Impact of land-use on savanna vegetation and populations of non-timber forest product-providing tree species in West Africa

Savannas are the most important timber and non-timber forest products (NTFPs) providing ecosystems in West Africa. They have been shaped by traditional human land-use (i.e. agriculture, grazing, and harvesting) for thous
Savannas are the most important timber and non-timber forest products (NTFPs) providing ecosystems in West Africa. They have been shaped by traditional human land-use (i.e. agriculture, grazing, and harvesting) for thousands of years. In the last decades, land-use has drastically changed due to the rapid population growth and the growing production of cash-crop in West Africa and this process is still continuing. The percentage of land intensively used for agriculture has increased, while the length of fallow periods has decreased. Such changes have enormous ecological, economic, and social consequences. In the context of land-use changes, there is an urgent need to better understand and evaluate the impact of land-use on savannas. Such an understanding provides insights on appropriate management activities that ensure the maintenance of savannas and guarantee the availability of savanna products for subsistence and commercial use of rural West African people. 
The major objective of the present thesis was to study the impact of land-use on savanna vegetation and diversity as well as on populations of two important NTFP-providing tree species in a semi-arid area in West Africa. The study area was located in the south-eastern part of Burkina Faso and comprised the protected W National Park and its adjacent communal area. 
In the first study (chapter 2), I investigated in cooperation with a colleague from Burkina Faso (Blandine Nacoulma) the impact of land-use on the savanna vegetation. We analyzed which environmental factors determine the occurrence of the vegetation types and investigated the effect of land-use on vegetation structure and the occurrence of life forms and highly valued tree species. Furthermore, we tested whether land-use has an impact on plant diversity pattern and if this impact differed between the vegetation types and layers (woody and herb layer). Vegetation relevés were performed and the vegetation and plant diversity of the protected W National Park were compared with those of its surrounding communal area. Our results reveal five vegetation types occurring in both areas. Elevation and physical soil characteristics and thus soil water availability for plants played the most important role for the occurrence of the vegetation types. The influence of land-use on plant diversity differed between the five vegetation types and the two layers. The impact was highest on the vegetation types with the most favorable soil conditions for cultivation and lowest on rocky habitats with poor soils. While the diversity of the woody layer was increased under human land-use, the diversity of the herb layer was diminished. Overall, as land-use effects were not only negative, our findings suggest that land-use does not automatically lead to a loss of plant species and to a degradation of savanna habitats. We conclude that both protected and communal areas are of great importance for the conservation of savanna vegetation and diversity. Our study highlights furthermore the importance of different management strategies for each vegetation type.
In the following two studies (chapter 3 and 4), the impact of land-use - and in particular of harvesting - on populations of Adansonia digitata L., the baobab tree, and Anogeissus leiocarpa (DC.) Guill. & Perr. was examined. These two tree species were chosen as they provide several NTFPs for the local population and as they show different levels of human protection and opposed life histories. Thus, they may react differently to land-use. Stands of the protected W National Park were compared with those of its surrounding communal area (in fallows, croplands, and villages). I applied dendrometric methods to study the population structures and combined it with rates and patterns of NTFP-harvesting (debarking and chopping/pruning). Furthermore, the impact of land-use and harvesting on the fruit production of A. digitata and on the sprouting ability of A. leiocarpa were studied. The inverse J-shaped size class distribution curve indicates that the stands of A. digitata were in a healthy state in the park, while the low number of smaller size classes in fallows, croplands, and villages may give evidence of an ageing population. However, a high number of seedlings were recorded in villages. The stands of A. leiocarpa were also in healthy states in the park and likewise in fallows. In contrast, the absence of saplings gives evidence of a declining population in croplands. Both species were strongly harvested by local people and harvesting was tree size-specific. Pruning in interaction with tree-size had a significant impact on fruit production of A. digitata. While smaller trees were more vulnerable to pruning, bigger trees benefited from slight-pruning. A. leiocarpa had a great ability to respond to chopping by sprouting. The sprouting ability increased even with higher chopping intensity. Results suggest that despite the intense harvesting and the land-use impact, populations of both species are still well preserved. While A. digitata can withstand the harvesting and land-use pressure by its longevity, extremely low adult mortality rates, and particularly due to positive human influences, A. leiocarpa is able to withstand the use pressure by its fast growing, high recruitment, and high sprouting ability. I conclude that a none protected tree species (A. leiocarpa) might not necessarily be at higher risk to the harvesting and land-use impact than a protected tree species (A. digitata) as the adverse impact of harvesting and land-use can be compensated by its specific life history. 
Important additional information to such ecological findings can be provided by local people. Learning from traditional knowledge and management systems of local people will help to produce culturally and ecologically reasonable conservation and management strategies. Thus, I investigated local uses and management strategies of A. digitata and A. leiocarpa in the last two studies (chapter 5 and 6). Quantitative ethnobotanical surveys among the Gulimanceba people were conducted in the communal area in order to document uses of the different plant parts, harvesting modes, perceptions about the population status, and conservation status of both species. Hereby, differences in knowledge between gender, generations, and people from different villages were tested. Interviews reveal that both species are harvested for multipurpose and emphasize the high importance of both species for local people. Especially the leaves and fruits of A. digitata add valuable minerals and vitamins to the otherwise micronutrient-“poor” staple crops of the Gulimanceba people. In comparison with other studies in West Africa, it has turned out that people in this area could benefit even more from A. leiocarpa, e.g. for dyeing of clothes, for treatment of malaria and skin problems. Local knowledge did not differ between genders and generations, while it slightly differed between people from different villages. The lack of age differences suggests that the traditional knowledge about these two species is passed on from one generation to another. Differences between people from different villages might be explained by influences from the neighboring countries Niger and Benin. Current local harvesting modes and management strategies of both species resulted in sustainable use. However, ongoing land-use intensifications require adapted harvesting and management techniques to guarantee the persistence of these economically important species. These results provide, in combination with the ecological findings (chapter 3 and 4), appropriate management recommendations for A. digitata and A. leiocarpa that are reliable under currently practiced management strategies.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Katharina Schumann
URN:urn:nbn:de:hebis:30:3-230065
Referee:Rüdiger Wittig, Georg Ziska
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2011/10/21
Year of first Publication:2011
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2011/10/19
Release Date:2011/10/21
HeBIS PPN:278653529
Institutes:Biowissenschaften
Institut für Ökologie, Evolution und Diversität
Dewey Decimal Classification:580 Pflanzen (Botanik)
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $