Das MLL-Protein in der Rolle als transkriptioneller Aktivator oder Repressor und das Protein-Protein-Interaktionsnetzwerk der humanen AF4-/AF4•MLL-Multiproteinkomplexe

In Deutschland erhalten jährlich etwa 12.500 Patienten die Diagnose Leukämie. Unter ihnen befinden sich ca. 6 % Kinder, welche mit 33,8 % den größten Anteil der kindlichen Krebsneuerkrankungen repräsentieren. Die überwie
In Deutschland erhalten jährlich etwa 12.500 Patienten die Diagnose Leukämie. Unter ihnen befinden sich ca. 6 % Kinder, welche mit 33,8 % den größten Anteil der kindlichen Krebsneuerkrankungen repräsentieren. Die überwiegende Form im Kindesalter ist die akute lymphatische Leukämie (ALL), deren genetische Ursache meistens in einem hyperdiploiden Karyotyp oder einer chromosomalen Translokation zu finden ist. Bei 8 % der pädiatrischen ALLs ist ein Rearrangement des MLL-Gens involviert. Unter Beteiligung des häufigsten Translokationspartnergens (TPG) AF4 entsteht die t(4;11)(q21;q23)-Translokation mit den beiden Fusionsproteinen AF4•MLL sowie MLL•AF4. Die Therapie erfolgt in der Regel gemäß Hochrisikoprotokollen aufgrund der extrem schlechten Prognose und der mit hoher Therapieresistenz assoziierten Rezidivrate. Eine Studie zur Korrelation zwischen klinischen Merkmalen und molekularen Charakteristika belegte die Abhängigkeit des Outcomes von der Verteilung des Bruchpunkts im MLL-Gen. Bei älteren Patienten treten die Bruchpunkte überwiegend in MLL Intron 9 oder 10 auf und bedeuten eine signifikant bessere Prognose im Vergleich zu den besonders bei Säuglingen präsenten Bruchpunkten im MLL Intron 11. Die damit verbundene Verkürzung der Plant Homeodomain (PHD) 1 kann neben  einer modifizierten Funktion des PHD1 auch in einer veränderten Konformation der gesamten PHD-Domäne resultieren. Besondere Bedeutung hat die PHD1-3-Domäne wegen der Fähigkeit des PHD3 einerseits H3K4me-Signaturen zu erkennen und auf der anderen Seite mit CYP33 zu interagieren. Die mit transkriptionell aktivem Chromatin assoziierten H3K4me-Signaturen sowie die CYP33-vermittelte repressive Aktivität bedingen einen ambivalenten Charakter des MLL-Proteins. Daneben ist der PHD3 allein interessant wegen des Vorkommens von 4 differenten Varianten mit keinen, 3, 11 oder 14 fehlenden Aminosäuren, welche durch alternatives Spleißen an der MLL Exon 15/16-Verknüpfung entstehen (PHD3-0, PHD3-3, PHD3 11 und PHD3-14). Semiquantitative Bestimmungen in verschiedenen Zelllinien verdeutlichen die nahezu ähnliche Transkription aller 4 Varianten. Weiterführende Untersuchungen mit dem Yeast Two-Hybrid (Y2H)-System sowie folgende Koimmunpräzipitations (CoIP)-Experimente zeigten, dass der PHD3-0 die beste Dimerisierungsfähigkeit aufweist. Dagegen ist der am schlechtesten dimerisierende PHD3-3 allein in der Lage, CYP33 bzw. dessen RRM-Domäne zu binden. Die Interaktion mit inhibitorischen Proteinen und die folgende Funktion als transkriptioneller Repressor sind allein mit der PHD3-3-Variante möglich. Bei Betrachtung der gesamten PHD1-3-Domäne sowie deren verkürzter Variante (ΔPHD1-3) fällt die reduzierte Bindungsfähigkeit der ΔPHD1-3-Domäne an die CYP33 RRM-Domäne sowie deren fehlende Dimerisierung auf. Über die resultierende geringere Bindung an inhibitorische Proteine kann die transkriptionell repressive Aktivität reduziert werden, während die transkriptionell aktive Funktion an Bedeutung gewinnt. Neben der Untersuchung der PHD-Domänen des MLL-Proteins wurde das Y2H-System zur weiteren Aufklärung der AF4- und AF4•MLL-Multiproteinkomplexe (MPC) verwendet. Ähnlich den Wildtypproteinen MLL und AF4 sind auch die beiden aus der t(4;11)(q21;q23)-Translokation resultierenden Fusionsproteine an der Assemblierung von MPCs beteiligt. Besonders das reziproke AF4•MLL scheint bezüglich des Therapieerfolgs für die Leukämogenese entscheidend zu sein. Die Identifizierung und Verifizierung sowohl bekannter als auch neuer Komponenten der AF4- und AF4•MLL-MPCs gelang in verschiedenen Experimenten. Allerdings wurde meist nur die Präsenz der Proteine im MPC nachgewiesen. Die Y2H-Untersuchungen konnten Interaktionen zwischen den verschiedenen Proteinen der Komplex identifizieren und damit die Kenntnis über die Zusammensetzung der MPCs wesentlich erweitern und vertiefen. Aufgrund der Beteiligung viraler Proteine an der Krebsentstehung sowie der Rekrutierung von Transkriptionsfaktoren der Wirtszelle für die virale Replikation erscheint auch die Nutzung der Superelongationskomplexe (SEC) durch virale Proteine plausibel. Die Funktion des AF4-Proteins als Kofaktor von viralen Proteinen, besonders der HCMV und EBV immediate early (IE)-Proteine, wurde bereits gezeigt. Außerdem konnte der Einfluss des HCMV IE1 auf AF4-abhängige Effekte sowie dessen Beteiligung am AF4-MPC nachgewiesen werden. Mithilfe der Y2H-Experimente konnten nicht nur Interaktionen des HCMV IE1 sondern auch Wechselwirkungen der Onkoproteine E6/E7 des HPV mit den Proteinen der AF4- und AF4•MLL-MPCs identifiziert werden.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Tanja Zwicker
URN:urn:nbn:de:hebis:30:3-365082
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Rolf Marschalek, Robert Fürst
Advisor:Rolf Marschalek
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2015/01/21
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/01/14
Release Date:2015/01/21
Pagenumber:IV, 122 S.
HeBIS PPN:353701386
Institutes:Pharmazie
Dewey Decimal Classification:610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $