Dynamic Control of Selectivity in the Ubiquitination Pathway Revealed by an ASP to GLU Substitution in an Intra-Molecular Salt-Bridge Network

Ubiquitination relies on a subtle balance between selectivity and promiscuity achieved through specific interactions between ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). Here, we report how a single a
Ubiquitination relies on a subtle balance between selectivity and promiscuity achieved through specific interactions between ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). Here, we report how a single aspartic to glutamic acid substitution acts as a dynamic switch to tip the selectivity balance of human E2s for interaction toward E3 RING-finger domains. By combining molecular dynamic simulations, experimental yeast-two-hybrid screen of E2-E3 (RING) interactions and mutagenesis, we reveal how the dynamics of an internal salt-bridge network at the rim of the E2-E3 interaction surface controls the balance between an “open”, binding competent, and a “closed”, binding incompetent state. The molecular dynamic simulations shed light on the fine mechanism of this molecular switch and allowed us to identify its components, namely an aspartate/glutamate pair, a lysine acting as the central switch and a remote aspartate. Perturbations of single residues in this network, both inside and outside the interaction surface, are sufficient to switch the global E2 interaction selectivity as demonstrated experimentally. Taken together, our results indicate a new mechanism to control E2-E3 interaction selectivity at an atomic level, highlighting how minimal changes in amino acid side-chain affecting the dynamics of intramolecular salt-bridges can be crucial for protein-protein interactions. These findings indicate that the widely accepted sequence-structure-function paradigm should be extended to sequence-structure-dynamics-function relationship and open new possibilities for control and fine-tuning of protein interaction selectivity.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Sjoerd J. L. van Wijk, Adrien S. J. Melquiond, Sjoerd J. de Vries, H. Th. Marc Timmers, Alexandre M. J. J. Bonvin
URN:urn:nbn:de:hebis:30:3-274639
DOI:http://dx.doi.org/10.1371/journal.pcbi.1002754
ISSN:1932-6203
Parent Title (English):Plos one
Publisher:PLoS
Place of publication:Lawrence, Kan.
Document Type:Article
Language:English
Date of Publication (online):2012/11/01
Date of first Publication:2012/11/01
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Release Date:2012/11/05
Volume:8
Issue:(11): e1002754
Pagenumber:9
First Page:1
Last Page:9
Note:
Copyright: © 2012 van Wijk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Institutes:Biochemie und Chemie
Medizin
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sondersammelgebiets-Volltexte
Licence (German):License LogoCreative Commons - Namensnennung 3.0

$Rev: 11761 $