Entwicklung und Aufbau eines Elektronenstrahl-Extraktionssystems für die Frankfurter EZR-Ionenquelle

Die vorliegende Arbeit entstand im Rahmen des Frankfurter 14.4GHz-EZR-(ve)RFQProjektes zur Erzeugung und Beschleunigung von hochgeladenen Ionen für atomphysikalische Experimente und zur Materialforschung. Die Kernelement
Die vorliegende Arbeit entstand im Rahmen des Frankfurter 14.4GHz-EZR-(ve)RFQProjektes zur Erzeugung und Beschleunigung von hochgeladenen Ionen für atomphysikalische Experimente und zur Materialforschung. Die Kernelemente dieser Anlage sind eine 14.4 GHz Elektron-Zyklotron-Resonanz-Ionenquelle, ein 90-137° Analysiermagnet und ein Radio-Frequenz-Quadrupol-Beschleuniger mit variabler Energie. In der EZR-Ionenquelle werden hochgeladene Ionen durch Stöße mit schnellen Elektronen erzeugt. Die Elektronen werden durch Überlagerung eines magnetischen Doppelspiegelfeldes mit einem magnetischen Hexapolfeld in der Quelle eingeschlossen und durch Mikrowellenleistung nach dem Zyklotron-Resonanz-Prinzip auf hohe Energien beschleunigt. Bei der Entwicklung von Ionenquellen für hochgeladene Ionen verfolgt man das Ziel hohe Strahlströme bei höchsten Ladungszuständen und guten Strahlqualitäten (kleine Emittanzen) zu erreichen. In dieser Arbeit wird ein neues Konzept für die Extraktion von Ionenstrahlen aus einem EZR-Plasma mit Hilfe eines intensiven Elektronenstrahls untersucht. Die hochgeladenen Ionen werden durch einen Potentialtopf im Plasma gehalten und können nur durch Abschalten der Mikrowellenleistung extrahiert werden (Afterglow-Effekt). Durch die Injektion eines intensiven Elektronenstrahls von der Extraktionsseite aus in das Plasma, soll lokal ein negativer Raumladungskanal erzeugt werden, durch den die hochgeladenen Ionen dem Potentialtopf entkommen können. Die Elektronen laufen dabei in entgegengesetzter Richtung zu den Ionen. Die Ionen erfahren eine anziehende Kraft durch den negativen Raumladungskanal der Elektronen in Richtung Achse und werden dadurch zusätzlich fokussiert. Der negative Raumladungskanal dient auch zur Führung der Ionen, welche durch eine Bohrung in der Kathode extrahiert werden. Durch den Einschuß des Elektronenstahls von der Extraktionsseite aus in das Plasma können weitere Verbesserungen der Quellenparameter erwartet werden. So z. B. die Erzeugung von Sekundärelektronen zum Ausgleich von Elektronenverlusten aus dem Plasma und zur Erhöhung der Plasmadichte, die Vorionisation von neutralen Gasteilchen zur Erhöhung des Ionisationsgrades des Plasmas und damit verbunden, die Verringerung von Ladungsaustauschprozessen zwischen neutralen Teilchen und hochgeladenen Ionen, schließlich die Erzeugung von Festkörperionen durch Verdampfen, insbesondere von Metallen mit hohem Siedepunkt (z. B. Wolfram) und die Verbesserung der Emittanz, da die Ionen durch den Elektronenstrahl näher der Achse geführt werden und dadurch die Ionen mit einem kleineren Strahlradius extrahiert werden. Für die Erzeugung des Elektronenstrahls wurde eine mit Barium imprägnierte Wolfram- Kathode benutzt. Diese besitzt eine Emissionsstromdichte von 1 A/cm2 bei einer Temperatur von 1100°C und einer Oberfläche von 3 cm2. Zur Fokussierung des Elektronenstrahls werden die magnetischen Felder der beiden EZR-Spulen genutzt. Die magnetischen Feldlinien werden durch passive Abschirmung so geformt, daß diese senkrecht durch die Oberfläche der Kathode stoßen. Die erzeugten Elektronen werden entlang dieser magnetischen Feldlinien geführt. Da die Elektronen in Richtung Plasma beschleunigt werden, laufen diese in ein ansteigendes Magnetfeld, welches für die Fokussierung und Kompression des Elektronenstrahls sorgt. Um die Leistung des Elektronenstrahls zu vernichten, wurde ein wassergekühlter Kollektor auf der Gaseinlaßseite in der Quelle installiert. Dieser übernimmt außerdem die disk-Funktion, zum Ausgleich von Elektronenverlusten aus dem Plasma und zur Erhöhung der Plasmadichte. Er besteht aus ferromagnetischen Material (Reineisen) und sorgt somit für eine Verbesserung des Jochschlusses der Magnetfeldspulen und für eine Verbesserung des Spiegelverhältnisses auf der Gaseinlaßseite von 2.9 auf 3.8. Beim ersten Testeinbau des neuen Extraktionssystems, bei dem der wassergekühlte Kollektor und damit die disk fehlte, wurde die Arbeitsfähigkeit der Elektronenkanone in der Umgebung der arbeiteten EZR-Ionenquelle demonstriert. Die Kathode wurde mit ihrer Orginalbohrung von 1 mm Durchmesser eingesetzt, wodurch die Ionenströme um bis zu einem Faktor 1000 im Vergleich zu den herkömmlich gemessenen Ionenströmen reduziert wurden. Durch das Fehlen der disk zeigen die aufgenommenen Ladungsspektren einen Intensitätsabfall zu hohen Ladungszuständen hin. Dennoch konnte gezeigt werden, daß mit Elektronenstrahl wesentlich höhere Ionenströme erreicht werden, als im Betrieb ohne Elektronenstrahl. Mit dem Einbau eines wassergekühlten Kollektors und der Vergrößerung der Kathodenbohrung auf 3 mm Durchmesser konnten die Ionenströme im Maximum bei Ar8+ auf 25 mA gesteigert werden, so daß nur noch ein Faktor 4 bis zu den besten Ergebnissen der Quelle fehlt. Da jedoch durch die 3 mm Kathodenbohrung die Emittanz des Ionenstrahls besser ist als mit dem herkömmlichen Extraktionssystem, wäre ein Vergleich der Brillanzen nötig, um genaue Aussagen über die Qualität des Elektronenstrahl- Extraktionssystems zu machen, jedoch fehlte hierzu eine Emittanz-Meßanlage. Die Ladungsverteilung zeigt auch wieder den gewöhnlich Verlauf mit dem Maximum bei Ar8+. Vergleicht man nun die Ladungsspektren mit unterschiedlichen Mikrowellenleistungen, so zeigt sich bei mittleren Mikrowellenleistungen (700 W) eine überproportionale Erhöhung des Ladungszustandes Ar12+, jedoch eine Reduzierung des Ladungszustandes Ar11+. Untersuchungen bei hohen Mikrowellenleistungen (1700 W), das bedeutet einer höheren Plasmadichte gegenüber den Messungen mit mittleren Mikrowellenleistungen, zeigen ebenfalls, daß der Änderungsfaktor des Ladungszustand Ar12+ größer ist, als der des Ladungszustand Ar11+. Die Ladungsspektren zeigen auch, daß der Elektronenstrahl bei niedrigeren Plasmadichten größere Auswirkung auf die hohen Ladungszustände hat, als bei hohen Plasmadichten. Dies zeigt, daß die Elektronenstrahldichten im Vergleich zur Plasmadichte viel zu gering sind, so daß z. B. der gewünschte Effekt der lokalen Potentialabsenkung nicht einsetzt und die Änderungen in der Ladungsverteilung im wesentlichen auf die Fokussierungseigenschaften des Elektronenstrahls zurückzuführen sind. Hierzu müssen weitere Untersuchungen mit höheren Elektronenstrahldichten vorgenommen werden. In diesem Zusammenhang sind auch Untersuchungen zur Größe des nutzbaren Ionenreservoirs im Plasma (z. B. durch Afterglow-Effekt) an der Frankfurter EZR-Ionenquelle notwendig.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Steffen Runkel
URN:urn:nbn:de:hebis:30-20194
URL:http://www.atom.uni-frankfurt.de/web/publications/diplom_doktor/
Document Type:Diplom Thesis
Language:German
Year of Completion:1998
Year of first Publication:1998
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Release Date:2005/10/28
HeBIS PPN:184943205
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $