Dimerisierung der humanen 5-Lipoxygenase

Die 5-Lipoxygenase (5-LO) ist eines der Schlüsselenzyme der Leukotrienbiosynthese. Sie katalysiert zunächst die Umsetzung der freigesetzten Arachidonsäure(AA) zu 5-Hydroperoxyeicosatetraensäure (5-HpETE), in einem zweite
Die 5-Lipoxygenase (5-LO) ist eines der Schlüsselenzyme der Leukotrienbiosynthese. Sie katalysiert zunächst die Umsetzung der freigesetzten Arachidonsäure(AA) zu 5-Hydroperoxyeicosatetraensäure (5-HpETE), in einem zweiten Reaktionsschritt wandelt sie diese in Leukotrien A4 (LTA4) um. Leukotriene sind potente Entzündungsmediatoren und spielen eine wichtige Rolle bei entzündlichen und allergischen Reaktionen. Außerdem wird die Beteiligung an verschiedenen Krebsarten kontrovers diskutiert.
Sie besteht aus 673AS, ist 78 kDa schwer und gliedert sich wie alle bisher bekannten Lipoxygenasen in eine N-terminale C2-ähnliche, regulatorische Domäne(AS 1–114) (C2ld), die für die Membran- und Calciumbindung sowie die Interaktion mit dem Coactosin-like Protein (CLP) verantwortlich ist, und in eine C-terminale, katalytische Domäne (AS 121–673), die das Nicht-Häm-gebundene Eisen im aktiven Zentrum trägt. Ein weiteres Strukturmerkmal sind zwei ATP-Bindungsregionen, eine befindet sich in der C2ld (AS 73–83), die andere auf der katalytischen Domäne (AS 193–209), das molare Verhältnis von 5-LO zu ATP konnte dabei auf 1:1 festgelegt werden [167].
Bereits 1982 wurde in einer Veröffentlichung von Parker et al. beschrieben, dass 5-LO aus Rattenzellen in Gegenwart von Calcium auf einer Gelfiltration dimerisieren kann [204], 2008 schließlich wurde von Aleem et al. publiziert, dass humane 12-LO aus Thrombozyten Dimere bilden kann [219]. Somit konnte es möglich sein, dass auch die humane 5-LO zur Dimerisierung fähig ist.
Zunächst wurde aufgereinigtes Enzym mit nativer Gelelektrophorese und anschließender Coomassiefärbung oder Western Blot untersucht, dabei konnten mehrere Banden pro Bahn detektiert werden. Um dieses Phänomen weiter zu untersuchen, wurde im Anschluss eine Gelfiltration etabliert; da die C2ld der 5-LO recht hydrophob ist, war es nötig, 0,5% T20 zum Elutionspuffer PBS/EDTA zuzusetzen, da das Enzym ansonsten unspezifisch mit dem Säulenmaterial interagiert und für seine Größe zu spät eluiert hätte. In Anwesenheit von T20 eluierte 5-LO in zwei getrennten Peaks, die exakt zu den vorher mit Referenzproteinen bestimmten Elutionsvolumina des Monomers und Dimers passten. Weiter wurde getestet, ob niedermolekulare Substanzen einen Einfluss auf das Dimerisierungsverhalten haben, allerdings konnte weder durch Ca2+noch durch ATP eine Verstärkung der Dimerisierung beobachtet werden. Dahingegen konnte, nach Vorinkubation mit GSH und Diamid, das alleinige Monomer auf der Gelfiltration nachgewiesen werden, nach Vorinkubation nur mit Diamid, lag das gesamte Protein ausschließlich als Dimer vor. Durch Gelelektrophorese mit oder ohne Zusatz von ß-Mercaptoethanol und LILBID-MS konnte die Ausbildung von intermolekularen Disulfidbrücken bestätigt werden. Ein Bindungsassay mit radioaktivem 35S-GSH konnte die kovalente Bindung des GSH an die 5-LO bestätigen. Quantifizierungsstudien mit Ellmans Reagens zeigten, dass mindestens eins der Oberflächencysteine mit GSH modifiziert wurde. Die von der Gelfiltration erhaltenen Fraktionen wurden auf enzymatische Aktivität getestet und in allen 5-LO-haltigen Fraktionen konnte Aktivität gefunden werden. Leider war es nicht möglich, eine Aussage darüber zu treffen, ob das Mono- oder das Dimer aktiver war. Es liegt offenbar in einem Fließgleichgewicht vor, da erneute Injektion des Monomerpeaks im bekannten Elutionsprofil aus zwei Peaks resultierte. Außerdem führt die Anwesenheit von 0,5% T20 während des Aktivitätstests zu einer Hemmung des Enzyms und weniger detektierbaren 5-LO-Produkten; es fiel vor allem auf, dass so gut wie keinerlei trans- und epitrans-LTB4, die nicht-enzymatischen Zerfallprodukte der 5-HpETE, nachzuweisen waren. Betrachtet man die Struktur der 5-LO, so findet man zehn Cysteine an der Oberfläche; die Cysteine 159, 300, 416 und 418 liegen dabei in einem Interface. Mutiert man diese Cysteine zu Serinen, so verschwindet der Dimer-induzierende Effekt des Diamids, wohingegen die Mutante weiterhin glutathionylierbar bleibt. Interessanterweise zeigt diese Mutante auch eine wesentlich weniger ausgeprägte Hemmung durch T20. Um eine Aussage treffen zu können, ob auch 5-LO aus humanen Zellen Dimere bilden kann, wurde 5-LO-haltiger S100 aus polymorphkernigen Leukozyten (PMNL) untersucht. Dabei konnte mit Western Blot und einem Aktivitätsnachweis gezeigt werden, dass die 5-LO in einem breiten Bereich von der Gelfiltration eluiert. Das deutet darauf hin, dass sie in PMNL ebenfalls dimerisiert vorliegen kann. In Gegenwart von Ca2+kam es zu einer Verschiebung der 5-LO zu höhermolekularen Gewichten, wobei dieses Phänomen nicht bei S100 aus transformierten E.coli auftrat, was auf einen gerichteten Komplex nach Calciuminduktion in PMNL hindeutet.
Außerdem wurde im Rahmen dieser Arbeit der Bindemodus von Sulindac an die 5-LO mittels Crosslinking untersucht. Dabei konnte gezeigt werden, dass konzentrationsabhängig der einfache Komplex aus 5-LO und CLP abnimmt, dafür aber ein hochmolekularer Komplex, der beide Enzyme enthält, entsteht. Weder das Prodrug Sulindac noch der weitere Metabolit Sulindacsulfon oder andere Inhibitoren, die ebenfalls an der C2ld angreifen sollen, zeigten diesen Effekt. Leider konnte nicht weiter geklärt werden, was diesen Effekt verursacht, allerdings liegt die Vermutung nahe, dass es zu einer Aggregation kommt. Weitere Untersuchungen könnten wichtige Hinweise auf das Design von neuen Arzneistoffen bringen, um selektivere und damit nebenwirkungsärmere Inhibitoren zu finden.
show moreshow less

Download full text files

  • text/plain Abstract_Dissertation_Ann-Kathrin_Haefner_2011_Dimerisierung_der_humanen_5-Lipoxygenase.txt (5 KB)
  • application/pdf Dissertation_Ann-Kathrin_Haefner_2011_Dimerisierung_der_humanen_5-Lipoxygenase.pdf (29381 KB)

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Ann-Kathrin Häfner
URN:urn:nbn:de:hebis:30:3-248467
Referee:Dieter Steinhilber, Clemens Glaubitz
Document Type:Doctoral Thesis
Language:German
Year of first Publication:2012
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2011/12/19
Release Date:2012/06/17
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
Institutes:Biochemie und Chemie
Dewey Decimal Classification:570 Biowissenschaften; Biologie
610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG

$Rev: 11761 $