Elektronenemission aus dissoziierenden Molekülen

  • Die vorliegende Arbeit beschäftigt sich mit der Emission von Elektronen aus kleinen dissoziierenden Molekülen. Die Frage, der hier nachgegangen werden soll: Wie läuft ein solcher Prozess, bei dem ein Molekül in seine atomaren Einzelteile zerbricht, tatsächlich ab? Während es Experimentalphysikern schon seit längerem möglich ist präzise Aussagen über den Zustand eines Systems vor und nach einer solchen „halben“ chemischen Reaktion zu machen, war es lange nicht möglich die Reaktion selbst zu be-obachten, da sie auf einer Zeitskala von einigen Femtosekunden (1 fs = 10-15 s) stattfindet. Eine Möglichkeit, solche Prozesse zu untersuchen, ist die Ionisation, also das Herauslösen eines Elektrons aus seinem gebunden Zustand im Molekül, und die anschließende Messung der kinetische Energie oder des Impulsvektors des Elektrons. Dadurch können Rückschlüsse auf die Bindungsenergie und die räumliche Verteilung der Elektronen im gebundenen Zustand gezogen werden. Wenn man in der Lage ist die Elektronen, die von einem dissoziierenden Molekül zu verschiedenen Zeitpunkten während des Dissoziationsprozesses emittiert werden, zu messen, so sollte es unter Umständen möglich sein, den Übergang von molekularen zu atomaren Orbitalen zu beobachten. Zur Durchführung der Messungen wurde ein COLTRIMS-Multikoinzidenzimpulsspektrometer ver-wendet, mit welchem sowohl die kinetische Energie aller geladenen Reaktionsprodukte als auch deren vollständige Impulsvektoren koinzident gemessen werden können. In einer Messung an Chlorwasserstoff wurde auf diese Weise die ultraschnelle Dissoziation angeregter neutraler Moleküle untersucht. Hierbei machte man sich den Umstand zunutze, dass die angeregten Zustände bei beliebigen internuklearen Abständen zerfallen und ein Auger-Elektron emittieren können. Für den resonanten Auger-Zerfall der 2p-16σ-Zustände des Chlorwasserstoffmoleküls wurden unseres Wissens nach erstmals alle Komponenten der Impulsvektoren sowohl der Auger-Elektronen als auch der ionischen Reaktionsprodukte gemessen. Durch diese kinematisch vollständige Messung konnte der Prozess in bisher noch nie dagewesenem Detail untersucht werden. Zum ersten Mal konnte sowohl der angeregte Zustand nach der Absorption des Photons, als auch der elektronische Endzustand für jeden einzelnen Zerfall bestimmt werden. Aufgeschlüsselt nach diesen Zuständen konnten dann die Winkelverteilungen der Auger-Elektronen und die Aufteilung der Energie auf Elektron und Kernbewegung vermessen werden. Dies ist der vollständige Satz aller möglichen Beobachtungsgrößen, so dass die Daten über keine Größe mehr integriert wurden. In einer Messung an H2O-Molekülen wurde ein Prozess untersucht, bei dem ein einfach geladenes angeregtes Molekül in zwei Fragmente dissoziiert und, wenn die Dissoziation bereits sehr weit fort-geschritten ist, ein weiteres Elektron emittiert. Hier konnte gezeigt werden, wie eine Anisotropie in der Elektronenwinkelverteilung eines dissoziierenden Moleküls mit Hilfe einer einfachen klassischen Simulation dazu verwendet werden kann, den Abstand zwischen einem Proton und einem angeregten Molekül, in welche das ursprüngliche Molekül dissoziiert, zu dem Zeitpunkt an dem das angeregte Molekül durch Autoionisation ein weiteres Elektron emittiert, zu bestimmen. Es wurde nachgewiesen, dass der Auger-Zerfall eines H2O+*-Ions, bei dem ein Sauerstoff 2s-Elektron aus dem Molekülverband entfernt wurde, erst bei sehr großen Abständen von mehreren 100 Ångström zwischen dem Proton und dem OH*-Molekül stattfindet. Die dritte Messung an dem Ne2-Dimer beschäftigt sich mit der Frage, ob die in einem Molekül er-zeugten Vakanzen als lokalisiert oder delokalisiert zu betrachten sind. Wie bereits in vorhergegangenen Messungen dargelegt wurde, ist die Antwort auf die Frage für kovalente Moleküle eine Frage des Messprozesses. In Rahmen dieser Arbeit konnte nachgewiesen werden, dass dies auch für schwach gebundene Van-der Waals-Moleküle der Fall ist und deren Valenzelektronen ebenfalls unter bestimmten Umständen als delokalisiert angesehen werden müssen. Das ist insoweit überraschend, da die gängige Vorstellung eines solchen Moleküls die eines Systems aus einzelnen Atomen ist, welche nur durch kleine Ladungspolarisationen in den Elektronenschalen eine Bindung eingehen. Des Weiteren wurde gezeigt, dass sich der Prozess qualitativ mit einer einfachen Doppelspalt-Simulation erklären lässt, bei welcher ebene Wellen mit einem bestimmten Phasenversatz, der sich aus der Form der beteiligten Atomorbitale ergibt, von den beiden Kernen emittiert werden. Die Dissoziation des Moleküls war selber nicht Gegenstand der Untersuchung, sondern wurde ausgenutzt um verschiedene elektronische Zustände, in welchen sich das Molekül nach der Ionisation befinden kann und von denen nur einer dissoziativ ist, zu unterscheiden.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Hendrik Sann
URN:urn:nbn:de:hebis:30:3-386193
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Reinhard DörnerORCiDGND, Till JahnkeORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2015/11/26
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/11/20
Release Date:2015/11/26
Page Number:222
HeBIS-PPN:366896601
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht