Onkogene Transformationsprozesse der t(4;11)-assoziierten Leukämie: Expression von AF4•MLL in vitro und in vivo und Analyse kooperierender Ereignisse

In Deutschland erkranken pro Jahr ~1800 Kinder neu an Krebs, wobei Leukämien mit 33,8 % die häufigste diagnostizierte Krebsform darstellen. Besonders Leukämien mit dem Phänotyp einer akuten lymphatischen Leukämie (ALL) s
In Deutschland erkranken pro Jahr ~1800 Kinder neu an Krebs, wobei Leukämien mit 33,8 % die häufigste diagnostizierte Krebsform darstellen. Besonders Leukämien mit dem Phänotyp einer akuten lymphatischen Leukämie (ALL) sind mit der Erkrankung im Kindesalter assoziiert. Die häufigsten genetischen Ursachen kindlicher ALLs sind ein hyperdiploider Karyotyp oder chromosomale Translokationen. Unter Säuglingen im Alter von nur wenigen Monaten mit einer ALL treten hier oft reziproke chromosomale Translokationen mit Beteiligung des MLL-Gens auf. Die t(4;11)-assoziierte Leukämie, mit dem AF4-Gen als Translokationspartner, stellt den häufigsten Krankheits-Phänotyp dieser Patientengruppe dar. Die Erkrankung zeichnet sich durch eine stark erhöhte Leukozytenzahl im peripheren Blut bei Diagnose aus. Aufgrund immunphänotyperischer und morphologischer Analysen werden die Leukozyten und auch die Erkrankung durch einen pro B-Zell Phänotyp charakterisiert. Ein weiteres klinisches Merkmal ist das schnell auftretende Rezidiv, welches schlecht auf eine folgende Therapie anspricht und zu sehr geringen Überlebensraten führt, wodurch die t(4;11)-assoziierte Leukämie als Hochrisiko-Leukämie klassifiziert wird. Als genetische Grundlage des Mechanismus der t(4;11)-Leukämogenese wird die Expression der resultierenden Fusionsproteine MLL•AF4 und AF4•MLL angenommen. Durch die Expression beider Fusionsproteine wird die Funktion des Wildtyp MLL-Proteins gehemmt, welches als epigenetischer Regulator für die Hämatopoese und die Ausbildung des Körperbauplans während der Embryogenese essenziell ist. Weiterhin wird auch die Funktion des Wildtyp AF4-Proteins gehemmt, welches einen bedeutenden Bestandteil der zellulären Transkriptionsinitiations- und Elongationsmaschinerie darstellt. Außerdem beeinflussen beide Fusionsproteine zelluläre Mechanismen wie die Proliferation, das Überleben und die Differenzierung, weshalb die Erforschung des Pathomechanismus der Fusionsproteine essenziell für die Rekapitulation und damit für die Therapie und Heilung der Erkrankung ist.
Aktuell rekapitulieren Studien der beiden Fusionsproteine die humane Erkrankung jedoch nur unzureichend. Das MLL•AF4-Protein zeigte bisher eine Blockierung der Apoptose nach unterschiedlichsten Induktionen in zellbasierten Systemen. Allerdings konnte dem Fusionsprotein kein onkogenes Potenzial in vitro nachgewiesen werden und auch in vivo führte die Expression von MLL•AF4 zur Bildung von hauptsächlich myeloischen Neoplasien nach langen Latenzzeiten. Die Expression des reziproken AF4•MLL-Proteins führte in zellbasierten Systemen zu einem verstärkten Metabolismus durch die Steigerung der zellulären Transkription und beeinflusste so die Proliferation. Parallel trat eine hohe Apoptoserate auf, sodass die Proliferation nahezu unverändert schien. Da in vitro jedoch die Kontaktinhibition und Wachstumstransformation von Zellen gezeigt werden konnte und im Mausmodell der humane Phänotyp einer pro B-ALL ausgelöst wurde, scheint das AF4•MLL-Protein das treibende Onkogen der t(4;11)-assoziierten Leukämie zu sein. Allerdings wird die Erkrankung auch in diesem Modell erst nach einer langen Latenzzeit beobachtet und auch die zellulären Mechanismen, in welchen das onkogene Potenzial des reziproken Fusionsproteins entscheidend ist, bleiben weiter zu untersuchen. Deshalb sollten im Rahmen dieser Arbeit hauptsächlich die Auswirkungen der Expression des onkogenen AF4•MLL-Proteins unter verschiedenen Aspekten untersucht, und kooperierende Ereignisse analysiert werden.
Grundlegend sollte die Auswirkung des reziproken Fusionsproteins in humanen Zellen studiert, und auch Effekte des MLL•AF4-Proteins mit früheren Studien verglichen werden, um zellbiologisch relevante Mechanismen aufzudecken. Weiterhin sollte der Einfluss möglicher sekundärer Mutationen und die Wirkung von Koffein als Stimulans untersucht werden, um mögliche Ursachen der langen Latenzzeiten in t(4;11)-assoziierten Mausmodellen zu identifizieren. Da jedoch etwa 20 % aller t(4;11)-Patienten kein AF4•MLL-Protein bilden und als Reziprok oft der solitäre MLL C-Terminus exprimiert wird, sollte zudem der Effekt des MLL•C-Proteins im Mausmodell studiert werden. Insgesamt konnten alle erhobenen Daten mit Resultaten früherer Studien kombiniert werden, wodurch ein spezifisches Modell der t(4;11)-assoziierten Leukämogenese entstand. Das Modell diskutiert die onkogene Funktion des AF4•MLL-Proteins besonders während der hämatopoetischen Differenzierung. Durch die Ergebnisse dieser Arbeit zum klonogenen Wachstum der humanen Zellen nach Expression von AF4•MLL und der Ergebnisse im MLL•C-Mausmodell konnte ein Einfluss des Reziproks auf die Differenzierung von Leukozyten gezeigt werden.
Weiterhin konnte nach AF4•MLL-Expression in humanen Zellen die Steigerung des Metabolismus aber auch die einhergehende vermehrte Apoptose bestätigt werden, welche die lange Latenzzeit im AF4•MLL-Mausmodell begründen könnte. Durch Kooperation mit dem MLL•AF4-Protein, welches anti-apoptotische Effekte zeigt, könnte es jedoch zum frühen Ausbruch der Erkrankung im Säuglingsalter kommen. Allerdings konnte in dieser Arbeit auch eine Steigerung der Proliferation von MLL•AF4-exprimierenden Zellen beobachtet werden, wenn anti-apoptotische Mechanismen des Fusionsproteins inaktiv sind, welche aus der Aktivierung des RAS/RAF/MEK/ERK-Signalwegs resultiert. Werden neben der Translokation zusätzliche RAS-Mutationen aquiriert, die bei 26 % der Kinder mit einer t(4;11)-Leukämie auftreten, wird der Signalweg und somit die Proliferation der leukämischen Blasten zusätzlich stabilisiert. Dadurch kommt es zu höheren Leukozytenzahlen und einem noch früheren Ausbruch der Erkrankung. Weiterhin deckte die Analyse von sekundären Mutationen auch die Beteiligung des FLT3-Signalwegs an der Therapieresistenz durch Quieszenz auf. Ein besonderer Einfluss von Koffein als Stimulans in t(4;11)-Zellen konnte hingegen ausgeschlossen werden. So wurde der Pathomechanismus der t(4;11)-assoziierten Leukämie in dieser Arbeit weiterführend aufgeklärt, wodurch Strategien zur Therapie und Heilung der Erkrankung in Zukunft intensiviert werden können.  
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Carola Prelle
URN:urn:nbn:de:hebis:30:3-347438
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Rolf Marschalek, Robert Fürst
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2014/07/31
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2014/07/15
Release Date:2014/07/31
Pagenumber:147
HeBIS PPN:344052214
Institutes:Pharmazie
Dewey Decimal Classification:610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $