Über den Anteil der Nullstellen der Riemannschen Zeta-Funktion auf der kritischen Geraden

Im Mittelpunkt der vorliegenden Arbeit stehen die Nullstellen der nach Bernhard Riemann benannten Riemannschen Zetafunktion ..(s). Diese Funktion kann für komplexes s mit Res > 1 durch ...(s) = 1 X n=1 1 ns (1.1.1) darge
Im Mittelpunkt der vorliegenden Arbeit stehen die Nullstellen der nach Bernhard Riemann benannten Riemannschen Zetafunktion ..(s). Diese Funktion kann für komplexes s mit Res > 1 durch ...(s) = 1 X n=1 1 ns (1.1.1) dargestellt werden. Für andere Werte von s ist ...(s) durch die analytische Fortsetzung der Dirichlet-Reihe in (1.1.1) gegeben. Die ...-Funktion ist in der ganzen komplexen Ebene holomorph, mit Ausnahme des Punktes s = 1, wo sie einen einfachen Pol besitzt. Diese und weitere Eigenschaften von ...(s) setzen wir in dieser Arbeit als bekannt voraus, näheres findet man beispielsweise in [Tit51] oder [Ivi85]. Bereits Euler betrachtete, beispielsweise in [Eul48, Caput XV], die Summe in (1.1.1), allerdings vor allem für ganzzahlige s ... 2. Von ihm stammt die Gleichung 1 X n=1 1 ns =.... die für alle komplexen s mit Res > 1 gültig ist. Dieser Zusammenhang zwischen der ...-Funktion und den Primzahlen war Ausgangspunkt für Riemanns einzige zahlentheoretische, aber dennoch wegweisende Arbeit \ Über die Anzahl der Primzahlen unter einer gegebenen Grösse." ([Rie59]). In dieser 1859 erschienenen Arbeit erkannte Riemann als erster die Bedeutung der Nullstellen der ...-Funktion für die Verteilung der Primzahlen. Bezüglich dieser Nullstellen sei jetzt nur so viel gesagt, daß ...(s) einfache Nullstellen an den negativen geraden Zahlen .... besitzt, und, daß alle weiteren, die sogenannten nicht-trivialen Nullstellen, im kritischen Streifen 0 < Res < 1 liegen. Diese letzteren | unendlich vielen | Nullstellen sind gerade für den Primzahlsatz, also für die Beziehung ...(x) ... li(x);
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Peter J. Bauer
URN:urn:nbn:de:hebis:30-18655
URL:http://www.math.uni-frankfurt.de/~pbauer/
Document Type:Diplom Thesis
Language:German
Year of Completion:1992
Year of first Publication:1992
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Release Date:2005/10/13
HeBIS PPN:184907071
Institutes:Mathematik
Dewey Decimal Classification:510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $