Funktionalisierung mikro- und nanostrukturierter Oberflächen zur spezifischen Proteinimmobilisierung

  • Die vollständige Sequenzierung des humanen Genoms zu Beginn dieses Jahrtausends leitete einen Boom der Genomik ein, in deren Anfangszeiten man sich jedoch vor einer großen Herausforderung sah. Aufgrund der selbst bei einfachen Organismen großen Anzahl kodierender Gene und auch vor dem Hintergrund ständig wachsender Datenbanken mit immer neuen vollständig sequenzierten Arten, stellten sich genetische Analysen mit klassischen Methoden als zu zeit- und kostenaufwändig heraus. Die Entwicklung sog. DNA-Chips – feste Substrate, die mehre zehn- bis hunderttausend verschiedene Oligonukleotide tragen und die parallele Durchführung einer großen Anzahl von genetischen Analysen in sehr kurzer Zeit bei vergleichsweise geringen Kosten erlaubten – lösten dieses Problem. Analog hierzu werden Protein-Chips ähnlich gute Erfolgsaussichten in der Proteomik beschieden. Der Aufbau eines Protein-Chips ist dem eines DNA-Chips sehr ähnlich, allerdings sind die Anforderungen, die für eine funktionale Immobilisierung von Proteinen an eine Substratoberfläche gestellt werden, ungleich höher. Es muss gewährleistet sein, dass durch die Verankerung auf dem Substrat die native Struktur der Proteine nicht zerstört wird, dass die immobilisierten Proteine in einer Orientierung vorliegen, in der wichtige Merkmale, wie Bindungsmotive, aktive Zentren usw. weiterhin zugänglich sind und dass unspezifische Proteinadsorptionen auf ein Minimum reduziert werden. Ziel dieser Arbeit war es, ein Konzept für eine Protein-Chip-Plattform zu entwickeln, welches diese Voraussetzungen erfüllt. Einleitend wird die Erarbeitung eines Assays zur Analyse einer Antikörper-Antigenwechselwirkung mittels Oberflächenplasmonresonanz-(SPR)-spektroskopie dargestellt. Da diese Technik ebenfalls eine native Immobilisierung von Proteinen auf einem festen Substrat erfordert, stellt sie eine Vorform der Protein-Chip-gestützten Analyse dar. Dem entsprechend werden an SPR-Oberflächen ähnliche Anforderungen gestellt wie an Protein-Chips. In der Etablierungsphase des SPR-Assays wurden zunächst grundlegende Parameter wie die Immobilisierungs- und Regenerationsbedingungen optimiert. Anschließend wurde überprüft, ob Antigen und Antikörper unter den gewählten Versuchsbedingungen noch miteinander interagieren konnten und die Wechselwirkung zwischen beiden Proteinen nicht beeinträchtig wurde. Hauptziel des SPR-Assays war die Überprüfung der Bindeaktivität verschiedener Chargen des Antikörpers im Vergleich zu einer Referenz-Charge unter Berücksichtigung eines möglichen Einflusses der Lagerzeit. Als Ergebnis konnte zwar eine geringe Abnahme der Bindungsaktivität beobachtet werden, welche eindeutig mit der Lagerzeit korrelierte, ein signifikanter Unterschied zwischen den zu vergleichenden Chargen war jedoch nicht erkennbar. Der weitaus größere Teil der in dieser Dissertation beschriebenen Ergebnisse betrifft die Konzeption neuer Protein-Chip-Architekturen. In Zusammenarbeit mit der Arbeitsgruppe um Armin Gölzhäuser von der Universität Bielefeld wurde eine Protein-Chip-Plattform erarbeitet, für deren Herstellung Nitrobiphenyl-(NBPT)-Monolagen auf Gold mit Hilfe chemischer Lithographie im Mikro bzw. Nanomaßstab strukturiert wurden. Die Strukturen wurden anschließend mit multivalenten NTA-Verbindungen funktionalisiert, sodass Proteine mit His-Tag spezifisch darauf verankert werden konnten. Die wichtigsten Vorteile dieses Systems sind eine hohe Bindungsstabilität der immobilisierten Proteine, eine aufgrund der weiten Verbreitung des His-NTA-Systems leichte Verfügbarkeit His-getaggter Proteine sowie die Erhaltung ihres nativen Zustandes bei gleichzeitig uniformer Orientierung auf der Substratoberfläche. Nachdem zunächst die grundsätzliche Machbarkeit der Strukturierung und Funktionalisierung gezeigt wurde, folgte eine eingehende Charakterisierung der einzelnen Fertigungsschritte per Rasterkraftmikroskopie (AFM) und SPR-Spektroskopie, um diese anschließend weiter zu optimieren. So konnte die Proteinresistenz in den Bereichen zwischen den Mikro- bzw. Nanostrukturen, in denen keine Proteine binden sollten, deutlich verbessert werden. Zusätzlich wurde die Effizienz der Oberflächenfunktionalisierung gesteigert, sodass eine höhere Immobilisierungsdichte möglich war. Die Funktionalität des verbesserten Protein-Chips wurde mittels AFM und konfokaler Fluoreszenzmikroskopie (CLSM) überprüft. Es konnte eine hochspezifische und stabile, aber gleichzeitig reversible Bindung His-getaggter Proteine auf dem Protein-Chip gezeigt werden. Die bis dahin nass-chemisch durchgeführten Fertigungsschritte wurden in der Folge ins Hochvakuum übertragen, um die Herstellung dieser Protein-Chips mittels Gasphasenabscheidung zu ermöglichen. Als Ergebnis dieser Arbeiten konnten proteinresistente EG3-Monolagen allein durch Gasphasendeposition generiert werden. Bis auf die Funktionalisierung mit trisNTAs konnten im Rahmen dieser Arbeit sämtliche Fertigungsschritte in die Gasphase übertragen werden. Protein-Chips, die auf diese Art hergestellt worden waren, hatten in Hinsicht auf Bindungsspezifität und -stabilität ebenso gute Eigenschaften wie Protein-Chips aus der klassischen nass-chemischen Fertigung. Zusätzlich wurde parallel zu diesen Arbeiten ein neuer Ansatz zur Strukturierung und trisNTA-Funktionalisierung von EG3-SAMs erarbeitet. Ein zweiter Protein-Chip-Prototyp sollte durch orthogonale Funktionalisierung von nano-strukturierten Glasoberflächen mit Polyenthylenglykol (PEG) und multivalenten Chelatoren hergestellt werden. CLSM-Untersuchten ergaben zunächst, dass dieser Ansatz der orthogonalen Funktionalisierung nicht gelang, da auf den Goldstrukturen nur wenig Protein zu binden schien, während in den vermeintlich proteinresistenten PEG-Bereichen eine vergleichsweise große Menge His-getaggter Proteine adsorbierte. Nach einer Reihe von Versuchen stand fest, dass sich die Verfahren zur Funktionalisierung mit PEG und bisNTA-Thiolen gegenseitig störten. Die PEGylierung verhinderte die anschließende Ausbildung einer dicht-gepackten bisNTA-SAM, was zwar durch vorheriges Aufbringen einer Schutz-SAM aus Undecylthiolen gemildert, aber nicht vollständig verhindert werden konnte. Die anschließende Funktionalisierung der Nanostrukturen mit bisNTA-Thiolen führte wiederum zur Dotierung der PEG-Schicht mit bisNTA-Thiolen, sodass diese Schicht ihre Proteinresistenz verlor. Da dieser ungewollte Prozess seine Ursache in der zweistufigen PEGylierungsreaktion hatte und dieser auch durch verschiedenste Block-Verfahren nicht vollständig verhindert werden konnte, wurde ein alternatives, einstufiges PEGylierungsverfahren getestet. Dieses hatte eine deutliche Verbesserung der Oberflächeneigenschaften zur Folge. Einerseits zeigten die Glasbereiche nun eine sehr gute Proteinresistenz, zum Anderen hatte das neue PEGylierungsverfahren keine negativen Auswirkungen auf die Ausbildung von bisNTA-SAMs. Mittels CLSM konnte auf Mikrostrukturen eine hochspezifische Proteinbindung beobachtet werden, während die PEGylierten Glasbereiche frei von Proteinen blieben. Interessanterweise konnte auf entsprechend funktionalisierten Nanostrukturen jedoch keine Proteinbindung nachgewiesen werden. Hierfür sind mehrere Ursachen denkbar, zu deren Klärung es weiterer Untersuchungen bedarf.

Download full text files

  • Dissertation_Helge_Grossmann.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Helge Großmann
URN:urn:nbn:de:hebis:30:3-380525
Referee:Robert TampéORCiDGND, Bernd LudwigGND
Document Type:Doctoral Thesis
Language:German
Year of Completion:2014
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Date of final exam:2014/07/01
Release Date:2015/08/06
Page Number:166
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:365061832
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG