Koinzidenzmessungen an chiralen Molekülen: Absolutkonfiguration und Zirkulardichroismus

Die vorliegende Arbeit befasst sich mit der Untersuchung einzelner chiraler Moleküle durch Koinzidenzmessungen. Ein Molekül wird chiral genannt, wenn es in zwei Varianten, sogenannten Enantiomeren auftritt, deren Struktu
Die vorliegende Arbeit befasst sich mit der Untersuchung einzelner chiraler Moleküle durch Koinzidenzmessungen. Ein Molekül wird chiral genannt, wenn es in zwei Varianten, sogenannten Enantiomeren auftritt, deren Strukturmodelle Spiegelbilder voneinander sind.
Da viele biologisch relevante Moleküle chiral sind, sind Methoden und Erkenntnisse dieses Gebiets von großer Bedeutung für Biochemie und Pharmazie. Bemerkenswert ist, dass in der Natur meist nur eines der beiden möglichen Enantiomere auftritt. Ob diese Wahl zufällig war, ob sie aufgrund der Anfangsbedingungen bei Entstehung des Lebens erfolgte, oder ob sie eine fundamentale Ursache hat, ist bisher ungeklärt. Seit der Entdeckung chiraler Molekülstrukturen in der zweiten Hälfte des 19. Jahrhunderts ist eine Vielzahl von Methoden entwickelt worden, um die beiden Enantiomere eines Moleküls zu unterscheiden und ihre Eigenschaften zu untersuchen. Aussagen über die mikroskopische Struktur (Absolutkonfiguration) können jedoch meist nur mithilfe theoretischer Modelle getroffen werden. 
Der innovative Schritt der vorliegenden Arbeit besteht darin, eine in der Atomphysik entwickelte Technik zur Untersuchung einzelner mikroskopischer Systeme erstmals auf chirale Moleküle anzuwenden: Mit der sogenannten Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) ist es möglich, einzelne Moleküle in der Gasphase mehrfach zu ionisieren und die entstandenen Fragmente (Ionen und Elektronen) zu untersuchen. Die gleichzeitige Detektion dieser Fragmente wird als Koinzidenzmessung bezeichnet.
Zunächst wurde das prototypische chirale Molekül CHBrClF mit einem Femtosekunden-Laserpuls mehrfach ionisiert, sodass alle fünf Atome als einfach geladene Ionen in einer sogenannten Coulomb-Explosion „auseinander fliegen“. Durch Messung der Impulsvektoren dieser Ionen konnte die mikroskopische Konfiguration einzelner Moleküle mit sehr hoher Zuverlässigkeit bestimmt werden. Somit eignet sich die Koinzidenzmethode auch dazu, die Anteile der rechts- bzw. linkshändigen Enantiomere in einer Probe zu bestimmen. Die Messungen an der verwendeten, racemischen Probe zeigen bei der Ionisation mit linear polarisiertem Licht im Rahmen der statistischen Unsicherheit wie erwartet eine Gleichverteilung der beiden Enantiomere.
In einem nachfolgenden Experiment konnte gezeigt werden, dass sich die Coulomb-Explosion auch mit einzelnen hochenergetischen Photonen aus einer Synchrotronstrahlungsquelle realisieren lässt. Für beide Ionisationsmechanismen – am Laser und am Synchrotron - wurden mehrere Fragmentationskanäle untersucht. Im Hinblick auf die Erweiterung der Methode hin zu komplexeren, biologisch relevanten Molekülen ist es entscheidend zu wissen, inwieweit sich die Händigkeit bestimmen lässt, wenn nicht alle Atome des Moleküls als atomare Ionen detektiert werden. Hierbei stellte sich heraus, dass auch molekulare Ionen zur Bestimmung der Absolutkonfiguration herangezogen werden können. Eine signifikante Steigerung der Effizienz konnte für den Fall demonstriert werden, dass nicht alle Fragmente aus der Coulomb-Explosion des Moleküls detektiert wurden – hier lassen sich allerdings nur noch statistische Aussagen über die Absolutkonfiguration und die Häufigkeit der beiden Enantiomere treffen.
Um die Grenzen der Methode in Bezug auf die Massenauflösung zu testen, wurden isotopenchirale Moleküle, d.h. Moleküle, die nur aufgrund zwei verschiedener Isotope chiral sind, untersucht. Auch hier ist eine Trennung der Enantiomere möglich, wenn auch mit gewissen Einschränkungen.
Ein wichtiges Merkmal chiraler Moleküle ist das unterschiedliche Verhalten der Enantiomere bei Wechselwirkung mit zirkular polarisierter Strahlung. Diese Asymmetrie wird Zirkulardichroismus genannt. Die koinzidente Untersuchung von Ionen und Elektronen aus der Fragmentation eines Moleküls eröffnet neue Möglichkeiten für die Untersuchung des Dichroismus. So können die Impulsvektoren der Ionen mit bekannten Asymmetrien in der Elektronenverteilung (Photoelektron-Zirkulardichroismus) verknüpft werden, was zu einem besseren Verständnis der Wechselwirkung elektromagnetischer Strahlung mit chiralen Molekülen führen kann.
In dieser Arbeit wurde nach Asymmetrien in der Winkelverteilung sowohl der Ionen als auch der Elektronen nach der Ionisation von CHBrClF und Propylenoxid (C3H6O) mit zirkular polarisierter Synchrotronstrahlung gesucht. In den durchgeführten Messungen konnte kein zweifelsfreier Nachweis für einen Dichroismus bei den verwendeten experimentellen Bedingungen erbracht werden. Technische und prinzipielle Limitierungen der Methode wurden diskutiert und Verbesserungsvorschläge für zukünftige Messungen genannt.
Mit der erfolgreichen Bestimmung der Absolutkonfiguration und der prinzipiellen Möglichkeit, Asymmetrien in zuvor nicht zugänglichen Messgrößen zu untersuchen, legt diese Arbeit den Grundstein für die Anwendung der Koinzidenzspektroskopie auf Fragestellungen der Stereochemie.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS
Metadaten
Author:Martin Pitzer
URN:urn:nbn:de:hebis:30:3-376940
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Reinhard Dörner, Till Jahnke
Advisor:Reinhard Dörner
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2015/06/12
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/05/11
Release Date:2015/06/12
Tag:Absolutkonfiguration; Chiralität; Coltrims; Coulomb Explosion Imaging; Spektroskopie
Pagenumber:158
HeBIS PPN:360059538
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $