Methoden zur Konformationsbestimmung an Peptiden und Nukleinsäuren mittels skalarer und dipolarer Kopplungen

Die in dieser Arbeit durchgeführten Untersuchungen an GXG Modellpeptiden konnten eindeutig zeigen, dass diese Peptide, auch ohne das Vorhandensein von langreichweitigen Wechselwirkungen, bestimmte Sekundärstrukturen präf
Die in dieser Arbeit durchgeführten Untersuchungen an GXG Modellpeptiden konnten eindeutig zeigen, dass diese Peptide, auch ohne das Vorhandensein von langreichweitigen Wechselwirkungen, bestimmte Sekundärstrukturen präferieren. Ein Teil der beobachteten, auftretenden Strukturmotive lässt sich hierbei über den sterischen Anspruch der Seitenkette erklären, ein anderer Teil über die Ladung der Seitenkette. In Kombination mit anderen Spektroskopischen Methoden konnten zehn dieser Peptide genauestens untersucht werden. Hierbei zeigte sich, dass diese Peptide nicht nur die favorisierten Regionen des Ramachandran-Diagramms besetzen. Ein Vergleich mit dem Vorkommen bestimmter Aminosäuren, beispielsweise in loop Regionen von Proteinen, zeigt dass die Sequenz dieser loops nicht zufällig ist. Tatsächlich besitzt ein Teil der Aminosäuren, die besonders häufig an bestimmten loop Positionen vorkommen, bereits die intrinsische Vorliebe, die notwendige Konformation einzunehmen. Diese Aminosäuren und die umgebenden loops sind somit eventuell nicht nur das simple Verbindungsglied zwischen zwei Sekundärstrukturen, sondern kommen selbst als Ausgangspunkte für Peptid- bzw. Proteinfaltung in Frage.
Ein weiteres Augenmerk der Arbeit lag auf der Messung von skalaren und dipolaren Kopplungen an isotopenmarkierter RNA. Es wurden vier Pulssequenzen entwickelt, die es ermöglichen, 1J skalare bzw. dipolare Kopplungen in der Zuckerregion von 13C- markierter RNA mit hoher Präzision zu messen. Die entwickelten J-modulierten Experimente ermöglichen die Messung von 1J(H2’C2’), 1J(C1’C2’) sowie 1J(C2’C3’) Kopplungen selbst für größere RNA Moleküle. Die Detektion erfolgt hierbei auf den C1’H1’ Signalen, die Zuordnung der Kerne, deren Kopplung gemessen wird, ist nicht einmal erforderlich. Die Anwendbarkeit konnte für verschiedene Systeme mit 14 bis 70 Nukleotiden demonstriert werden. Die erreichte Präzision ermöglichte es außerdem auch sehr kleine Effekte, wie beispielsweise die Ausrichtung von RNA im Magnetfeld zu detektieren.
Diese Arbeit zeigt außerdem zwei Beispiele für die gezielte Modifikation, um Lanthanid Bindungsstellen einführen zu können. Auf chemischen und biochemischen Weg konnte isotopenmarkierte, in vitro transkribierte RNA modifiziert werden. Die Ergebnisse zeigen eindeutig eine Bindung von Lanthanid-Ionen an die modifizierte RNA. Die auftretenden, eher kleinen Effekte, sind vermutlich auf die noch zu hohe Flexibilität der eingeführten Modifikationen. Vor allem bei der chemischen Modifikation besteht hier noch Potential zur Optimierung, nachdem die generelle Anwendbarkeit der Methode demonstriert wurde.
Der letzte Teil der Arbeit beschäftigt sich mit der Analyse von Kopplungsmustern zur Analyse und zum Vergleichen von Naturstoffen. Hier konnten aus einer Reihe von Derivaten eindeutig die identifiziert werden, die verglichen mit der Ausgangsstruktur, die gleiche Konformation besitzen. Die gewonnenen Ergebnisse decken sich hier mit durchgeführten biologischen Tests, die ebenfalls dasselbe Derivat als aktiv identifizieren konnten, was klar für eine Struktur-Aktivitäts-Beziehung spricht.
In der vorliegenden Arbeit werden Methoden und Anwendungen gezeigt, um skalare und dipolare Kopplungen im Bereich von Peptiden, Nukleinsäuren und kleinen Molekülen zu nutzen. Die durchgeführten Arbeiten reichen dabei von der speziellen Probenpräparation zur Messung von dipolaren Kopplungen bis hin zur Entwicklung neuer NMR-spektroskopischer Methoden zur Messung von Kopplungen mit höherer Präzision und an größeren Systemen als bisher.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
Metadaten
Author:Daniel Mathieu
URN:urn:nbn:de:hebis:30:3-273416
Referee:Harald Schwalbe, Clemens Glaubitz
Advisor:Harald Schwalbe
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2012/11/02
Year of first Publication:2012
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2012/10/25
Release Date:2012/11/02
Tag:Kopplungskonstanten; NMR; Peptide; RDCs; RNA
Pagenumber:136
HeBIS PPN:311099149
Institutes:Biochemie und Chemie
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoCreative Commons - Namensnennung-Nicht kommerziell-Keine Bearbeitung 3.0

$Rev: 11761 $