Bioaktive Lipide : funktionale Liganden des Lipidstoffwechsels

Sphingolipide sind an zahlreichen physiologischen und pathophysiologischen Prozessen im Körper beteiligt. Vor Allem das sowohl auto- als auch paracrinwirkende Sphingosin-1-Phosphat (S1P) spielt dabei eine essentielle Rol
Sphingolipide sind an zahlreichen physiologischen und pathophysiologischen Prozessen im Körper beteiligt. Vor Allem das sowohl auto- als auch paracrinwirkende Sphingosin-1-Phosphat (S1P) spielt dabei eine essentielle Rolle. Ein Großteil der S1P-vermittelten / regulatorischen Effekte beruht auf dessen Wechselwirkung mit den fünf G Protein-gekoppelten S1P-Rezeptoren (S1P1-5). S1P nimmt hierüber Einfluss auf das Schicksal der Zellen (Proliferation, Überleben, Migration), die Zellmobilität, die Angiogenese und das Immunsystem. Viele der über die S1P-Rezeptor-vermittelten Effekte sowie deren Rolle und Funktion in einzelnen Geweben oder Organen sind bis heute noch nicht komplett verstanden bzw. erklärbar. Pharmakologische Tools können einen wichtigen Beitrag zur weiteren Erforschung und zum Verständnis des komplexen Sphingolipidnetzwerks leisten. Ausgehend von einer substituierten Diaryl-1,2,4-oxadiazol-Leitstruktur, die in der Literatur als privilegierte Struktur für S1P1-Rezeptoragonisten gilt, und dem selektiven S1P1-Agonisten SEW2871 wurden verschiedene Liganden mit unterschiedlichen chemischen Gruppen synthetisiert. Nach der Etablierung eines Synthesewegs zu etherverknüpften Aminoethan-diphenyl-1,2,4-oxadiazolen wurden diese in die fluoreszierenden Dansyl-, Isoindolin-, Pyridinium-Dye- und Coumarin-gelabelten Derivate überführt. Außerdem wurde eine einfache und optimierte Syntheseroute zu dem kleinen, umgebungsempfindlichen Fluorophor 4-(Dimethyl-amino)phthalimid (4-DMAP) entwickelt, dass entlang eines linearen Synthesewegs in guten Aus-beuten auch mit den Trifluormethyl- und Methyl-substituierten Diphenyloxadiazol-Grundstrukturen zu fluoreszenzmarkierten Derivaten umgesetzt wurde. Neben den fluoreszenzmarkierten Liganden für den S1P1-Rezeptor wurden zudem drei substituierte Phenyloxadiazolaniline zu den entspre-chenden Acrylamiden umgesetzt, die als kovalente Labeling Tools eingesetzt werden können. Durch die Synthese von Trifluormethyl- und Cyano-substituierten 4-DMAP-markierten Diaryloxa-diazolen sowie von Arylpropansäurederivaten wurde die gewählte Leitstruktur auf Grundlage einer ersten Affinitätstestungen verfeinert. Dabei wurde die zuvor entwickelte Synthese-strategie optimiert. Der Aufbau der Arylpropansäuren erfolgte durch eine Heck-Reaktion mit Acroleindiethylacetal. Durch den Wechsel der Synthesestrategie von 1. Heck-Reaktion und 2. Oxadiazolringschluss zur umgekehrten Vorgehensweise konnte eine Reihe von synthetischen Problemen umgangen werden und die Gesamtausbeute gesteigert werden.
Zwei der fluoreszenzmarkierten S1P1-Liganden mit verfeinerter Grundstruktur zeigten eine durch die Bindung an den S1P1-Rezeptor verursachte Internalisierung des Rezeptors, die durch die GFP-Markierung unter dem Fluoreszenzmikroskop sichtbar gemacht wurde. Diese Internalisierung lieferte weitere Hinweise, dass die beiden Substanzen eine durch Bindung am S1P1-Rezeptor verursachte, agonistische Wirkung haben. Die weitere pharmakologische Charakterisierung aller synthetisierten, funktionellen Liganden im Bereich der Sphingolipide steht noch aus. Leukotriene (LT) sind wichtige Lipidmediatoren, die durch Oxygenierung von Arachidonsäure entstehen. Sie nehmen eine zentrale Rolle ein in der Entstehung und dem Voranschreiten von Entzündungen, allergischen Reaktionen, Asthma, kardiovaskulären Erkrankungen und auch bei Krebserkrankungen. Das Schlüsselenzym der LT-Biosynthese ist das Enzym 5-Lipoxygenase (5-LO). Zur Behandlung von LT-assoziierten Krankheiten sind bis heute nur zwei Wirkstoffe zugelassen, die in den LT-Stoffwechsel eingreifen: der Cys-LT-Rezeptorantagonist Montelukast (Singulair®) und der eisenchelatisierende 5-LO-Inhibitor Zileuton (Zyflo®, nur in den USA zugelassen). Es besteht daher ein großer Bedarf an neuen, selektiven Liganden. C06 ist einer der am besten charakterisierten Vertreter einer neue Klasse an potenten, direkten und selektiven 5-LO-Inhibitoren: den Aryliden-Aryl-Thiazolonen, die ein großes Potential für die Entwicklung neuer anti-Leukotrien Arzneistoffe aufweisen. In-vivo-Experimente haben jedoch gezeigt, dass C06 und seine Derivaten nicht optimale pharmakologische Profile besitzen und zudem nur in geringem Maße im Wässrigen löslich sind. Durch die Optimierung und Etablierung einer mikrowellenassistierte Drei-Komponenten-one-pot-Synthese sowie einer verwandten zweistufigen Synthese zum Aufbau der Aryliden-Aryl-Thiazolone, konnte die Reaktionszeit verringert werden und daher die Isolierung und Aufreinigung vereinfacht werden. Zur Steigerung der Löslichkeit der Aryliden-Aryl-Thiazolone in wässrigen Systemen und zur weiteren Erforschung der SAR wurde einige Derivate mit polaren Substituenten, unterschiedlichen Wasserstoffbrückenbindungs-Eigenschaften, Morpholinderivate und verschiedene heteroaromatische Aryliden-Aryl-Thiazolone hergestellt, wobei die Heteroarylderivate aufgrund ihrer niedrigeren, berechneten Lipophilie (clogP) und höheren berechneter Löslichkeit (clogS) ausgewählt wurden. Für alle synthetisierten Derivate wurde die Inhibition der 5-LO-Produktbildung unter zellfreien (S100) und unter zellulären Bedingungen (PMNL) bestimmt. Zudem wurden für einige Derivate die experimentellen Löslichkeiten in DMSO und in Puffer grob ermittelt. Die Ergebnisse zeigen, dass alle besser löslichen Derivate einen höheren IC50-Wert im zellbasierten Assay aufweisen bzw. die potentesten Substanzen nicht gut im Wässrigen löslich sind. Zur Charakterisierung der unbekannten, allosterischen Bindestelle der Aryliden-Aryl-Thiazolone wurde eine Reihe von zum kovalenten bzw. zum Photoaffinity-Labeling fähigen Aryliden-Aryl-Thiazolonderivaten synthetisiert. Alle Derivate wiesen gute bis sehr gute 5-LO Affinitäten auf und durch Vorversuche konnte die prinzipielle Eignung zum Photoaffinity-Labeling gezeigt werden. Da sowohl die polaren als auch die heteroarylbasierten Aryliden-Aryl-Thiazolone die bekannte kontinuierliche SAR wiederspiegelten und keine hohe Wasserlöslichkeit bei gleichzeitiger hoher 5-LO-Inhibition erreicht werden konnte, wurden die einzelnen Element des Aryliden-Aryl-Thiazolon-grundgerüstes durch individuelle Synthesen variiert. Diese Kernvariations- und die an der Aryliden-einheit variierten Derivate haben die SAR der Aryliden-Aryl-Thiazolone deutlich erweitert und konnten die für die 5-LO-Aktivität wichtigen Elemente identifizieren. Dadurch ist es gelungen, die 2-Aryl-5-aryl(methyl)thiazol-4-ole als 5-LO-Leitstruktur zu erschließen, die sowohl unter zellfreien Bedingungen (S100) als auch im zellbasierten Assay (PMNL) Aktivitäten im nanomolaren Bereich erreichen. Mit den 2-Aryl-5-arylmethylthiazol-4-olen konnte außerdem die Löslichkeit in DMSO und vor allem im Wässrigen, verglichen zu C06, deutlich erhöht werden. ST-1829 ist ein C06-Analogon, dass die Nachteile im pharmakologischen Profil von C06 eliminiert und zu einem neuen, effektiven Wirkstoff in der anti-Leukotrien Therapie weiter entwickelt werden kann.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS
Metadaten
Author:Andreas Paul Lill
URN:urn:nbn:de:hebis:30:3-355287
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Holger Stark, Dieter Steinhilber
Advisor:Holger Stark
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2014/11/04
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2014/10/27
Release Date:2014/11/05
Pagenumber:320
HeBIS PPN:349369224
Institutes:Pharmazie
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $