Complement factor H-related proteins CFHR2 and CFHR5 represent novel ligands for the infection-associated CRASP proteins of Borrelia burgdorferi

  • Background: One virulence property of Borrelia burgdorferi is its resistance to innate immunity, in particular to complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASP) which interact with complement regulator factor H (CFH) and factor H-like protein 1 (FHL1) or factor H-related protein 1 (CFHR1). In the present study we elucidate the role of the infection-associated CRASP-3 and CRASP-5 protein to serve as ligands for additional complement regulatory proteins as well as for complement resistance of B. burgdorferi. Methodology/Principal Findings: To elucidate whether CRASP-5 and CRASP-3 interact with various human proteins, both borrelial proteins were immobilized on magnetic beads. Following incubation with human serum, bound proteins were eluted and separated by Glycine-SDS-PAGE. In addition to CFH and CFHR1, complement regulators CFHR2 and CFHR5 were identified as novel ligands for both borrelial proteins by employing MALDI-TOF. To further assess the contributions of CRASP-3 and CRASP-5 to complement resistance, a serum-sensitive B. garinii strain G1 which lacks all CFH-binding proteins was used as a valuable model for functional analyses. Both CRASPs expressed on the B. garinii outer surface bound CFH as well as CFHR1 and CFHR2 in ELISA. In contrast, live B. garinii bound CFHR1, CFHR2, and CFHR5 and only miniscute amounts of CFH as demonstrated by serum adsorption assays and FACS analyses. Further functional analysis revealed that upon NHS incubation, CRASP-3 or CRASP-5 expressing borreliae were killed by complement. Conclusions/Significance: In the absence of CFH and the presence of CFHR1, CFHR2 and CFHR5, assembly and integration of the membrane attack complex was not efficiently inhibited indicating that CFH in co-operation with CFHR1, CFHR2 and CFHR5 supports complement evasion of B. burgdorferi.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Corinna Siegel, Teresia Hallström, Christine SkerkaGND, Hannes Eberhardt, Barbara Uzonyi, Tobias Beckhaus, Michael KarasGND, Reinhard WallichGND, Brian Stevenson, Peter F. ZipfelORCiDGND, Peter KraiczyGND
URN:urn:nbn:de:hebis:30-114604
DOI:https://doi.org/10.1371/journal.pone.0013519
ISSN:1932-6203
Parent Title (English):PLoS One
Document Type:Article
Language:English
Date of Publication (online):2010/10/20
Date of first Publication:2010/10/20
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2011/09/06
Volume:5
Issue:(10): e13519
Note:
Copyright: © 2010 Siegel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Source:PLoS ONE 5(10): e13519. doi: 10.1371/journal.pone.0013519
HeBIS-PPN:276039297
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Medizin / Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Sammlung Biologie / Sondersammelgebiets-Volltexte
Licence (German):License LogoCreative Commons - Namensnennung 3.0