Charakterisierung des Abbaus von Mitochondrien in primären humanen Zellen

  • Autophagie ist ein evolutionär stark konservierter Degradationsmechanismus für geschädigte Proteine bis hin zu ganzen Organellen eukaryotischer Zellen. Dabei umhüllt eine Doppelmembran, bisher unbekannten Ursprungs, das zu degradierende Material und bildet das Autophagosom. Dies fusioniert später mit Lysosomen, wodurch dessen Inhalt proteolytisch zersetzt und die Bestandteile der Zelle wieder zur Verfügung gestellt werden kann. In dieser Abeit wurde der Fokus auf den mitochondrialen Abbau über Autophagie (Mitophagie) und dessen Funktion als ein mitochondrialer Qualitätsmechanismus gesetzt. Als Zellmodell wurden primäre humane Endothelzellen der Nabelschnurvene (HUVEC) verwendet. Diese zeichenen sich durch einen Übergang von einer mitotischen, jungen in eine lange postmitotische, seneszente Phase während der Kultiverungszeit aus. Dabei durchlaufen sie einer zelluläre und mitochondriale Morphologieänderung. , wodurch sich die Möglichkeit bot , die Autophagie unter verschiedenen Parametern zu betrachten. So wird generell eine Abnahme des autophagosomalen / lysosomalen Weges mit dem Alter beschrieben und die Abhängigkeit der Mitophagie von der mitochondrialen Länge. Mitophagie ist unter normalen Kultivierungsbedingungen ein mikroskopisch selten zu beobachtender Vorgang. Daher wurde ein mitochondriales Schädigungsystem etabliert, welches die photosensibiliesierende Wirkung des Farbstoffs MitoTracker Red Cmx Ros (MTR) nutzt, um Mitochondrien gezielt oxidativ zu schädigen und die Mitophagie zu aktivieren. Mitotische HUVEC zeigten 2 h – 8 h nach oxidativer Schädigung eine mitochondriale Fragmentierung größtenteils begleitet von einem Verlust des Membranpotentials. Über einen Zeitraum von 72h-120h kam es zur Regeneration des mitochondrialen Netzwerks durch Neusynthese mitochondrialer Biomoleküle. Entgegen der rescue Hypothese konnten oxidativ geschädigte Mitochondrien nicht durch eine Fusion mit funktional intakten Mitochondrien gerettet werden und wurden über den autophagosomalen / lysosomalen Weg abgebaut, gekennzeichnet durch die Ubiquitin-Ligase Parkin vermittelte Markierung und finaler Kolokalisation mit den autophagosomalen und lysosomalen Markerproteinen LC3B und LAMP-2A. Auf mRNA- und Proteinebene zeigte sich in diesem Zeitraum eine erhöhte Expression autophagie-relevanter Gene (ATGs) ATG5, ATG12 und LC3B. Der Vergleich von mitotischen mit postmitotischen HUVEC nach oxidativer Schädigung wies zwei grundlegende Unterschiede auf. Zum einem behielten, in Gegensatz zu jungen Zellen, die Mitochondrien alter HUVEC ihre Morphologie und ihr Membranpotential bei. Diese erhöhte Widerstandfähigkeit gegenüber oxidativem Stress konnte auf die erhöhte Expression der mitochondrial lokalisierten Serin / Threonin Kinase PINK1 zurückgeführt werden, ein Schlüsselgen in Parkinson. Die PINK1-Transkription stand invers zu der Expression der mitochondrialen Teilungsfaktoren Fis1- und Drp1, welche in postmitotischen HUVEC stark vermindert war. Andererseits wiesen alte Zellen eine verminderte Degradationsfähigkeit geschädigter Mitochondrien auf. Dieser Umstand war durch eine verminderte lysosomale Azidität bedingt. Eine externe ATP-Zugabe förderte die Azidität der Lysosomen alter Zellen und die Fusion mit Autophagosomen, wodurch Mitochondrien und ihre geringere ATP-Produktion im Alter als ein Faktor der Autophagie ermittelt weden konnte. Die Autophagierate steht in Verbindung mit der Lebensspanne von Zellen bis hin zu ganzen Organismen. Durch die Überexpression autophagie-relevanter GFP-Fusions-Proteine ATG5, ATG12 und LC3B, welche nach oxidativer Schädigung in ihrer Expression verstärkt wurden, förderten die Mitophagie und wurden stabil in junge HUVEC exprimiert. Diese Überexpressionen bewirkten eine verbesserte mitochondriale Qualität, veranschaulicht durch ein erhöhtes Membranpotential und die ATP-Bereitstellung, einer besseren mtDNA Integrität und sie verlängerten die Lebensspanne signifikant, wobei die Produktion von reaktiven Sauerstoffspezien (ROS), entgegen der von Harman aufgestellten Alterungstheorie, keine Verminderung zeigte. Dennoch wiesen sie einen erhöhten Gehalt oxidativ modifizierter Proteine auf, welche letztendlich auf die erhöhten Autophagosomenanzahl zurückgeführt werden konnte, in denen höchstwahrscheinlich das oxidativ geschädigte Material gelagert wird. In dieser Arbeit kann gezeigt werden, dass Mitochondrien nach oxidativer Schädigung eine Teilung vollziehen und geschädigte Mitochondrien selektiv über Autophagie abgebaut werden. Dabei fungiert Mitophagie als ein mitochondrialer Qualitätmechanismus und steht unmittelbar mit der Lebensspanne in Verbindung.

Download full text files

  • Dissertation_Soeren_Mai_2012.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sören Mai
URN:urn:nbn:de:hebis:30:3-329722
Referee:Jürgen Bereiter-HahnORCiDGND, Marina Jendrach
Document Type:Doctoral Thesis
Language:German
Year of Completion:2013
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2013/01/31
Release Date:2014/05/08
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:364931396
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG