Untersuchung von Size-Effekten thermischer Transportkoeffizienten von Nanodrähten

In den letzten Jahren haben die Forschungsaktivitäten im Bereich Thermoelektrik stetig zugenommen. Das neu erweckte Interesse an der Thermoelektrik ist zurückzuführen auf neue nanostrukturierte Materialien, Quantenschich
In den letzten Jahren haben die Forschungsaktivitäten im Bereich Thermoelektrik stetig zugenommen. Das neu erweckte Interesse an der Thermoelektrik ist zurückzuführen auf neue nanostrukturierte Materialien, Quantenschicht-Strukturen und Nanodrähte, welche
eine wesentliche Steigerung der thermoelektrischen Effektivität Z im Vergleich zum Massivmaterial versprechen. Für Nanodrähte ist die größte Steigerung der thermoelektrischen Effektivität zu erwarten. Zur Bestätigung der Theorie bedarf es neuer Messmethoden zur Bestimmung des Seebeck-Koeffizienten S, der elektrischen Leitfähigkeit σ und der Wärmeleitfähigkeit λ, um hieraus eine Steigerung der thermoelektrischen Effektivität Z = (Sexp2)σ/λ experimentell zu bestätigen.
Der Schwerpunkt der Doktorarbeit lag in der Untersuchung thermoelektrischer Eigenschaften von Nanodrähten. Hierzu wurden neueMessmethoden zur Bestimmung der elektrischen und thermischen Leitfähigkeit von Nanodrähten entwickelt.
Die elektrische und thermische Leitfähigkeit von Pt-Nanodrähten wurden mit dem in dieser Arbeit entwickelten λ-Chip gemessen. Die elektrische Leitfähigkeit der Pt-Nanodrähte ist im Vergleich zum Massivmaterial entsprechend der klassischen Size-Effekt-Theorie reduziert. Ebenso wurde eine Abnahme der Wärmeleitfähigkeit beobachtet. Die Ergebnisse stimmen mit den im Rahmen der klassischen Size-Effekt-Theorie zu erwartenden Resultaten gut überein, jedoch bedarf die Reduzierung der Lorenz-Zahl noch einer theoretischen Erklärung.
Im Weiteren wurde die elektrische Leitfähigkeit von BixTe1-x und BixSb1-x-Nanodrähten mit dem λ-Chip bestimmt. Hierzu wurden zunächst unterschiedliche Kontaktmaterialien getestet, um die Diffusion des Kontaktmaterials in den Nanodraht auszuschließen. Als bewährtes Kontaktmaterial stellte sich ein Schichtsystem aus Titan und Gold heraus. Die Ti-Schicht wirkt hierbei als Diffusionsbarriere und Haftvermittler-Schicht. Die Wärmeleitfähigkeit der Bi-haltigen Nanodrähte konnte mit dem λ-Chip nicht gemessen werden, da die Unterätzung der Nanodrähte mittels reaktivem Ionenätzen die Nanodrähte angriff. Als Alternative können die Nanodrähte auf dem λ-Chip mit einem fokusierten Ionenstrahl unterätzt werden. Der Aufwand hierzu ist jedoch relativ hoch und diese Alternative wurde deshalb nicht weiter verfolgt. Als weitere Alternative wurde der Z-Chip entwickelt. Hierbei werden die Nanodrähte auf den fertigen Chip aufgebracht und mittels Elektronenstrahl-induzierter Deposition an den elektrischen Kontakten fixiert. Der Chip ermöglicht die Messung der elektrische Leitfähigkeit in 4-Punkt-Anordnung, der Wärmeleitfähigkeit und des Seebeck-Koeffizienten an
einem einzelnen Nanodraht. Somit ist die Bestimmung der thermoelektrischen Effektivität an einem Nanodraht möglich. DesWeiteren wurden die theoretischen Grundlagen zur Bestimmung der Wärmekapazität an einzelnen Nanodrähten mit dem Z-Chip präsentiert. Zum Zeitpunkt der Durchführung dieser Arbeit fehlte jedoch das notwendige Equipment zur Ausführung der Wärmekapazitätsmessung an einzelnen Nanodrähten.
Des Weiteren wurde die Cross-Plane Methode zur Bestimmung der Wärmeleitfähigkeit an eingebetteten Nanodrähten entwickelt. Analog der Messmethode, welche für die Einzeldrahtmessungen verwendet wird, handelt es sich hierbei um eine stationäre „Joule-Heating“ Methode. Die Temperaturdifferenz wird aus der Widerstandsänderung einer auf die eingebetteten Nanodrähte aufgebrachten Heizschicht bestimmt.Mit derMethode wurde die Wärmeleitfähigkeit von BixTe1-x-Nanodrähten ermittelt.
Die elektrische Leitfähigkeit wurde von BixTe1-x-Nanodrähten unterschiedlicher Zusammensetzung und Herstellungsparameter mit dem λ- und dem Z-Chip bestimmt. Die gemessenen Nanodrähte zeigen sowohl intrinsisches wie extrinsisches Leitungsverhalten verbunden mit einer, im Vergleich zum Volumenmaterial, reduzierten Temperaturabhängigkeit der elektrischen Leitfähigkeit infolge von Oberflächen- und Korngrenzenstreuung der Ladungsträger. Die elektrischen Leitfähigkeitsmessungen stimmen mit Beobachtungen anderer Gruppen gut überein.
Die Wärmeleitfähigkeit konnte an einem einzelnen BixTe1-x-Nanodraht und an eingebetteten BixTe1-x-Nanodrähten gemessen werden. Die Wärmeleitfähigkeit ist gegenüber dem Massivmaterial reduziert. Die Ergebnisse sind in guter Übereinstimmung mit bisher publizierten Ergebnissen von Bismuttellurid-Nanodrähten.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Heiko Reith
URN:urn:nbn:de:hebis:30:3-255831
Referee:Michael Huth, Friedemann Völklein
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2012/07/19
Year of first Publication:2012
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2012/05/31
Release Date:2012/07/19
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $