Der AF4- und AF4·MLL-Multiproteinkomplex und deren potentielle Rollen in transkriptionellen und epigenetischen Prozessen

Ein weit verbreitetes Merkmal von Leukämien sind genetische Veränderungen, wobei die Entstehung der Leukämie häufig mit reziproken chromosomalen Translokationen assoziiert ist, welche zur Bildung chimärer Genprodukte füh
Ein weit verbreitetes Merkmal von Leukämien sind genetische Veränderungen, wobei die Entstehung der Leukämie häufig mit reziproken chromosomalen Translokationen assoziiert ist, welche zur Bildung chimärer Genprodukte führen. Eine Vielzahl dieser reziproken Translokationen basieren auf Translokationen des MLL Gens (Mixed Lineage Leukemia), die mit dem Krankheitstyp einer AML oder einer ALL verbunden sind. Die häufigste chromosomale Translokation ist die t(4;11) Translokation. Sie tritt vor allem bei Kleinkindern bzw. auch bei älteren Patienten mit einer Sekundärleukämie auf und resultiert in einer akuten lymphatischen Leukämie. Es handelt sich um eine Hochrisikoleukämie, welche aufgrund ihrer nahezu Therapie-resistenten Blasten mit einer besonders schlechten Prognose assoziiert ist. Der Mechanismus der Leukämieentstehung durch die MLL-Translokationen und der dabei entstehenden Fusionsproteine konnte bis heute nicht ausreichend geklärt werden. Für einige MLL-Translokationen, die mit einer myeloischen Leukämie verknüpft sind, konnte zunächst das onkogene Potenzial der Fusionsproteine im Mausmodell belegt werden. Im Bezug auf die t(4;11) Translokation blieben Ansätze zur Etablierung eines Tiermodells jedoch lang erfolglos. Erst 2006 konnten mittels einer knock-in-Strategie bzw. einem „inverter“-System Mausmodelle für MLL•AF4 entwickelt werden, in denen die Mäuse nach sehr langer Latenzzeit ein disseminiertes B-Zell-Lymphom aufwiesen. Ein neueres konditionales MLL•AF4 knock-in-Modell, in dem MLL•AF4 unter der Kontrolle des endogenen Zellzyklus-abhängigen MLL-Promotors steht, resultierte hingegen in einer ALL oder AML. Im Allgemeinen steht somit bislang das MLL•AF4-Fusionsprotein im Vordergrund der Erforschung des pathomolekularen Mechanismus der t(4;11) Translokation. Aufgrund der Tatsache, dass in der Regel jedoch neben dem MLL•AF4- ebenso ein AF4•MLL-Fusionstranskript nachgewiesen werden kann, befassten sich Studien unserer Arbeitsgruppe mit der Funktion des AF4•MLLFusionsproteins. Diese Untersuchungen zeigten, dass das AF4•MLL-Fusionsprotein in der Zelle akkumuliert und in der Entwicklung onkogener Effekte sowie der Wachstumstransformation der Zelle resultiert. Ergänzend belegten retrovirale Transduktions-/Transplantations-Experimente die Entwicklung einer akuten Leukämie im Mausmodell, wenn zuvor mit AF4•MLL bzw. mit AF4•MLL und MLL•AF4 transduzierte Stammzellen transplantiert wurden. Um nun die Funktion des AF4•MLL-Proteins sowie die molekularen Ursachen der beobachteten Eigenschaften besser verstehen zu können, wurde der AF4•MLL-Proteinkomplex mittels einer Strep-Tag-Affinitätschromatographie erfolgreich gereinigt und ein Molekulargewicht von ca. 2 MDa über Größenausschlusschromatographie bestimmt. Damit nicht nur ein Vergleich mit dem MLL- sondern auch mit dem AF4-Wildtyp- Proteinkomplex möglich war, wurden ebenfalls eine Größenbestimmung und eine Reinigung des AF4-Proteinkomplexes durchgeführt. Die folgenden Analysen der Komplexkomposition über Immunopräzipitationen, Western Blot-Analysen sowie massenspektrometrische Analysen zeigten, dass sich der AF4•MLL-Proteinkomplex aus Mitgliedern der beiden Wildtyp-Proteinkomplexe zusammensetzt; es wurden P-TEFb, HEXIM1, NFKB1, NPM1, DDX6 und das AF4-Wildtypprotein aus dem AF4-Komplex sowie ASH2L, RBBP5, WDR5, CREBBP, HCF-1 und HCF-2 aus dem MLL-Komplex nachgewiesen. Auf diese Weise werden im AF4•MLL-Proteinkomplex Eigenschaften bzw. Funktionen beider Wildtyp-Proteinkomplexe kombiniert. Um einen weiteren Hinweis auf die Funktion zu erhalten, wurde ergänzend ein in vitro Histon-Methyltransferase-Assay etabliert, der für beide gereinigten Proteinkomplexe eine Histonmethyltransferase-Aktivität zeigte. Basierend auf den vorliegenden Daten kann eine Konkurrenzsituation zwischen dem AF4•MLL-Proteinkomplex und den beiden Wildtyp-Proteinkomplexen um die entsprechenden Faktoren angenommen werden, welche die Assemblierung vollständiger und funktioneller Wildtyp-Proteinkomplexe verhindern könnte. Des Weiteren weisen die Ergebnisse auf Funktionen des AF4•MLL-Proteins in transkriptionellen Prozessen, Histonacetylierungen sowie der H3K4-Trimethylierung hin. Die Fehlregulation epigenetischer und transkriptioneller Prozesse durch die Anwesenheit des AF4•MLL-Proteinkomplexes spielt somit vermutlich eine entscheidende Rolle im pathomolekularen Mechanismus der t(4;11) Translokation.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Anne Benedikt
URN:urn:nbn:de:hebis:30-67883
Referee:Rolf Marschalek
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2009/07/15
Year of first Publication:2009
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2009/07/08
Release Date:2009/07/15
HeBIS PPN:213909235
Institutes:Pharmazie
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $