justiert, die zuerst außerhalb vermessen wurden. Die korrekte Position der Elektroden zur Referenzfläche wurde berechnet und mit Hilfe eines Faro-Gage im Tank eingemessen. Die maximale Abweichung der Elektrodenposition konnte auf 0,03 mm reduziert werden. Nach der mechanischen Einrichtung folgte die HF-Anpassung des Resonators. Durch das Erhöhen der Tuningplattenpositionen zwischen den Stützen konnte die Resonanzfrequenz von 90,8 MHz auf 108,4 MHz erhöht werden. Als nächstes wurde die Spannungsverteilung im Tank gemessen und mit Hilfe der Tuningplatten konnte sie so eingestellt werden, dass die maximale Abweichung zur mittleren Elektrodenspannung bei nur ± 2% liegt. Zur weiteren Hochfrequenzabstimmung wurde die Wirkung zweier Tauchkolben mit einem Durchmesser von 75 mm untersucht. Die Tauchkolben ermöglichen eine Anpassung der Frequenz im Bereich von 1,4 MHz. Sie sollen die möglichen Frequenzverschiebungen durch beispielsweise thermische Effekte, auf Grund des HF-Betriebs, regulieren. Für die Hochfrequenzabstimmung wurde eine Ankoppelschleife gefertigt und angepasst. Die Güte des Resonators betrug Q0 = 3100, bei einem RP-Wert RP = 100 kΩm, d.h. die zur Versorgung stehende HF-Leistung (50 kW im CW-Betrieb) reicht aus. An der GSI wurde nach dem Transport eine Kontrolle der Elektroden vorgenommen, danach wurde der RFQ erst einzeln, danach als komplette HLI Einheit getestet. Dazu wurden verschiedene Pulsmessungen und Emittanzmessungen mit Argon 7+ und Argon 8+ durchgeführt. Bei der ersten Strahlinbetriebnahme wurden die Transmission, die Ionenenergie und die Emittanz mit verschiedenen Ionen gemessen. Die ersten Tests des HLI-RFQ waren sehr vielversprechend. In den Tests war zu sehen, dass die vorgenommenen Arbeiten, wie Justage und HF-Abstimmung der Resonanzstruktur, erfolgreich waren. Danach wurde der Strahlbetrieb mit Calcium, bei einer Leistung von 50 kW, durchgeführt. Die gemessene Transmission bei einer Spannung von 43 kV lag bei 70 %. Im Mai 2010 gab es eine 14Stickstoff2+ -Strahlzeit mit einer gepulsten Leistung von N = 90 kW. Danach wurde Anpassungstests mit verschiedenen Schwerionen durchgeführt. Im November 2010 wurden neue Tuningplatten mit einer besseren Stützenkontaktierung sowie einer besseren Kühlung eingebaut. Die Elektroden wurden nach diesen Maßnahmen auf ± 0,04 mm einjustiert. Die Flatness liegt bei ± 2,1 %, die Güte beträgt Q0 = 3300. Der RFQ wurde in die Beamline eingebaut und geht im Januar 2011 in Betrieb.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Markus Vossberg
URN:urn:nbn:de:hebis:30-109069
Referee:Alwin SchemppGND, Ulrich RatzingerORCiD
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2011/07/25
Year of first Publication:2011
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2011/04/19
Release Date:2011/07/25
HeBIS-PPN:273437917
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht