Progressive retinal degeneration and glial activation in the Cln6nclf mouse model of neuronal ceroid lipofuscinosis : a beneficial effect of DHA and Curcumin supplementation

  • Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative lysosomal storage disorders characterized by vision loss, mental and motor deficits, and spontaneous seizures. Neuropathological analyses of autopsy material from NCL patients and animal models revealed brain atrophy closely associated with glial activity. Earlier reports also noticed loss of retinal cells and reactive gliosis in some forms of NCL. To study this phenomenon in detail, we analyzed the ocular phenotype of CLN6nclf mice, an established mouse model for variant-late infantile NCL. Retinal morphometry, immunohistochemistry, optokinetic tracking, electroretinography, and mRNA expression were used to characterize retinal morphology and function as well as the responses of Müller cells and microglia. Our histological data showed a severe and progressive degeneration in the CLN6nclf retina co-inciding with reactive Müller glia. Furthermore, a prominent phenotypic transformation of ramified microglia to phagocytic, bloated, and mislocalized microglial cells was identified in CLN6nclf retinas. These events overlapped with a rapid loss of visual perception and retinal function. Based on the strong microglia reactivity we hypothesized that dietary supplementation with immuno-regulatory compounds, curcumin and docosahexaenoic acid (DHA), could ameliorate microgliosis and reduce retinal degeneration. Our analyses showed that treatment of three-week-old CLN6nclf mice with either 5% DHA or 0.6% curcumin for 30 weeks resulted in a reduced number of amoeboid reactive microglia and partially improved retinal function. DHA-treatment also improved the morphology of CLN6nclf retinas with a preserved thickness of the photoreceptor layer in most regions of the retina. Our results suggest that microglial reactivity closely accompanies disease progression in the CLN6nclf retina and both processes can be attenuated with dietary supplemented immuno-modulating compounds.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Myriam Mirza, Cornelia Volz, Marcus Karlstetter, Monica Langiu, Aleksandra Somogyi, Mika O. Ruonala, Ernst R. Tamm, Herbert Jägle, Thomas Langmann
URN:urn:nbn:de:hebis:30:3-317831
DOI:https://doi.org/10.1371/journal.pone.0075963
ISSN:1932-6203
Parent Title (English):PLoS One
Publisher:PLoS
Place of publication:Lawrence, Kan.
Document Type:Article
Language:English
Date of Publication (online):2013/10/04
Date of first Publication:2013/10/04
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2013/10/10
Volume:8
Issue:(10):e75963
Page Number:11
Note:
Copyright: © 2013 Mirza et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
HeBIS-PPN:353648256
Institutes:Wissenschaftliche Zentren und koordinierte Programme / Center for Membrane Proteomics (CMP)
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 3.0