Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions

Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalyt
Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Author:Marc von Hobe, Slimane Bekki, Stephan Borrmann, Francesco Cairo, Francesco D'Amato, Guido Di Donfrancesco, Andreas Dörnbrack, Andreas Ebersoldt, Martin Ebert, Claudia Emde, Ines Engel, Manfred Ern, Wiebke Frey, Sabine Grießbach, Jens-Uwe Grooß, Thomas Gulde, Gebhard Günther, Maria Elisabeth Hösen, Lars Hoffmann, Viktoria Homonnai, Christopher Robert Hoyle, I. S. A. Isaksen, David R. Jackson, Imre M. Jánosi, Konrad Kandler, Christoph Kalicinsky, Andrea Keil, Sergey M. Khaykin, Farahnaz Khosrawi, Rigel Kivi, Jayan Kuttippurath, Johannes Christian Laube, Franck Lefèvre, Ralph Lehmann, Sabrina Ludmann, Beiping P. Luo, Marion Marchand, Jessica Meyer, Valentin Mitev, Sergej Molleker, Rolf Müller, Hermann Oelhaf, Friedhelm Olschewski, Yvan Orsolini, Thomas Peter, Klaus Pfeilsticker, Christof Piesch, Michael C. Pitts, Lamont R. Poole, Francis D. Pope, Fabrizio Ravegnani, Markus Rex, Martin Riese, Thomas Röckmann, Bjørg Rognerud, Anke Roiger, Christian Rolf, Michelle L. Santee, Monika Scheibe, Cornelius Schiller, Hans Schlager, Matteo Siciliani de Cumis, Nikolay Sitnikov, Ole Amund Søvde, Reinhold Spang, Nicole Spelten, Frode Stordal, Olga Sumińska-Ebersoldt, Silvia Viciani, C.-Michael Volk, Marcel vom Scheidt, Alexey Ulanovski, Peter von der Gathen, Kaley A. Walker, Tobias Wegner, Ralf Weigel, Stephan Weinbruch, Gerald Wetzel, Franck G. Wienhold, Johannes Wintel, Ingo Wohltmann, Wolfgang Woiwode, Isla A. K. Young, Vladimir Yushkov, Bernhard Zobrist, Fred Stroh
Parent Title (English):Atmospheric chemistry and physics / Discussions
Publisher:European Geosciences Union
Place of publication:Katlenburg-Lindau
Document Type:Article
Date of Publication (online):2012/11/27
Date of first Publication:2012/11/27
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2013/03/20
First Page:30661
Last Page:30754
© Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
HeBIS PPN:335431267
Dewey Decimal Classification:550 Geowissenschaften
Licence (German):License LogoCreative Commons - Namensnennung 3.0

$Rev: 11761 $