Phase transition in the chiral sigma-omega model with dilatons

We investigate the properties of di erent modifications to the linear -model (including a dilaton field associated with broken scale invariance) at finite baryon density and nonzero temperature T. The explicit breaking o
We investigate the properties of di erent modifications to the linear -model (including a dilaton field associated with broken scale invariance) at finite baryon density and nonzero temperature T. The explicit breaking of chiral symmetry and the way the vector meson mass is generated are significant for the appearance of a phase of nearly vanishing nucleon mass besides the solution describing normal nuclear matter. The elimination of the abnormal solution prohibits the onset of a chiral phase transition but allows to lower the compressibility to a reasonable range. The repulsive contributions from the vector mesons are responsible for the wide range of stability of the normal phase in the (µ, T)-plane. The abnormal solution becomes not only energet- ically preferable to the normal state at high temperature or density, but also mechanically stable due to the inclusion of dilatons. PACS number:12.39.F
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Panajotis Papazoglou, Jürgen Schaffner, Stefan Schramm, Detlef Zschiesche, Horst Stöcker, Walter Greiner
URN:urn:nbn:de:hebis:30-24004
Document Type:Preprint
Language:English
Date of Publication (online):2006/01/19
Year of first Publication:1996
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Release Date:2006/01/19
Tag:Kernmaterie; QCD ; Quanten-Chromodynamik
QCD ; Quantum chromodynamics ; nuclear matter
Source:Phys.Rev.C55:1499-1508,1997 ; http://arxiv.org/abs/nucl-th/9609035
HeBIS PPN:184964024
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $