NMR-study of dynamic structural transtions in RNA-molecules

NMR-Untersuchungen zu dynamischen Umfaltungsprozessen in RNA-Molekülen

  • The following thesis is concerned with the elucidation of structural changes of RNA molecules during the time course of dynamic processes that are commonly denoted as folding reactions. In contrast to the field of protein folding, the concept of RNA folding comprises not only folding reactions itself but also refolding- or conformational switching- and assembly processes (see chapter III). The method in this thesis to monitor these diverse processes is high resolution liquid-state NMR spectroscopy. To understand the reactions is of considerable interest, because most biological active RNA molecules function by changing their conformation. This can be either an intrinsic property of their respective sequence or may happen in response to a cellular signal such as small molecular ligand binding (like in the aptamer and riboswitch case), protein or metal binding. The first part of the thesis (chapters II & III) provides a general overview over the field of RNA structure and RNA folding. The two chapters aim at introducing the reader into the current status of research in the field. Chapters II is structured such that primary structure is first described then secondary and tertiary structure elements of RNA structure. A special emphasis is given to bistable RNA systems that are functionally important and represent models to understand fundamental questions of RNA conformational switching. RNA folding in vitro as well as in vivo situations is discussed in Chapter III. The following chapters IV and V also belong to the introduction part and review critically the NMR methods that were used to understand the nature and the dynamics of the conformational/structural transitions in RNA. A general overview of NMR methods quantifying dynamics of biomolecules is provided in chapter IV. A detailed discussion of solvent exchange rates and time-resolved NMR, as the two major techniques used, follows. In the final chapter V of the first part the NMR parameters used in structure calculation and structure calculation itself are conferred. The second part of the thesis, which is the cumulative part, encompasses the conducted original work. Chapter VI reviews the general NMR techniques applied and explains their applicability in the field of RNA structural and biochemical studies in several model cases. Chapter VII describes the achievement of a complete resonance assignment of an RNA model molecule (14mer cUUCGg tetral-loop RNA) and introduces a new technique to assign quaternary carbon resonances of the nucleobases. Furthermore, it reports on a conformational analysis of the sugar backbone in this RNA hairpin molecule in conjunction with a parameterization of 1J scalar couplings. Achievements: • Establishment of two new NMR pulse-sequences facilitating the assignment of quaternary carbons in RNA nucleobases • First complete (99.5%) NMR resonance assignment of an RNA molecule (14mer) including 1H, 13C, 15N, 31P resonances • Description of RNA backbone conformation by a complete set of NMR parameters • Description of the backbone conformational dependence in RNA of new NMR parameters (1J scalar couplings) Chapters VII & VIII summarize the real-NMR studies that were conducted to elucidate the conformational switching events of several RNA systems. Chapter VIII gives an overview on the experiments that were accomplished on three different bistable RNAs. These molecules where chosen to be good model systems for RNA refolding reactions and so consequently served as reporters of conformational switching events of RNA secondary structure elements. Achievements: • First kinetic studies of RNA refolding reactions with atomic resolution by NMR • Application of [new] RT-NMR techniques either regarding the photolytic initiation of the reaction or regarding the readout of the reaction • Discovery of different RNA refolding mechanisms for different RNA molecules Deciphering of a general rule for RNA refolding methodology to conformational switching processes of RNA tertiary structure elements. The models for these processes were a) the guanine-dependent riboswitch RNA and b) the minimal hammerhead ribozyme. Achievements: • NMR spectroscopic assignment of imino-resonances of the hypoxanthine bound guanine-dependent riboswitch RNA • Application of RT-NMR techniques to monitor the ligand induced conformational switch of the aptamer domain of the guanine-dependent riboswitch RNA at atomic resolution • Translation of kinetic information into structural information • Deciphering a folding mechanism for the guanine riboswitch aptamer domain • Application of RT-NMR techniques to monitor the reaction of the catalytically active mHHR RNA at atomic resolution In the appendices the new NMR pulse-sequences and the experimental parameters are described, which are not explicitly treated in the respective manuscripts.
  • Die vorliegende Doktorarbeit beschäftigt sich mit den strukturellen Änderungen in RNA Molekülen während dynamischer konformationeller Änderungen, die gemeinhin als RNA-Faltung bezeichnet werden. Im Gegensatz zur Proteinfaltung sind RNA-Faltungsprozesse nicht exklusiv als die Faltung einer definierten Konformation aus einem Ensemble an ungefalteten, d.h. ausgehend von unstrukturierten Molekülen, zu verstehen. RNA-Faltung beinhaltet vielmehr die strukturelle Umwandlung verschiedener stabiler Konformationen (die als RNA-Umfaltung benannt wird) und den Aufbau von molekularen Komplexen aus mehreren Molekülen (siehe Kapitel III). Die experimentelle Technik, die hier zur Untersuchung dieser Prozesse genutzt wurde, ist die hochauflösende Flüssig-NMR-Spektroskopie. Das Verständnis der strukturellen und biophysikalischen Grundlagen solcher Umfaltungsreaktionen von RNA ist essentiell, da solche konformationellen Änderungen die biologische Funktion der Moleküle modulieren. Dabei ist zu bemerken, dass eine Umfaltungsreaktion eine intrinsische Eigenschaft einer gegebenen RNA-Sequenz sein kann oder die Antwort auf ein externes zelluläres Signal, wie die Bindung eines niedermolekularen Liganden (z.B. in Aptameren und in Riboswitch RNAs), eines Proteins oder eines Metall-Ions. Der erste Teil dieser Doktorarbeit (Kapitel I & II) hält einen Überblick über die Themengebiete RNA-Struktur und RNA-Faltung bereit. Beide Kapitel führen in den derzeitigen Stand der Forschung ein. Kapitel II führt dabei entlang der hierarchischen Ordnung von RNA Molekülen und diskutiert die Eigenschaften von Primär-, Sekundär- und Tertiär-Strukturelementen. Ein besonderes Augenmerk wird dabei auf bistabile RNA Systeme gelegt; ihre wichtige biologische Funktionalität wird dargestellt, ebenso wird das Potential ausgeleuchtet, diese funktionale Klasse von RNA Molekülen als Modellsysteme zu nutzen, um fundamentale Fragen zu konformationellen Übergängen in RNA zu beantworten. In Kapitel III folgt sodann die Diskussion über RNA-Faltung in in vitro Experimenten als auch im zellulären Kontext (in vivo). Die Kapitel IV und V besprechen die NMR-spektroskopischen Techniken, die genutzt werden, um die Art und die dynamischen Eigenschaften von konformationellen/strukturellen Umwandlungen in RNA zu untersuchen. Hierbei wird der Schwerpunkt auf die verwendeten Techniken des Wasseraustauschs an labilen Protonen und der zeitaufgelösten NMR-Spektroskopie gelegt. Der zweite Teil der Doktorarbeit fasst kumulativ die durchgeführten Studien zusammen. Kapitel VI bespricht hierbei die grundlegenden NMR Techniken, die zur Strukturaufklärung von RNA Molekülen angewendet werden und zeigt deren Anwendungsmöglichkeiten an unterschiedlichen Beispielen von strukturellen und biochemischen Studien. Das folgende Kapitel VII beschreibt die komplette Resonanzzuordnung eines RNA Modell-Moleküls (14mer cUUCGg tetra-loop RNA) und stellt eine neue Pulstechnik vor, die zur Zuordnung der Resonanzen von quatären Kohlenstoffen in Purinbasen benützt werden kann. Weiterhin schließt sich ein Report an, wie die Konformation des Zuckerrückgrates in RNA-Molekülen bestimmt wird und schlägt mittels einer an oben genanntem Modellsystem durchgeführte Parametrisierung 1J skalare Kopplungen als neue Strukturparameter vor. Kapitel VII & VIII fassen die hierzu durchgeführten RT-NMR Studien zusammen. Kapitel VIII gibt hierbei einen Überblick über die Untersuchungen an drei bistabilen RNA-Systemen. Diese Moleküle wurden ausgewählt, da sie als Modelle für RNA-Umfaltungsreakionen dienen. Das finale Kapitel IX behandelt die Anwendung der oben ausgeführten neuen Methodologie auf konformationelle Umwandlungen von RNA Tertiär-Strukturelementen: a) Guanin-abhängige Riboswitch RNA (GSW) und b) Minimales "hammerhead" Ribozym (mHHR).

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Boris FürtigORCiDGND
URN:urn:nbn:de:hebis:30-50708
Referee:Harald SchwalbeORCiDGND, Clemens GlaubitzORCiD
Advisor:Harald Schwalbe
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2007/11/09
Year of first Publication:2007
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2007/10/25
Release Date:2007/11/09
Tag:NMR-spectroscopy; RNA; RNA-folding; dynamics; molecular structure
GND Keyword:NMR-Spektroskopie; Proteinfaltung; Dynamik; Molekülstruktur; RNS
Page Number:254
HeBIS-PPN:191769142
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht