Theoretische und experimentelle Untersuchungen zu Wechselwirkungen organischer Spurenstoffe mit Eis und Bestimmung der Kristallstrukturen organischer Spurenstoffe mittels Röntgenpulverdiffraktometrie

  • Die Wechselwirkungen von flüchtigen organischen Verbindungen (VOCs) mit Eis in der Atmosphäre sind für viele umweltrelevante Aspekte von Interesse, dennoch gibt es bisher erst wenige Untersuchungen zu dieser Thematik. Im Rahmen dieser Arbeit wurden die Wechselwirkungen verschiedener VOCs mit Eis durch Kraftfeldrechnungen simuliert. Als Substanzen wurden das Keton Aceton, die Kohlenwasserstoffe Isopren und Mesitylen, die Alkohole Ethanol, tert-Butanol, 2-Methyl-3-buten-2-ol (MBO) und Perillylalkohol, die Ether Methyl-tert-butylether und Ethyl-tert-butylether (ETBE) sowie die Aldehyde Nonanal und Methacrolein ausgewählt. Hierbei wurden sowohl die Adsorption an verschiedenen Oberflächen von hexagonalen Eis (Eis Ih) und von kubischem Eis (Eis Ic) als auch die Absorption in Eiskristallen und an den darin enthaltenen Linien- und Flächendefekten betrachtet. Für jedes VOC wurden die resultierenden Strukturen sowie die dazu gehörigen Enthalpien ermittelt und mittels Boltzmann-Statistik ausgewertet. Für die Berechnung der Wechselwirkungen von VOC mit Eis wurde ein Kraftfeld entwickelt, das sowohl die Strukturen von Eis Ih und Eis Ic als auch die Strukturen der organischen Moleküle und ebenso die Wechselwirkungen zwischen Eis und organischem Molekül gut wiedergibt. Es basiert auf dem für organische Moleküle verwendeten DREIDING-Kraftfeld und wurde modifiziert mit Parametern für Wasser aus dem TIP5P-E-Kraftfeld. Das Kraftfeld wurde an Ab-initio-Rechnungen und experimentellen Daten validiert. Die Simulationen erbrachten folgende Ergebnisse: – Unpolare Kohlenwasserstoffe werden nur in geringem Maße an den Eisoberflächen adsorbiert; eine Absorption in die Eiskristalle ist energetisch noch wesentlich ungünstiger. Für diese Verbindungen ist der Austrag aus der Atmosphäre durch Wechselwirkungen mit der Eisphase daher nicht relevant. – Sauerstoffhaltige Verbindungen werden an der Eisoberfläche gut adsorbiert. Zwischen dem VOC-Molekül und der Eisoberfläche bilden sich Wasserstoffbrückenbindungen aus. Ihre Anzahl ist abhängig von der Art des Moleküls (Keton, Aldehyd, Ether oder Alkohol). Die Simulationen zeigen, dass die nasse Deposition durch Wechselwirkungen mit der Eisphase für diese Stoffe ein Austragsweg aus der Atmosphäre ist, der nicht vernachlässigt werden darf. – Bei einem Einbau von VOC-Molekülen in den Eiskristall wird die Eisstruktur teilweise erheblich verzerrt. Je kleiner die VOC-Moleküle sind, desto geeigneter sind sie für einen Einbau in den Eiskristall; bei größeren Molekülen ist der Einbau aufgrund des sterischen Anspruchs behindert. Zunehmende Größe des Moleküls begünstigt andererseits die Adsorption. Parallel zu den theoretischen Untersuchungen wurde eine Apparatur entwickelt, mit der sich die Ad- und die Absorption von VOCs beim Wachsen der Eiskristalle experimentell untersuchen lässt. Die Eiskristalle entstehen dabei unter kontrollierten Bedingungen und wachsen, wie in der Atmosphäre, durch Anlagerung von Wasserdampf. Gleichzeitig wird dem Wasserdampf eine definierte Menge an VOC zugegeben. Das entstehende Eis wurde mittels GC analysiert. Als alternatives Analyseverfahren zur Bestimmung von VOCs in Wasser wurde ein NMR-Verfahren entwickelt, das quantitative Messungen im dreistelligen ppm-Bereich erlaubt. Erste Untersuchungen an Eiskristallen, die in Gegenwart von ETBE erzeugt wurden, zeigten, dass dieses VOC − wie auch in den Simulationen vorhergesagt − überwiegend an der Oberfläche von Eis adsorbiert, und nicht in den Eiskristall eingebaut wird. Für ETBE wurde im Rahmen dieser Arbeit zusätzlich die Kristallstruktur der alpha-Phase aus Röntgenpulverdaten durch Kristallstrukturvorhersage und Realraummethoden bestimmt. ETBE kristallisiert in der für organische Verbindungen sehr seltenen Raumgruppe C 2/m. Die experimentelle Kristallstruktur entspricht der von der Dichte her günstigsten, von der Gitterenergie her zweitgünstigsten vorhergesagten Kristallstruktur. Die Kristallstruktur eines zweiten VOCs, MBO, konnte ebenfalls aus Röntgenpulverdaten bestimmt werden, obwohl die Kristallstruktur drei symmetrieunabhängige Moleküle pro asymmetrischer Einheit enthält. Da sowohl ETBE als auch MBO bei Raumtemperatur flüssig sind, wurden beide für die Messungen bei tiefer Temperatur kristallisiert. Die Kristallstrukturen dieser beiden VOCs können wiederum zur Simulation von sekundären organischen Aerosolen in der Atmosphäre genutzt werden. Auch die Kristallstrukturen zweier weiterer Verbindungen konnten aus Röntgenpulverdaten bestimmt werden: zum einen die Strukturen des Trihydrates, des Monohydrates und des Anhydrates von Pigment Red 57:1 (C18H12CaN2O6S), dem wichtigsten industriellen Rotpigment, mit dem weltweit die Mehrheit aller Zeitungen und Zeitschriften gedruckt werden, zum anderen die Struktur des 2-Butanol-Hemisolvats von Methyl-(2R,3R)-2-{3-[amino(imino)methyl]benzyl}-3-{[4-(1-oxido-4-pyridinyl)benzoyl]¬amino}butanoat-hydrochlorid. Mit diesen Arbeiten konnte gezeigt werden, dass Kristallstrukturen organischer Verbindungen aus Röntgenpulverdaten auch dann bestimmt werden können, wenn verschiedene Probleme kombiniert auftreten, z. B. schlecht kristalline Pulver, Textur, Solvate, Hydrate, Fehlordnung, funktionelle Gruppen mit vergleichbarer Streukraft, mehrere symmetrieunabhängige Moleküle, hohe Anzahl von Parametern bei der Strukturlösung etc. Die Ergebnisse dieser Arbeit zeigen deutlich, dass die Wechselwirkungen zwischen sauerstoffhaltigen VOC-Molekülen und der Eisphase nicht vernachlässigt werden dürfen. Sie sollten in Simulationen der Atmosphäre berücksichtigt werden, um so Aussagen über Auswirkungen auf das Klima und andere umweltrelevante Aspekte zu verbessern.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sonja Hammer
URN:urn:nbn:de:hebis:30:3-297427
Referee:Martin U. SchmidtGND, Erich Paulus
Advisor:Martin U. Schmidt
Document Type:Doctoral Thesis
Language:German
Year of Completion:2012
Year of first Publication:2012
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2013/03/07
Release Date:2013/04/26
Page Number:XVI, 185
HeBIS-PPN:320905675
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht